MAC 2311-0003
Xiping Zhang
Test 1
05/26/2016
\qquad

Signature \qquad

INSTRUCTIONS:

- Clearly show all work where instructed.
- Write answer in space provided or circle/box answer.
- If a limit may be classified as ∞ or $-\infty$, say so (and which one).
- If a limit does not exist and cannot be classified as ∞ or $-\infty$, write DNE

Keep Calm and Do some Calculus!

1. $(5 \mathrm{pts})$. Let $f(x)$ be a function of x. Write down the definition of " $f(x)$ is continuous at $x=a$."

Ans. The limit $\lim _{x \rightarrow a} f(x)$ exists and equals $f(a)$. Or

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

2.(10pts). Let

$$
f(x)= \begin{cases}x^{2}+3 x & \text { if } x \leq-2 \\ x & \text { if }-2<x<3 \\ \sqrt{x+1} & \text { if } x \geq 3\end{cases}
$$

(1) $\lim _{x \rightarrow-3} f(x)=0$
(2) $\lim _{x \rightarrow-2^{+}} f(x)=-2$
(3) $\lim _{x \rightarrow 3} f(x)=D N E$
(4) $f(x)$ is NOT continuous at $x=3$.
3.(5pts). [Graph it] Sketch a possible graph for $f(x)$ if

$$
\lim _{x \rightarrow-3^{-}} f(x)=3 ; \quad \lim _{x \rightarrow-3^{+}} f(x)=-2 ; \quad f(-3)=0 ; \quad \lim _{x \rightarrow \infty} f(x)=0
$$

Ans. Omit here.
4.(20pts). [Show me your limits]

Evaluate the following limits. Simplify answers as much as possible, show your work in the spaces provided, and circle or box your final answer.
(1) $\lim _{x \rightarrow \pi}\left(x^{3}+\cos (x)\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow \pi}\left(x^{3}+\cos (x)\right) \\
& =\lim _{x \rightarrow \pi} x^{3}+\lim _{x \rightarrow \pi} \cos (x) \\
& =\pi^{3}+\cos (\pi) \\
& =\pi^{3}-1
\end{aligned}
$$

(2) $\lim _{x \rightarrow \infty} e^{2 x-x^{2}}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} e^{2 x-x^{2}} \\
& =e^{\left(\lim _{x \rightarrow \infty} 2 x-x^{2}\right)} \\
& =e^{\left(\lim _{x \rightarrow \infty}-x^{2}\right)} \\
& =e^{-\infty} \\
& =0
\end{aligned}
$$

(3) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (2 x)}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (2 x)} \\
& =\lim _{x \rightarrow \infty} \frac{(\sin (3 x))(3 x)(2 x)}{(3 x)(2 x)(\tan (3 x))} \\
& =\lim _{x \rightarrow \infty} \frac{\sin (3 x)}{3 x} \frac{3 x}{2 x} \frac{2 x}{\tan (2 x)} \\
& =\lim _{x \rightarrow \infty} \frac{\sin (3 x)}{3 x} \lim _{x \rightarrow \infty} \frac{3 x}{2 x} \lim _{x \rightarrow \infty} \frac{2 x}{\tan (2 x)} \\
& =1 \cdot \frac{3}{2} \cdot 1=\frac{3}{2}
\end{aligned}
$$

(4) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-3}}{x+19}$

Since the limit here is $x \rightarrow-\infty$, we can think x to be negative, hence

$$
x=-\sqrt{x^{2}}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-3}}{x+19} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{x^{2}-3}}{x}}{\frac{x+19}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{x^{2}-3}{x^{2}}}}{\frac{x+19}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{1-\frac{3}{x^{2}}}}{1+\frac{19}{x}} \\
& =-1
\end{aligned}
$$

5.(10pts). Use the limit definition to find the 1st derivative function $f^{\prime}(x)$ of $f(x)=\frac{1}{x+1}$. Show all your work clearly and circle your answer.
Ans. The definition of $f^{\prime}(x)$ is:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Hence here we have:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+1+h}-\frac{1}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(x+1)-(x+1+h)}{(x+1)(x+h+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+1)-(x+1+h)}{h(x+1)(x+h+1)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+1)(x+h+1)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+1)(x+h+1)} \\
& =\frac{-1}{(x+1)^{2}}
\end{aligned}
$$

6.(15pts). The Intermediate Value Theorem is a very powerful theorem in Calculus. It guarantees the legality of the sign chart way, for examples.
(1) (5 pts) Fill out the Theorem.

Let $f(x)$ be a CONTINUOUS function on the closed interval $[a, b]$. If N is a number between $f(a)$ and $f(b)$, then:
There exists some number c belongs to (a, b) such that $f(c)=N$.
(2) $\overline{(10 \mathrm{pts}) \text { Use the Theorem to prove that the equation } e^{x}=\sin (\pi x)}+3 x^{2}$ has a zero in $(0,1)$.

Proof. Let $f(x)=e^{x}-\sin (\pi x)+3 x^{2}$. This is a linear form of simple functions, hence it is continuous on the closed interval $[0,1]$. Also one notices that

$$
f(0)=e^{0}-\sin (\pi \cdot 0)+3(0)^{2}=1>0
$$

and

$$
f(1)=e^{1}-\sin (\pi \cdot 1)+3(1)^{2}=e-3<0
$$

Hence one picks $N=0$, and by the I.V.T there exists some $c \in(0,1)$ such that $f(c)=0$.
7.(25pts). Find the 1st derivatives for the following functions. Show your work in the spaces provided, and circle or box your final answer.
(1) $f(x)=e^{\pi}-2^{x}+2 \tan (x)$

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{\pi}\right)^{\prime}-\left(2^{x}\right)^{\prime}+2(\tan (x))^{\prime} \\
& =0-(\ln 2) 2^{x}+2 \sec ^{2}(x) \\
& =-(\ln 2) 2^{x}+2 \sec ^{2}(x)
\end{aligned}
$$

(2) $f(x)=\sin (x)(\ln x)$

$$
\begin{aligned}
f^{\prime}(x) & =(\sin (x)(\ln x))^{\prime} \\
& =(\sin (x))^{\prime}(\ln x)+(\sin (x))(\ln x)^{\prime} \\
& =\cos (x) \ln x+\sin (x) \frac{1}{x} \\
& =\cos (x) \ln x+\frac{\sin (x)}{x}
\end{aligned}
$$

(3) $\left(f(x)=\frac{x^{3}-x+2}{x^{2}}\right.$

We can rewrite $f(x)$ as:

$$
f(x)=\frac{x^{3}}{x^{2}}-\frac{x}{x^{2}}+\frac{2}{x^{2}}=x-\frac{1}{x}+\frac{2}{x^{2}}
$$

Hence

$$
\begin{aligned}
f^{\prime}(x) & =\left(x-\frac{1}{x}+\frac{2}{x^{2}}\right)^{\prime} \\
& =(x)^{\prime}-\left(\frac{1}{x}\right)^{\prime}+\left(\frac{2}{x^{2}}\right)^{\prime} \\
& =(x)^{\prime}-\left(x^{-1}\right)^{\prime}+\left(2 \cdot x^{-2}\right)^{\prime} \\
& =1-(-1) x^{-2}+2(-2) x^{-3} \\
& =1+\frac{1}{x^{2}}-\frac{4}{x^{3}}
\end{aligned}
$$

(4) (8 pts)Simplify your answer as much as possible $f(x)=\frac{x^{2}+1}{e^{x}}$
By Quotient Rule we have;

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+1\right)^{\prime}\left(e^{x}\right)-\left(x^{2}+1\right)\left(e^{x}\right)^{\prime}}{\left(e^{x}\right)^{2}} \\
& =\frac{(2 x)\left(e^{x}\right)-\left(x^{2}+1\right)\left(e^{x}\right)}{\left(e^{x}\right)^{2}} \\
& =\frac{\left(2 x-\left(x^{2}+1\right)\right)\left(e^{x}\right)}{\left(e^{x}\right)^{2}} \\
& =\frac{2 x-x^{2}-1}{\left(e^{x}\right)} \\
& =\frac{-(x-1)^{2}}{\left(e^{x}\right)}
\end{aligned}
$$

8.(10pts). Find the equation of the tangent line of the curve $y=x^{3}-3 x+7$ at $x=1$.

Ans. The curve is given by $y=f(x)=x^{3}-3 x+7$, hence at $x=1$, the point is given by $(1, f(1))=(1,1-3+7)=(1,5)$.

In order to find the equation of a line, we also need the slope. The slope of the tangent line is given by 1st derivative, ie, $k=f^{\prime}(1)$. Here $f^{\prime}(x)=\left(x^{3}-3 x+7\right)^{\prime}=$ $3 x^{2}-3$, hence $k=f^{\prime}(1)=3-3=0$.

So the equation of the tangent line is:

$$
y-5=(0) \cdot(x-1)
$$

Which simplifies as

$$
y=5
$$

