BASIC DEFINITIONS

XIPING ZHANG

1. Chapter I

Linear Independent. A set of vectors $\left\{u_{1}, u_{2}, \cdots u_{k}\right\}$ are linear independent if the only solution to $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{k}=0$ is $a_{1}=a_{2}=\cdots=a_{k}=0$.

Span Space. The Span Space of vectors $\left\{u_{1}, u_{2}, \cdots u_{k}\right\}$ is the space that contains all the linear combinations of them.

Linear Transform. A Linear Transform is a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that
(1) For any vectors u and $v, T(u)+T(v)=T(u+v)$.
(2) For any scalar $c, T(c u)=c T(u)$

Injective and Surjective. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transform.
(1) A linear transform T is injective if whenever $u \neq v, T(u) \neq T(v)$. Or equivalently, $T(u)=0$ if and only if $u=0$; i.e., the kernel space of T is $\{0\}$.
(2) A linear transform T is surjective if for any vector B in \mathbb{R}^{m}, there exists some u in \mathbb{R}^{n} such that $T(u)=B$. Or equivalently, the image space of T is \mathbb{R}^{m}.

Kernel Space and Image Space. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transform.
(1) The Kernel Space of T is the set of vectors u in \mathbb{R}^{n} such that $T(u)=0$.
(2) The Image Space of T is the set of vectors B in \mathbb{R}^{m} such that $B=T(u)$ for some u in \mathbb{R}^{n}.

2. Chapter II

Column Space. The Column Space of a matrix A is the space spanned by the column vectors of A.
(Linear) Subspace. A (Linear) Subspace of \mathbb{R}^{n} is a subset H of \mathbb{R}^{n} such that
(1) If u and v are in H, then $u+v$ is in H.
(2) If u is in H, then $c u$ is in H for any scalar c.

Basis of a Subspace. The Basis of a linear subspace H is a set of vectors \mathcal{B} such that
(1) The vectors in \mathcal{B} span H.
(2) The vectors in \mathcal{B} are linear independent.

Dimension of a Linear subspace. The dimension of a linear subspace is the number of vectors in any of its basis.

Rank of a Matrix. The Rank of a matrix is the dimension of the column space of A. Or equivalently, the number of linear independent vectors among the column vectors.

3. Final Exam

THe definitions of the final exam will come from the following.
(1) λ is an eigenvalue of A.
(2) u is an eigenvector of A.
(3) Characteristic polynomial of a matrix A.
(4) A is diagonalizable.
(5) The dote product of u and v. The length of u. The distance between u and v.
(6) The orthogonal projection of u on a subspace H.
(7) A set of vectors is orthogonal/orthonormal.
(8) Unit vector
(9) A matrix is symmetric.
(10) A quadratic form/symmetric matrix is positive definite/negative definite/indefinite.

