MAC 3105-2A
Xiping Zhang
Quiz 4 \& 5
06/15/2017

Print Name \qquad

Signature \qquad

INSTRUCTIONS:

- Write answer in the space provided after the problems.
- Clearly show ALL work and circle/box answer.
- I is the Identity Matrix of the required dimension.
- Keep Calm and Enjoy Linear

1. Definitions

Write down the definition of the following terminologies. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transform.
(1) (5 pts) The Basis of a linear subspace H.
(2) (5 pts) Column space of a matrix A.

2. 'Trick or Treat'

Determine whether the statement is true or false. If it is true, say so; if it is false, explain why or give an example that disproves the statement.
(1) (5 pts) Let A, B, C be $n \times n$ matrices, then $(A+B) C=A C+B C$.
(2) (5 pts) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transform. If $T\left(u_{1}\right), T\left(u_{2}\right)$ and $T\left(u_{3}\right)$ are linear independent, then u_{1}, u_{2}, u_{3} are linear independent.
(3) (5 pts) The basis of a linear subspace is unique.
(4) (5 pts) $\{(x, y) \mid x-y=0\}$ is NOT a linear subspace of \mathbb{R}^{2}.
(5) (5 pts) If the Kernel of a linear transform $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is $\{0\}$, then the matrix represents T has rank 3 .
(6) (5 pts) Only a square matrix has a $L U$ decomposition.

3. Hardcore Problems

3.1. 10 pts. Solve the following linear system, and parametrize the solution space.

$$
\left\{\begin{array}{l}
x+y+5 z=1 \\
2 x-2 y-2 z=-2 \\
-x+3 y+5 z=3
\end{array}\right.
$$

3.2. $\mathbf{1 0}$ pts. Is the vector $u=[-4,10,-7,5]^{T}$ in the column space of A ? Explain why or why not.

$$
A=\left[\begin{array}{ccc}
1 & 4 & 5 \\
-2 & -7 & -8 \\
4 & 9 & 6 \\
3 & 7 & 5
\end{array}\right]
$$

3.3. 10 pts. Find the $L U$ decomposition of the following matrix A if it exists.

$$
A=\left[\begin{array}{llll}
1 & 4 & 2 & 3 \\
1 & 2 & 1 & 0 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

3.4. 10 pts . Let A be a partitioned matrix

$$
A=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right]
$$

Here

$$
A_{1,1}=\left[\begin{array}{cc}
1 & 4 \\
1 & 2
\end{array}\right] ; A_{1,2}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] ; A_{2,2}=\left[\begin{array}{cc}
0 & 0
\end{array}\right] ; A_{2,2}=\left[\begin{array}{cc}
1 & 0
\end{array}\right] ;
$$

Find a partition for

$$
A_{1,2}=\left[\begin{array}{cc}
1 & 3 \\
-1 & 1 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

and find $A B$ using the matrix multiplication for partitioned matrices.
3.5. 15 pts. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transform that sends $[2,2,2]^{T}$ to $[2,0,0]^{T}$, $[-1,1,2]^{T}$ to $[0,1,0]^{T}$, and $[1,1,4]^{T}$ to $[0,0,1]^{T}$. Find the matrix A such that A represents T.
3.6. 10 pts. Let $X=[x, y]^{T}$. Let

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Find a basis for the solution space to the following equation.

$$
X^{T} A X=0
$$

