MAC 3105-2A
Xiping Zhang
Midterm
06/22/2017

Print Name \qquad

Signature \qquad

INSTRUCTIONS:

- Write answer in the space provided after the problems.
- Clearly show ALL work and circle/box answer.
- I_{n} is the $n \times n$ Identity Matrix of the required dimension.
- Keep Calm and Enjoy Linear

1. Definitions

Write down the definitions of the following terminologies.
(1) (5 pts) The vectors $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ are linear independent.
(2) (5 pts) The Rank of a matrix A.

2. 'Trick or Treat'

Determine whether the statement is true or false. If it is true, say so; if it is false, explain why or give an example that disproves the statement.
(1) (5 pts) Let A, B, C be $n \times n$ matrices, then

$$
\operatorname{det}(A) \operatorname{det}(C)+\operatorname{det}(B) \operatorname{det}(C)=\operatorname{det}((A+B) C)
$$

(2) (5 pts) Two different bases of a subspace have the same number of vectors.
(3) (5 pts) $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=0\right\}$ is NOT a linear subspace of \mathbb{R}^{3}.
(4) (5 pts) Any linear transform T will take 0 to 0 .
(5) (5 pts) There exists NO injective linear transform from \mathbb{R}^{4} to \mathbb{R}^{3}.
(6) (5 pts) If the Kernel of a linear transform $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is $\{0\}$, then the matrix that represents T has rank 3.

3. Hardcore Problems

3.1. 10 pts. Find a basis for the Column space of A.

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 8 & -3 & 7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & 2
\end{array}\right]
$$

3.2. 10 pts . Find the $L U$ decomposition for the following matrix.

$$
A=\left[\begin{array}{ccccc}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right]
$$

3.3. 10 pts. Use Cramer's Rule to solve the following matrix equation $A X=B$.

$$
A=\left[\begin{array}{ccc}
1 & 4 & 5 \\
-2 & -7 & -8 \\
4 & 9 & 6
\end{array}\right] ; B=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

3.4. 10 pts. Find the Inverse of the following matrix.

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 3 & 1 & 2 \\
2 & 3 & 1 & 0 \\
1 & 0 & 2 & 1
\end{array}\right]
$$

3.5. 10 pts. Knowing that

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=12 .
$$

Find the determinant of the following matrix

$$
A=\left[\begin{array}{ccc}
3 d & 3 e & 3 f \\
2 a-g & 2 b-h & 2 c-i \\
3 d-g & 33-h & 3 f-i
\end{array}\right]
$$

3.6. 15 pts. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ be the linear transform that sends
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] \mapsto\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 2\end{array}\right] ;\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right] \mapsto\left[\begin{array}{l}3 \\ 6 \\ 0 \\ 6\end{array}\right] ;\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right] \mapsto\left[\begin{array}{c}-2 \\ -5 \\ 5 \\ 0\end{array}\right] ;\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right] \mapsto\left[\begin{array}{c}0 \\ -2 \\ 10 \\ 8\end{array}\right] ;\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right] \mapsto\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 4\end{array}\right]$.
Find a basis for the Kernel space of T.

