MAC 3105-2A	Print Name	
Quiz 7		
07/06/2017	Signature	

UNLESS SPECIAL INSTRUCTED, WE ONLY CONSIDER **REAL** NUMBERS.

1. Let A be a 5×5 matrix as follows.

2	0	0	0	0	1
1	2	1	0	0	
-1	0	1	$0 \\ 2 \\ -2$	0	
0	0	0	2	2	
0	0	0	-2	1	

- (1) Find all the eigenvalues of A.
- (2) For each eigenvalue, find a basis for its eigen-space.
- (3) Is A diagonalizable ? If not, Explain why. If it is, find the matrix P and D such that $A = PDP^{-1}$. Here D is diagonal, and P is an invertible matrix.
- **2.** Let A be a 3×3 matrix as follows.

$$\left[\begin{array}{rrrr} 2 & 3/2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

- (1) Find the diagonalization of A, i.e., find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.
- (2) Find A^{2017} , i.e., $A \times A \times \cdots \times A$ multiplied 2017 times.

3. A is a 5×5 matrix that has eigenvale 2 of multiplicity 5, and is diagonalizable. List all the possible A's.