Global and Local Extremes

Definitions of Minimum and Maximum Values

Definitions 0.1 In the definitions below, assume $y=f(x)$ is a function with domain D and c is a number in the domain of f.

1. f has an absolute maximum or global maximum at $x=c$ if $f(c) \geq f(x)$ for all x in D. $f(c)$ is the (absolute) maximum (value).
2. f has an absolute minimum or global minimum at $x=c$ if $f(c) \leq f(x)$ for all x in D. $f(c)$ is the (absolute) minimum (value).
3. The minimum and maximum values are called the (absolute) extreme values of f.
4. f has an local maximum or relative maximum at $x=c$ if $f(c) \geq f(x)$ for x "close enough" to $c . f(c)$ is the local maximum (value).
5. f has an local minimum or relative minimum at $x=c$ if $f(c) \leq f(x)$ for x "close enough" to $c . f(c)$ is the local minimum (value).
6. "close enough" to c means there is an open interval around c where the statement is true. This open interval can be very small.
7. The local minimum and local maximum values are called the local extreme values of f.

Important Theorems

The Extreme Value Theorem If f is continuous on the closed interval $[a, b]$, then f will attain both a minimum and a maximum in the interval.

In other words, if you consider the interval $[a, b]$ as the domain of f, there will be at least one number c in $[a, b]$ where $f(c)$ is the absolute maximum value, and at least one number d in $[a, b]$ where $f(d)$ is the absolute minimum value.

Fermat's Theorem If f has a local extreme at c, then $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.

This tells us that the only possible places where f may have a local extreme is where the derivative is equal to 0 or is undefined. Also recall local extremes of f must occur within the domain of the function. A value in the domain of f where the derivative is zero or undefined is called a critical number of a function. Note that a critical number does not have to be a local extreme, but a local extreme has to be a critical number.

Find Global Extermes

To find the absolute minimum and maximum values of a continuous function f on a closed interval $[a, b]$:

Step 1. Find the critical point(s) of f in (a, b).

Step 2. Find the function value at all critical point(s) found in step 1.

Step 3. Find $f(a)$ and $f(b)$.

Step 4. The largest value from steps 2 and 3 is the maximum value and the smallest value from steps 2 and 3 is the minimum value.

Find Local Extermes

To find the local minimum and maximum values of a continuous function f :

Step 1. Find the critical point(s) of f in (a, b).

Step 2. Use the critical point(s) to separate the domain into different areas. Then do the Sign Chart

Step 3. From the sign chart in 2, the local maximum occurs on the critical point(s) that changes sign from " + " to " - ".

Step 4. From the sign chart in 2, the local minimum occurs on the critical point(s) that changes sign from " - " to " + " .

