MAC 3105-2A
Xiping Zhang
Quiz 2
06/01/2017

Print Name \qquad

Signature \qquad

INSTRUCTIONS:

- Write answer in the space provided after the problems.
- Clearly show ALL work and circle/box answer.
- I is the Identity Matrix of the required dimension.
- Keep Calm and Enjoy Linear

1. Definitions

Write down the definition of the following terminologies. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transform.
(1) T is Injective
(2) T is Surjective

2. 'Trick or Treat'

Determine whether the statement is true or false. If it is true, say so; if it is false, explain why or give an example that disproves the statement.
(1) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transform. If $T\left(u_{1}\right), T\left(u_{2}\right)$ and $T\left(u_{3}\right)$ are linear independent, then u_{1}, u_{2}, u_{3} are linear independent.
(2) Let A be a 4 by 3 matrix, then $A X=I$ always has a solution.
(3) Let A and B be matrices. If $A B=I$, then A and B are invertible.
(4) If the Kernel of a linear transform $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is $\{0\}$, then the matrix representing T has a pivot on each row.
(5) If a matrix A is invertible, then $A X=B$ has a unique solution for every vector B.

3. Find the Inverse

Find the inverse of the following matrix A if it exists.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
3 & 2 & 3
\end{array}\right]
$$

