1. 6.2 Solid of Revolution

Definition 1.1. Let R be a region that lies entirely on one side of a line, L. We may **revolve** the region R about the line L to obtain a **solid of revolution**. Each point of R is revolved about L so that the point always stays the same distance from L, creating a circle with center on L and radius the distance from L to that point being revolved.

2. DISC METHOD

Disc Method:

(1) The curve y = f(x) from x = a to x = b rotated about the x-axis will enclose a solid with cross-sections perpendicular to the x-axis that are discs, so

$$V = \int_{a}^{b} \pi[f(x)]^2 \, dx$$

(2) The curve x = f(y) from y = c to y = d rotated about the y-axis will enclose a solid with cross-sections perpendicular to the y-axis that are discs, so

$$V = \int_{c}^{d} \pi [f(y)]^2 \, dy$$

(3) To generalize, note that the integrand is the formula for the area of the circle (πr^2) and the integral is in term of the variable given by the axis of rotation.

Example 2.1. Find the volume of the solid obtained by rotating the region about the specified line. $y = \sec x$, y = 0, x = -1, x = 1, about the x-axis

Example 2.2. Find the volume of the solid obtained by rotating the region about the specified line. $y = \sqrt{x} \ y = 1 \ x = 0$, about the y-axis

3. WASHER METHOD

(1) The area between the curves y = f(x) and y = g(x) from x = a to x = b, where $f(x) \ge g(x)$, rotated about the x-axis will enclose a solid with cross-sections perpendicular to the x-axis that are washers, so

$$V = \int_{a}^{b} \pi [f(x)]^{2} - \pi [g(x)]^{2} dx$$

(2) The area between the curves x = f(y) and x = g(y) from y = c to y = d, where $f(y) \ge g(y)$, rotated about the y-axis will enclose a solid with cross-sections perpendicular to the y-axis that are washers, so

$$V = \int_{c}^{d} \pi [f(y)]^{2} - \pi [g(y)]^{2} \, dy$$

(3) To generalize, note that the integrand is the formula for the area of the outer circle minus the area of the inner circle $(\pi r_2^2 - \pi r_1^2)$ and the integral is in term of the variable given by the axis of rotation.

Example 3.1. Find the volume of the solid obtained by rotating the region about the specified line. $y = 2 \sec x$, y = 1, $x = -\pi/4$, $x = \pi/4$, about the x-axis.

Example 3.2. Find the volume of the solid obtained by rotating the region about the specified line. $y = e^{2x}$, y = 1, and x = 2 about the x-axis.

Example 3.3. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = e^{2x}$, y = 1, and x = 2 about the y-axis.

4. Lines other than the x and y-axis for the Axis of Rotation

Example 4.1. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = e^{2x}$, y = 1, and x = 2 about y = -2.

Example 4.2. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = e^{2x}$, y = 1, and x = 2 about the line x = 4.

Example 4.3. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = \sec x$, y = 1, x = 1, about the line y = 1.

Example 4.4. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = \sec x$, y = 1, x = 1, about the line y = -1.

Example 4.5. Set up the integral used to find the volume of the solid obtained by rotating the region about the specified line. Do not evaluate. $y = (x-2)^4$, 8x - y = 16, about x = 10.