1. 6.5 Average Function Value

The Average Value of f over the interval $[a, b]$ is defined as

$$
f_{\text {ave }}=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)\right]}{n}=
$$

2. Mean Value Theorem for Integrals

If f is continuous on $[a, b]$, then there is a number c in $[a, b]$ with

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

3. Examples

Example 3.1. Find the average value of the function $f(t)=\sin t$ over the interval $[0, \pi]$.

Example 3.2. Find the average value of the function $f(x)=\frac{\sin (20 x)}{1+\cos ^{2}(20 x)}$ over the interval $[0, \pi / 40]$.

Example 3.3. Find the average value of the function $g(x)=x^{1 / 3}$ over the interval $[0,8]$. Then find c satisfying the conclusion of the Mean Value Theorem for Integrals.

Example 3.4. The length of a day, in hours from sunrise to sunset, may be approximated by the formula $L(t)=12+4 \sin \left(\frac{\pi t}{182}\right)$ where t is the number of days after a Spring Equinox. Find the average length of the day during spring and summer (assume to be $1 / 2$ a year).

