Derivatives

Recall Tangents and Velocity

1. Slopes

(a) The slope of the secant line of $y=f(x)$ through $(a, f(a))$ and $(b, f(b))$ is

$$
m_{s e c}=\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}
$$

(b) The Slope of the tangent line of $y=f(x)$ through $(a, f(a))$ is

$$
m_{\tan }=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. Velocity
(a) The average velocity of a particle with position at time t given by $s(t)$ over the time interval $[a, b]$ is

$$
v_{a v e}=\frac{\Delta s}{\Delta t}=\frac{s(b)-s(a)}{b-a}
$$

(b) The instantaneous velocity of a particle with position at time t given by $s(t)$ at time $t=a$ is

$$
v(a)=\lim _{t \rightarrow a} \frac{v(t)-v(a)}{t-a}=\lim _{h \rightarrow 0} \frac{v(a+h)-v(a)}{h}
$$

Remark. Notice that the forms of the above are the same and this is just two of many applications using this form. So mathematicians take the form and generalize.

Rate of Change

1. The Average Rate of Change of $y=f(x)$ from $(a, f(a))$ to $(b, f(b))$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}
$$

2. The Instantaneous Rate of Change or the Derivative of $y=f(x)$ at $(a, f(a))$. is

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Definition of a Derivative

Definition. For the following we let $y=f(x)$ be a continuous function, and a lives inside the domain of $f(x)$.

1. The first derivative of f with respect to x at $x=a$ is

$$
f^{\prime}(a)=y^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}=\left.\frac{d y}{d x}\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. The first derivative of f with respect to x is

$$
f^{\prime}(x)=y^{\prime}=\frac{d f}{d x}(x)=\frac{d y}{d x}=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

3. The second derivative of f with resect to x is the derivative of f^{\prime} with respect to x. It's denoted by $f^{\prime \prime}(x)=f^{(2)}(x)=y^{\prime \prime}=\frac{d}{d x} \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}=\frac{d f^{2}}{d x^{2}}(x)$
Remark. The first derivative $f^{\prime}(x)$ can be treated as the function of slopes of the tangents of $f(x)$. In other words, the value of $f^{\prime}(x)$ at a, or $f^{\prime}(a)$, is the slope of the tangent line to $y=f(x)$ at $x=a$.

All of the following concepts are found using the derivative, so basically that's why everyone needs to learn Calculus !

1. the slope of a tangent line,
2. velocity of a particle using the position,
3. the acceleration of a particle using velocity,
4. instantaneous rate of change of a quantity
5. marginal cost using a cost function
6. marginal revenue using a revenue function

Differentiable Function

Definition. Let $f(x)$ be a function.

1. The function f is differentiable at $x=a$ if

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists as a finite real number.
2. The function f is left differentiable or differentiable from the left at $x=a$ if the following limit is a real number:

$$
\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h}
$$

For Class Use Only
3. The function f is right differentiable or differentiable from the right at $x=a$ if the following limit is a real number:

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

Remark. A function is NOT differentiable at $x=a$ if one of the following happens.

1. $f(x)$ is NOT continuous at a.
2. $f(x)$ is continuous at a, but

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

doesn't exist.
3. $f(x)$ is continuous at a, but

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists as infinity.
Which graphically correspond to discontinuity ,"corner" or vertical tangent respectively.

Remark. A differentible function must be continuous, but continuous function are NOT necessarily differentiable. cf Weierstrass Function

