1 Continuity and I.V.T

Continuity

Definition (Intuitive idea used in algebra based on graphing). A function $f(x)$ is continuous on the interval (a, b) if the graph of $y=f(x)$ can be drawn over the interval (a, b) without lifting your pencil.

Definition (Precise Definition of Continuity).

1. A function $f(x)$ is continuous at $x=a$ if the limit exits and $\lim _{x \rightarrow a} f(x)=$ $f(a)$
2. A function $f(x)$ is continuous on the interval (a, b) if $f(x)$ is continuous at every value in (a, b).
3. A function $f(x)$ is Left continuous (or continuous from the left) at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$
4. A function $f(x)$, is right continuous (or continuous from the right) at $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
5. A function $f(x)$ is continuous on the interval $[a, b]$ if f is continuous at every value in $(a, b), f$ is right continuous at a and f is left continuous at b.
6. A function $f(x)$ is discontinuous at $x=a$ if f is not continuous at $x=a$
7. Many discontinuities may be classified as either a removable, jump, or infinite discontinuity.

Remark.

1. All simple functions such as trig functions, exponential functions, polynomials are continuous in their domain.
2. Use what you know about functions from algebra.
3. Usually, one looks at the domain and finds discontinuities to determine where a function is continuous.

Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous on the interval $[a, b]$. If N is a number between $f(a)$ and $f(b)$, then there is at least one number c in the interval (a, b) with $f(c)=N$.

Example 1. Show the equation $1-2 x=\sin x$ has at least one real solution.

Calculus with Analytic Geometry
Summer 2016 Xiping Zhang

Proof. Let $f(x)=1-2 x-\sin x$. Notice that $f(x)$ is a continuous function and that $f(0)=1>0$ while $f(\pi)=1-2 \pi<0$. The Intermediate Value Theorem guarantees there is a number, c between 0 and π such that $f(c)=0$. Since $f(c)=0$ we have $1-2 c=\sin c$. Thus c is a real solution for $1-2 x=\sin x$ showing this equation has at least one real solution.

Remark. A useful result of the Intermediate Value Theorem is that a function may only change signs where it equals zero or at discontinuities. This is why the "sign chart" method of solving inequalities taught in algebra works.

