Limits and Basic Laws

Definitions of Left/Right Limits

Let y = f(x) be a function of x. a be a real number.

Definition (Left Limit). We say that the Left Limit of f(x) at a equals A, if for any $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) - A| < \epsilon$ whenever $a - x > \delta$. We denote it by

$$\lim_{x \to a^-} = A$$

Definition (Right Limit). We say that the Right Limit of f(x) at a equals A, if for any $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) - A| < \epsilon$ whenever $x - a > \delta$. We denote it by

$$\lim_{x \to a^+} = A$$

Remark. Generally the left limt doesn't necessarily equal the right limit. If they do, we have a limit.

Definitions of Limits

Definition (Limit). We say that the Limit of f(x) at a existes and equals A if the left limit equals the right limit

$$\lim_{x \to a^-} = \lim_{x \to a^+} = A$$

and we denote it by

.

 $\lim_{x \to a} = A.$

Definition (Equivalent Definition of Limit). [Will Be Tested] We say that

$$\lim_{x \to a} = A$$

if for any $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) - A| < \epsilon$ whenever $|x - a| > \delta$.

Remark. Generally the limit of f(x) at a, if exists, does NOT necessarily equal the value f(a). See the examples we did in class.

For Class Use Only

Basic Laws for Limit

Theorem ("Common Sense" Limit Laws). If c is a constant and all limits involved exist (are real numbers), then

$$\begin{array}{l}
1.\\ \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \\
2.\\ \lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \\
3.\\ \lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x) \\
4.\\ \lim_{x \to a} [f(x)g(x)] = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)) \\
5.\\ \lim_{x \to a} [f(x)/g(x)] = (\lim_{x \to a} f(x))/(\lim_{x \to a} g(x)) \\
6.\\ \lim_{x \to a} [f(x)]^n = (\lim_{x \to a} f(x))^n
\end{array}$$

7. If f is a continuous function at a, then

 $\lim_{x \to a} f(x) = f(a)$

Remark. *Here all the limits can be replaced by left/right limits, and the theorem keeps.*

Remark. The line 7 is actually the definition of continuous, which will be seen next class.

Some Theorems

.

Theorem. If f(x) = g(x) for all x in an open interval containing a (except possibly at a), then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

Remark. This theorem plays an important role in computing $\frac{0}{0}$ limits for rational functions.

For Class Use Only

Theorem (The Sandwich Theorem). If f, g, and h are functions such that

$$f(x) \le g(x) \le h(x)$$

for all x around a (possibly except at a), then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x) \le \lim_{x \to a} h(x)$$

Here a can be ∞ or $-\infty$.

Remark. This theorem is particularly useful when $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = A$, which indicates that $\lim_{x\to a} g(x) = A$.

For Class Use Only