MAC 3105-2A	Print Name
Quiz 7	
07/06/2017	Signature

INSTRUCTIONS:

- Write answer in the space provided after the problems.
- Clearly show ALL work and circle/box answer.
- *I* is the **Identity Matrix** of the required dimension.
- Keep Calm and Enjoy Linear

UNLESS SPECIAL INSTRUCTED, WE ONLY CONSIDER **REAL** NUMBERS.

1. True of False. Let A be a 4×4 Real matrix.

(1) The dot product of two vectors is always non-negative.

(2) The length of a vector is always positive.

(3) If $\{u_1, u_2, u_3\}$ is an orthogonal set, then the matrix whose column vectors are u_1, u_2, u_3 has rank 3.

(4) Let $H \subset V$ be a linear subspace, then $\dim H + \dim H^{\perp} = \dim V$.

2. Let $u = [1, 2, 3, 4]^T$, $u_1 2 = [1, 1, -1, -1]^T$ and $u_2 = [0, 1, -1, 2]^T$. Let H be the plane generated by u_1, u_2 . Find u_H and $u_{H^{\perp}}$.

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transform that is represented by

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & -2 \end{bmatrix}$$

- (1) Show that the column vectors of A form an orthogonal set.
- (2) Show that the row vectors of A does NOT form an orthogonal set. (3) Find $A^T A$. Notice that it's NOT equal to AA^T .

4. Find the distance from the point (1, 1, 1, 1) to the plane x + y + z + w = 0 in \mathbb{R}^4 .