\qquad
\qquad

Unless special instructed, we only consider REAL numbers.

1. Let A be a 5×5 matrix as follows.

$$
\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & -2 & 1
\end{array}\right]
$$

(1) Find all the eigenvalues of A.
(2) For each eigenvalue, find a basis for its eigen-space.
(3) Is A diagonalizable ? If not, Explain why. If it is, find the matrix P and D such that $A=P D P^{-1}$. Here D is diagonal, and P is an invertible matrix.
2. Let A be a 3×3 matrix as follows.

$$
\left[\begin{array}{ccc}
2 & 3 / 2 & 0 \\
-2 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(1) Find the diagonalization of A, i.e., find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
(2) Find A^{2017}, i.e., $A \times A \times \cdots \times A$ multiplied 2017 times.
3. A is a 5×5 matrix that has eigenvale 2 of multiplicity 5 , and is diagonalizable. List all the possible A 's.

