
VECTOR AND LINEAR GEOMETRY

XIPING ZHANG

1. Why do we talk about vectors

Vector can be realized as an extension of a real number into higher dimensional
spaces. When we talk about a real number, we are actually talking about two things:
the magnitude and the sign. On a real line, the magnitude tells us how far the point
is away from the origin, and the sign tells us whether it’s on the left side or on the
right side. In other words, a number with direction. So vectors should be thought of,
at a first approximation, as ”numbers with direction”. We can think a vector as a
light beam, the direction shows where it goes, and the magnitude shows ho long the
beam is.

In real life, especially in physics, lots of the common terminologies are defined as
numbers with direction, such as velocity, force, acceleration, displacement, etc. And
for some other terminologies such as work W , are defined using both the magnitudes
and the relative position between the force and the displacement. This requires us to
find a way to compute directly using the vectors, rather than just numbers.

To simplify notations, from now on we will restrict our space to be 3-dimensional
without further notice.

2. Vectors and Basic Operations.

Vectors. A vector in R3 is composed by a magnitude and a direction. A vector
doesn’t have fixed starting or ending point, which means that you can move it around.
Like numbers, we want to compare them, add them, subtract them, and multiply
them, this requires an algebra system to describe vectors, and the natural idea is to
move the vectors to a common starting point, then a vector is uniquely determined
by the ending point. Talking about a common initial, which point could be better
than the origin ? Then the coordinate of the ending point provides a measure for the
vector.

Let P = (a1, b1, c1) ∈ R3 be a point, then we give the vector ~OP a coordinate

form < a1, b1, c1 >= a1~i + b1~j + c1~k. For another point Q = (a2, b2, c2), the vector
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~PQ = ~OQ− ~OP shall be given by < a2 − a1, b2 − b1, c2 − c1 >. This coordinate form
guarantees us the following properties:

Prop 1. Let ~a =< a1, b1, c1 > and ~b =< a2, b2, c2 > be two vectors. Let λ be a real
number.

(1) ~a = ~b iff a1 = a2, b1 = b2, and c1 = c2.

(2) ~a±~b =< a1 ± a2, b1 ± b2, c1 ± c2 >.
(3) λ · ~a =< λa1, λb1, λc1 >.

Products. Of course we are not satisfied with the easy operations, we want to mul-
tiply vectors ! However, things get a little complicated on multiplication: there are
two multiplications, depending on what you need.

Let ~a =< a1, b1, c1 > and ~b =< a2, b2, c2 > be two vectors in R3.

Product 1 We define the Dot Product of ~a and ~b to be a Real Number:

~a ·~b := a1a1 + b1b2 + c1c2

Product 2 We define the Cross Product of ~a and ~b to be a Vector:

~a×~b :=

∣∣∣∣∣∣
~i ~j ~k
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ =< b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1 >

Both products carry down the nice linear properties, however, there are major dif-
ferences between them: the dot product gives you a scalar, while the cross product
gives a vector; also the dot product is commutative, while the cross product is skew
commutative:

Prop 2. Let ~a,~b,~c be vectors in R3, and λ be a real number.

(1) (λ~a) ·~b = λ(~a ·~b) = ~a · (λ~b).

(2) (λ~a)×~b = λ(~a×~b) = ~a× (λ~b).

(3) (~a+~b) · ~c = ~a · ~c+~b · ~c.
(4) (~a+~b)× ~c = ~a× ~c+~b× ~c.
(5) ~a ·~b = ~b · ~a.

(6) ~a×~b = −~b× ~a.

Notice that the cross product is only defined for vectors in R3, the dot product,
however, is defined for all dimensional vectors. One way to generalize the cross
product is to use the wedge product, and the dual space. This definition extends to
arbitrary dimension spaces, and shares the same properties as the cross product.

The products also contain rich information about the geometry: they involve
lengths of the vectors, together with the angle between them.
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Prop 3. Let ~a and ~b be two vectors in R3, and denote the angles between them to be
α, then

(1) ~a ·~b = |~a| · |~b| cosα .

(2) |~a×~b| = |~a| · |~b| sinα.

(3) The direction of ~a×~b comes from the Right Hand Rule from ~a to ~b.

Hence playing with plane geometry we have the following results:

(1) The projection of ~a onto ~b is:

~a ·~b
|~b|2
·~b

(2) The length of ~a×~b equals the area of the parallelogram generated by ~a and ~b.

(3) the absolute value of the triple product ~a · (~b × ~c) equals the volume of the

parallelepiped generated by ~a, ~b and ~c.
(4) To compute the triple product, one has the following shortcut:

~a · (~b× ~c) :=

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
providing that ~a =< a1, b1, c1 >, ~b =< a2, b2, c2 >, and ~c =< a3, b3, c3 >.

3. Lines and Planes

Another benefit of introducing vectors is, they provide a simple way of writing
equations of linear objects in space, such as lines and planes.

Lines. A line is the trace of a particle moving straight in space, hence is uniquely
determined by a position and a direction. One can pick a random point on the path,
and assign it to time 0, then along the moving direction, use the time t to describe
the position. Notice that the direction of a line is nothing but a fixed vector, hence
the Equation of a Line is given by:

~r(t) = ~r0 + t~u

In terms of coordinate form, the points on the line obey the following equation:

~r(t) =< x(t), y(t), z(t) >=< x0 + ta, y0 + tb, z0 + tc >

providing that the point is (x0, y0, z0) and ~u =< a, b, c >.
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Planes. A plane can be realized as the complement of a line in R3, i.e., all the vectors
that is perpendicular to a given line. Here the direction vector of the line is called
the Normal Vector. Assume that ~n =< a, b, c >, and given a point Q = (x0, y0, z0)
on the plane, we have the following relation:

~PQ · ~n = (~r − ~r0) · ~n = 0

Here ~r = ~OP =< x, y, z > is any point on the plane, and ~r0 = ~OQ In terms of
coordinate form:

a(x− x0) + b(y − y0) + c(z − z0) = 0

Generally any equation of the form

ax+ by + cz + d = 0

describes a plane, with normal vector ~n =< a, b, c >.

Intersections

Intersection of Lines. Two lines could have three possible positions: parallel, in-
tersect with each other, or skew lines. If they intersect, then they intersect at a point.
Notice that if we parametrize the lines by time t, they don’t necessarily intersect
at the same time, hence we should parametrize two lines using different parame-
ters: Assume that the two lines have equations r1(t) =< x1(t), y1(t), z1(t) > and
r2(s) =< x2(s), y2(s), z2(s) >, then the intersection point comes from the following
linear system: 

x1(t) = x2(s)

y1(t) = y2(s)

z1(t) = z2(s)

Intersection of planes. Two planes will intersect at a line L, and the direction
vector of L comes from the cross product of the normal vectors. Assume that plane
A has normal vector ~n1, and plane B has normal vector ~n2. Then the direction vector
of L equals ~n1 × ~n2. In order to find the equation of L, one just need to find a point
on the line, which can easily be done by putting the plane equations together, and
set x = 0.

A line intersect with a plane. A line can either intersect, or be parallel to the
plane. If they intersect, then the intersection is a point. To find the point, just replace
the x, y, z in the equation of the plane by x(t), y(t), z(t), then the equation becomes
an equation with t only. Solve for t.
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Intersection of three planes. Three planes will intersect at one point. Assume
that the planes have equations aix + biy + ciz = di, for i = 1, 2, 3, then to find the
point is equivalent to finding the solution to the following linear system:

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

Distance

Distance from a point to a line. Let P be a point, L is a line with direction
vector ~u and contains a point Q, then the distance between P to the line L is:

d = |PQ| sinα =
| ~PQ× ~u|
|~u|

Here Q can be any point on the line.

Distance from a point to a plane. Let P be a point, H is a plane with normal
vector ~n and contains a point Q. Then the distance between P to the plane H is:

d = |PQ|| cosα| = |
~PQ · ~n|
|~n|

Here Q can be any point on the plane.

Actually, there is a nicer formula with coordinate form. Let P = (x0, y0, z0), and
H has the equation ax+ by + cz + d = 0, then the distance between P to H is:

d =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2

Try to prove this formula from the precious vector form formula.

Distance from a line to another line. As we know already, there are three possible
relative positions between two lines: parallel, intersecting, or skew. We will discuss
accordingly.

Case 1 Intersecting Lines
If two lines intersect with each other, the the distance, of course, equals 0.

Case 2 Parallel Lines:
If two lines L1 and L2 are parallel, then the distance between is the distance
between P to L2, where P is any point on L1.
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Case 3 Skew Lines:
If L1 and L2 are skew lines with direction vectors ~u1 and ~u2, then the distance
is:

d =
| ~PQ · (~u1 × ~u2)|
|~u1 × ~u2|

Here P is ANY point on L1, and Q is ANY point on L2.

Distance from a line to a plane. If they intersect, then the distance d = 0;
otherwise the distance is given by the distance from any point on the line to the
plane.

Distance from a plane to another plane. If they intersect, then the distance
d = 0; otherwise the distance is given by the distance from any point on the first
plane to another plane.


