1 Rolle's Theorem and the Mean Value Theorem

Theorem 1.1 (Rolle's Theorem). Let f be a function satisfying the following properties:

1. f is continuous on the interval $[a, b]$
2. f is differentiable on the interval (a, b)
3. $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$
Theorem 1.2 (The Mean Value Theorem). Let f be a function satisfying the following properties:

1. f is continuous on the interval $[a, b]$
2. f is differentiable on the interval (a, b)

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Equivalently, there is a number c in (a, b) such that

$$
(b-a) f^{\prime}(c)=f(b)-f(a)
$$

2 Examples

Example 2.1. Use the Intermediate Value Theorem to show the equation $1-2 x=\sin x$ has at least one real solution. Then use Rolle's Theorem to show it has no more than one solution.

Proof. Let $f(x)=1-2 x-\sin x$. Notice that $f(x)$ is a continuous function and that $f(0)=1>0$ while $f(\pi)=1-2 \pi<0$. The Intermediate Value Theorem guarantees there is a number, c between 0 and π such that $f(c)=0$. Since $f(c)=0$ we have $1-2 c=\sin c$. Thus c is a real solution for $1-2 x=\sin x$ showing this equation has at least one real solution.

Now suppose there are two zeros for f. That is, suppose a and b are two different real number with $f(a)=f(b)=0$. Note that f is both continuous and differentiable for all x so by Rolle's Theorem there must be a real number c between a and b with $f^{\prime}(c)=0$. However, $f^{\prime}(x)=-2-\cos x$ cannot equal zero since $-1 \leq \cos x \leq 1$ for all x. This creates a contradiction and so the original assumption, that there are two different real zeros for f, must be false. Thus there can only be one real solution for $1-2 x=\sin x$.

3 Very important results that use Rolle's Theorem or the Mean Value Theorem in the proof

Theorem 3.1. Suppose f is a function that is differentiable on the interval (a, b). Then $f^{\prime}(x)=0$ for all x in the interval (a, b) if and only if f is a constant function on (a, b).

Theorem 3.2. Suppose f is a function that is differentiable on the interval (a, b). Then $f^{\prime}(x)>0$ for all x in the interval (a, b), except possibly a finite number of points, if and only if f is a strictly increasing function on (a, b).

Theorem 3.3. Suppose f is a function that is differentiable on the interval (a, b). Then $f^{\prime}(x)<0$ for all x in the interval (a, b), except possibly a finite number of points, if and only if f is a strictly decreasing function on (a, b).

