1. 6.3 VOLUME USING CYLINDRICAL SHELLS

(1) The curve y = f(x) from x = a to x = b rotated about the y-axis will enclose a solid with volume

$$V = \int_{a}^{b} 2\pi x f(x) \, dx$$

(2) The curve x = f(y) from y = c to y = d rotated about the x-axis will enclose a solid with volume

$$V = \int_{c}^{d} 2\pi y f(y) \, dy$$

(3) To generalize, note that the integrand is the surface area of a cylinder $(2\pi rh)$ and everything is in term of the variable for the axis perpendicular to the axis of rotation.

Example 1.1. Find the volume of the solid obtained by rotating the region about the specified line. y = x(4-x), y = x, about the y-axis

2. Two Curves

(1) The region bounded on top by y = f(x) and on bottom by y = g(x) from x = a to x = b rotated about the y-axis will enclose a solid with volume

$$V = \int_{a}^{b} 2\pi x (f(x) - g(x)) \, dx$$

(2) The region bounded on the right by x = f(y) and on the left by y = g(x) from y = c to y = d rotated about the x-axis will enclose a solid with volume

$$V = \int_{c}^{d} 2\pi y (f(y) - g(y)) \, dy$$

(3) To generalize, note that the integrand is the surface area of a cylinder $(2\pi rh)$ and everything is in term of the variable for the axis perpendicular to the axis of rotation.

Example 2.1. Find the volume of the solid obtained by rotating the region about the specified line. $y = 3 + 2x - x^2$, x + y = 3, about the y-axis

3. Lines other than the x and y-axis for the Axis of Rotation

Example 3.1. Find the volume of the solid obtained by rotating the region about the specified line. y = x, $y = \sqrt{x}$, about x = 2

Example 3.2. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = e^{-2x}$, x = 0, x = 2, y = 0 about x = 4

4. Mixed Examples

Example 4.1. Set up the integral, in terms of x, used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = \ln x$, y = 0, $x = e^2$ about x = 1

Example 4.2. Set up the integral, in terms of x, used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = \ln x$, y = 0, $x = e^2$ about y = 2

Example 4.3. Set up the integral, in terms of y, used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = \ln x$, y = 0, $x = e^2$ about y = 2