Tangents and Velocity

1. Slopes

(a) The slope of the secant line of $y=f(x)$ through ($a, f(a)$) and $(b, f(b))$ is

$$
m_{s e c}=\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}
$$

(b) The Slope of the tangent line of $y=f(x)$ through $(a, f(a))$ is

$$
m_{\text {tan }}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. Velocity

(a) The average velocity of a particle with position at time t given by $s(t)$ over the time interval $[a, b]$ is

$$
v_{\text {ave }}=\frac{\Delta s}{\Delta t}=\frac{s(b)-s(a)}{b-a}
$$

(b) The instantaneous velocity of a particle with position at time t given by $s(t)$ at time $t=a$ is

$$
v(a)=\lim _{t \rightarrow a} \frac{v(t)-v(a)}{t-a}=\lim _{h \rightarrow 0} \frac{v(a+h)-v(a)}{h}
$$

