Calculus with Analytic Geometry
Summer 2016

Limits and Basic Laws

Definitions of Left/Right Limits

Let $y=f(x)$ be a function of x. a be a real number.
Definition (Left Limit). We say that the Left Limit of $f(x)$ at a equals A, if for any $\epsilon>0$, there exists some $\delta>0$ such that $|f(x)-A|<\epsilon$ whenever $a-x>\delta$. We denote it by

$$
\lim _{x \rightarrow a^{-}}=A
$$

Definition (Right Limit). We say that the Right Limit of $f(x)$ at a equals A, if for any $\epsilon>0$, there exists some $\delta>0$ such that $|f(x)-A|<\epsilon$ whenever $x-a>\delta$. We denote it by

$$
\lim _{x \rightarrow a^{+}}=A
$$

Remark. Generally the left limt doesn't necessarily equal the right limit. If they do, we have a limit.

Definitions of Limits

Definition (Limit). We say that the Limit of $f(x)$ at a existes and equals A if the left limit equals the right limit

$$
\lim _{x \rightarrow a^{-}}=\lim _{x \rightarrow a^{+}}=A
$$

and we denote it by

$$
\lim _{x \rightarrow a}=A .
$$

Definition (Equivalent Definition of Limit). [Will Be Tested] We say that

$$
\lim _{x \rightarrow a}=A
$$

if for any $\epsilon>0$, there exists some $\delta>0$ such that $|f(x)-A|<\epsilon$ whenever $|x-a|>\delta$.

Remark. Generally the limit of $f(x)$ at a, if exists, does NOT necessarily equal the value $f(a)$. See the examples we did in class.

Calculus with Analytic Geometry
Summer 2016

Basic Laws for Limit

Theorem ("Common Sense" Limit Laws). If c is a constant and all limits involved exist (are real numbers), then
1.

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

2.

$$
\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)
$$

3.

$$
\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)
$$

4.

$$
\lim _{x \rightarrow a}[f(x) g(x)]=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)
$$

5.

$$
\lim _{x \rightarrow a}[f(x) / g(x)]=\left(\lim _{x \rightarrow a} f(x)\right) /\left(\lim _{x \rightarrow a} g(x)\right)
$$

6.

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}
$$

7. If f is a continuous function at a, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Remark. Here all the limits can be replaced by left/right limits, and the theorem keeps.

Remark. The line 7 is actually the definition of continuous, which will be seen next class.

Some Theorems

Theorem. If $f(x)=g(x)$ for all x in an open interval containing a (except possibly at a), then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
$$

Remark. This theorem plays an important role in computing $\frac{0}{0}$ limits for rational functions.

Calculus with Analytic Geometry
Summer 2016

Theorem (The Sandwich Theorem). If f, g, and h are functions such that

$$
f(x) \leq g(x) \leq h(x)
$$

for all x around a (possibly except at a), then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) \leq \lim _{x \rightarrow a} h(x)
$$

Here a can be ∞ or $-\infty$.
Remark. This theorem is particularly useful when $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=$ A, which indicates that $\lim _{x \rightarrow a} g(x)=A$.

