1. Section 3.7 Recall

- The instantaneous velocity of a particle with position at time t given by $s(t)$ at time t is...
- The instantaneous acceleration of a particle with position at time t given by $s(t)$ at time t is...
- The jerk of a particle with position at time t given by $s(t)$ at time t is...
- The Average Rate of Change of $y=f(x)$ from $(a, f(a))$ to $(x, f(x))$ is ...
- The Instantaneous Rate of Change with respect to x of $y=f(x)$ at $(a, f(a))$ is ...

2. Some new applications of derivatives

- The linear density, ρ, is the instantaneous rate of change of the mass function with respect to the position. i.e. $\rho=m^{\prime}(x)$ if $m(x)$ represents the mass at position x.
- The current, I, is the instantaneous rate of change of the charge function with respect to time. i.e. $I=Q^{\prime}(t)$ if $Q(t)$ represents the charge at time t.
- The instantaneous rate of reaction, of a product C is the instantaneous rate of change of the concentration function with respect to time. i.e. instantaneous rate of reaction $=[C]^{\prime}(t)$ if $[C](t)$ represents the concentration at time t.
- The compressibillity, β, of a substance is the instantaneous rate of change of the volume function with respect to pressure multiplied by the negative reciprocal of the volume. i.e. $\beta=-\frac{1}{V(P)} V^{\prime}(P)$ if $V(P)$ represents the concentration at pressure P.

3. Examples

Example 3.1. A particle moves according to a law of motion $s=f(t)=t e^{-t / 2}$, $t \geq 0$, where t is measured in seconds and s in feet.
(1) Find the velocity at time t.
(2) What is the velocity after 1 s?
(3) When is the particle at rest?
(4) When is the particle moving in the positive direction? Give solution in interval notation.
(5) Find the total distance traveled during the first 6 s .
(6) Find the acceleration at time t and after 1 s .
(7) When is the particle's acceleration positive?
(8) When is the acceleration negative?
(9) When is the particle speeding up? (when is the velocity and the acceleration in the same direction)
(10) When is the particle slowing down? (when is the velocity and the acceleration in the opposite direction)

4. Beginning Related Rates or Advanced Implicit Differentiation

Example 4.1. The volume of a right circular cone is $V=\frac{1}{3} \pi r^{2} h$. Find the rate of change of the volume with respect to the height if the radius is constant.

Example 4.2. The volume of a right circular cone is $V=\frac{1}{3} \pi r^{2} h$. Find the rate of change of the volume with respect to the radius if the height is constant.

Example 4.3. The volume of a right circular cone is $V=\frac{1}{3} \pi r^{2} h$. Find the rate of change of the volume in terms of $r, h, \frac{d r}{d t}$ and $\frac{d h}{d t}$.

$$
V=\frac{1}{3} \pi r^{2} h
$$

Example 4.4. Sodium chlorate crystals are easy to grow in the shape of cubes by allowing a solution of water and sodium chlorate to evaporate slowly. If V is the volume of such a cube with side length x, calculate $\frac{d V}{d x}$ when $x=3$. What is the meaning of this number?

Example 4.5. If the air in a spherical balloon is released so that its volume decreases at a rate of $2 \mathrm{~cm}^{3} / \mathrm{sec}$, find the rate at which the radius decreases when the radius is 8 cm .

Example 4.6. If a spherical ballon is being blown up such that the diameter is increasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$, find the rate the surface area is increasing when the surface area is $36 \pi \mathrm{~cm}^{2}$.

Example 4.7. A cylinder is growing at a rate of $5 \mathrm{in}^{3} / \mathrm{min}$ while the radius is staying constant at one foot. Find how fast the height is increasing.

Example 4.8. A cone is growing at a rate of $5 \mathrm{in}^{3} / \mathrm{min}$ and the radius is growing at a rate of $4 \mathrm{in} / \mathrm{min}$. Find how fast the height is changing if the radius and height are both 10 in . Is the height increasing or decreasing?

Example 4.9. A particle is moving along the curve $9 x^{2}-4 y^{2}=36$. As the particle passes through the point $(-2 \sqrt{2}, 3)$, its y-coordinate increases at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is its y-coordinate changing at this point?

Example 4.10. A particle is moving along the curve $2^{(x+y)}=x+y+1$. As the particle passes through the point $(1,0)$, its x-coordinate decreases at the rate of $2 \mathrm{ft} / \mathrm{s}$. How fast is its y-coordinate changing at this point? Is the y-coordinate increasing or decreasing?

