\qquad
Quiz 7
07/06/2017
Signature \qquad

INSTRUCTIONS:

- Write answer in the space provided after the problems.
- Clearly show ALL work and circle/box answer.
- I is the Identity Matrix of the required dimension.
- Keep Calm and Enjoy Linear

Unless special instructed, we only consider REAL numbers.

1. True of False. Let A be a 4×4 Real matrix.
(1) The dot product of two vectors is always non-negative.
(2) The length of a vector is always positive.
(3) If $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal set, then the matrix whose column vectors are u_{1}, u_{2}, u_{3} has rank 3 .
(4) Let $H \subset V$ be a linear subspace, then $\operatorname{dim} H+\operatorname{dim} H^{\perp}=\operatorname{dim} V$.
2. Let $u=[1,2,3,4]^{T}, u_{1} 2=[1,1,-1,-1]^{T}$ and $u_{2}=[0,1,-1,2]^{T}$. Let H be the plane generated by u_{1}, u_{2}. Find u_{H} and $u_{H^{\perp}}$.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transform that is represented by

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & -1 \\
1 & 0 & -2
\end{array}\right]
$$

(1) Show that the column vectors of A form an orthogonal set.
(2) Show that the row vectors of A does NOT form an orthogonal set.
(3) Find $A^{T} A$. Notice that it's NOT equal to $A A^{T}$.
4. Find the distance from the point $(1,1,1,1)$ to the plane $x+y+z+w=0$ in \mathbb{R}^{4}.

