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Abstract

The well-known symmetric rank-one trust-region method—where the Hessian approximation
is generated by the symmetric rank-one update—is generalized to the problem of minimizing
a real-valued function over a d-dimensional Riemannian manifold. The generalization relies
on basic differential-geometric concepts, such as tangent spaces, Riemannian metrics, and the
Riemannian gradient, as well as on the more recent notions of (first-order) retraction and vector
transport. The new method, called RTR-SR1, is shown to converge globally and d + 1-step q-
superlinearly to stationary points of the objective function. A limited-memory version, referred
to as LRTR-SR1, is also introduced. In this context, novel efficient strategies are presented to
construct a vector transport on a submanifold of a Euclidean space. Numerical experiments—
Rayleigh quotient minimization on the sphere and a joint diagonalization problem on the Stiefel
manifold—illustrate the value of the new methods.
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1 Introduction

We consider the problem
min
x∈M

f(x) (1)

of minimizing a smooth real-valued function f defined on a Riemannian manifold M. Recently
investigated application areas include image segmentation [RW12] and recognition [TVSC11], elec-
trostatics and electronic structure calculation [WY12], finance and chemistry [Bor12], multilinear
algebra [SL10, IAVD11], low-rank learning [MMBS11, BA11], and blind source separation [KS12,
SAGQ12].
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†Department of Mathematics, 208 Love Building, 1017 Academic Way, Florida State University, Tallahassee FL
32306-4510, USA

‡Department of Mathematical Engineering, ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-
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The wealth of applications has stimulated the development of general-purpose methods for (1)—
see, e.g., [AMS08, RW12, SI13] and references therein—including the trust-region approach upon
which we focus in this work. A well-known technique in optimization [CGT00], the trust-region
method was extended to Riemannian manifolds in [ABG07] (or see [AMS08, Ch. 7]), and found
applications, e.g., in [JBAS10, VV10, IAVD11, MMBS11, BA11]. Trust-region methods construct
a quadratic model mk of the objective function f around the current iterate xk and produce a
candidate new iterate by (approximately) minimizing the model mk within a region where it is
“trusted”. Depending on the discrepancy between f and mk at the candidate new iterate, the size
of the trust region is updated and the candidate new iterate is accepted or rejected.

For lack of efficient techniques to produce a second-order term in mk that is inexact but nev-
ertheless guarantees superlinear convergence, the Riemannian trust-region (RTR) framework loses
some of its appeal when the exact second-order term—the Hessian of f—is not available. This is
in contrast with the Euclidean case, where several strategies exist to build an inexact second-order
term that preserves superlinear convergence of the trust-region method. Among these strategies,
the symmetric rank-one (SR1) update is favored in view of its simplicity and because it preserves
symmetry without unnecessarily enforcing positive definiteness; see, e.g., [NW06, §6.2] for a more
detailed discussion. The n+1 step q-superlinear rate of convergence of the SR1 trust-region method
was shown by Byrd et al. [BKS96] using a sophisticated analysis that builds on [CGT91, KBS93].

The classical (Euclidean) SR1 trust-region method can also be viewed as a quasi-Newton
method, enhanced with a trust-region globalization strategy. The idea of quasi-Newton methods
on manifolds is not new [Gab82, §4.5], however, most of the literature of which we are aware re-
stricts consideration to generalizing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
method combined with a line search strategy. Early work such as [BM06, SL10] used Riemannian
BFGS methods for a specific application without an analysis of convergence properties, but more
recently, systematic analyses of Riemannian BFGS methods based on the framework of retrac-
tion and vector transport developed in [ADM02, AMS08] have been made. Qi [Qi11] analyzed
a version of Riemannian BFGS methods with retraction and vector transport restricted to expo-
nential mapping and parallel translation and showed superlinear convergence using a Riemannian
Dennis-Moré condition. Ring and Wirth [RW12] proposed and analyzed a Riemannian BFGS that
avoids the restrictions on retraction and vector transport assumed by Qi but that needs to resort
to the derivative of the retraction. Seibert et al. [SKH13] discussed the freedom available when
generalizing BFGS to Riemannian manifolds and analyzed one generalization of BFGS method on
Riemannian manifolds that are isometric to R

n. Most recently, Huang [Hua13] developed a com-
plete convergence theory that avoids the restrictions of Qi, Ring and Wirth, guarantees superlinear
convergence for the Riemannian Broyden family of quasi-Newton methods (including a version of
SR1), and facilitates efficient implementation.

In this paper, motivated by the situation described above, we introduce a generalization of the
classical (i.e., Euclidean) SR1 trust-region method to the Riemannian setting (1). Besides making
use of basic Riemannian geometric concepts (tangent space, Riemannian metric, gradient), the
new method, called RTR-SR1, relies on the notions of retraction and vector transport introduced
in [ADM02, AMS08]. A detailed global and local convergence analysis is given. A limited-memory
version of RTR-SR1, referred to as LRTR-SR1, is also introduced. Numerical experiments show
that the RTR-SR1 method displays the expected convergence properties. When the Hessian of f
is not available, RTR-SR1 thus offers an attractive way of tackling (1) by a trust-region approach.
Moreover, even when the Hessian of f is available, making use of it can be expensive computa-
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tionally, and the numerical experiments show that ignoring the Hessian information and resorting
instead to the RTR-SR1 approach can be beneficial.

Another contribution of this paper with respect to [BKS96] is an extension of the analysis to
allow for inexact solutions of the trust-region subproblem—compare (10) with [BKS96, (2.4)]. This
extension makes it possible to resort to inner iterations such as the Steihaug–Toint truncated CG
method (see [AMS08, §7.3.2] for its Riemannian extension) while staying within the assumptions
of the convergence analysis.

The paper is organized as follows. The RTR-SR1 method is stated and discussed in Section 2.
The convergence analysis is carried out in Section 3. The limited-memory version is introduced in
Section 4. Numerical experiments are reported in Section 5. Conclusions are drawn in Section 6.

2 The Riemannian SR1 trust-region method

The proposed Riemannian SR1 trust-region (RTR-SR1) method is described in Algorithm 1. The
algorithm statement is commented in Section 2.1 and the important questions of representing
tangent vectors and choosing the vector transport are discussed in Sections 2.2 and 2.3.

2.1 A guide to Algorithm 1

Algorithm 1 can be viewed as a Riemannian version of the classical (Euclidean) SR1 trust-region
method (see, e.g., [NW06, Algorithm 6.2]). It can also be viewed as an SR1 version of the Rieman-
nian trust-region framework [AMS08, Algorithm 10 p. 142]. Therefore, several pieces of information
given in [AMS08, Ch. 7] remain relevant for Algorithm 1.

In particular, the algorithm statement makes use of standard Riemannian concepts that are
described, e.g., in [O’N83, AMS08], such as the tangent space TxM to the manifoldM at a point
x, a Riemannian metric g, and the gradient grad f of a real-valued function f onM. The algorithm
statement also relies on the notion of retraction, introduced in [ADM02] (or see [AMS08, §4.1]).
A retraction R on M is a smooth map from the tangent bundle TM (i.e., the set of all tangent
vectors to M) onto M such that, for all x ∈ M and all ξx ∈ TxM, the curve t 7→ R(tξx) is
tangent to ξx at t = 0. We let Rx denote the restriction of R to TxM. The domain of R need
not be the entire tangent bundle, but this is usually the case in practice, and in this work we
assume throughout that R is defined wherever needed. Specific ways of constructing retractions
are proposed in [ADM02, AMS08, AM12]; see also [WY12, JD13] for the important case of the
Stiefel manifold.

Within the Riemannian trust-region framework, the characterizing aspect of Algorithm 1 lies in
the update mechanism for the Hessian approximation Bk. The proposed update mechanism, based
on formula (3) and on Step 6 of Algorithm 1, is a rather straightforward Riemannian generalization
of the classical SR1 update

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
.

Significantly less straightforward is the Riemannian generalization of the superlinear convergence
result, as we will see in Section 3.4. (Observe that the local convergence result [AMS08, Theo-
rem 7.4.11] does not apply here because the Hessian approximation condition [AMS08, (7.36)] is
not guaranteed to hold.)
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Algorithm 1 Riemannian trust region with symmetric rank-one update (RTR-SR1)

Input: Riemannian manifoldM with Riemannian metric g; retraction R; isometric vector trans-
port TS ; differentiable real-valued objective function f on M; initial iterate x0 ∈ M; initial
Hessian approximation B0, symmetric with respect to g.

1: Choose ∆0 > 0, ν ∈ (0, 1), c ∈ (0, 0.1), τ1 ∈ (0, 1) and τ2 > 1; Set k ← 0;
2: Obtain sk ∈ Txk

M by (approximately) solving

sk = arg min
s∈Txk

M
mk(s) = arg min

s∈Txk
M

f(xk) + g(grad f(xk), s) +
1

2
g(s,Bks), s.t. ‖s‖ ≤ ∆k; (2)

3: Set ρk ←
f(xk)−f(Rxk

(sk))

mk(0)−mk(sk)
;

4: Let yk = T −1Ssk
grad f(Rxk

(sk)) − grad f(xk); If |g(sk, yk − Bksk)| < ν‖sk‖‖yk − Bksk‖, then

B̃k+1 = Bk, otherwise define the linear operator B̃k+1 : Txk
M→ Txk

M by

B̃k+1 = Bk +
(yk − Bksk)(yk − Bksk)♭

g(sk, yk − Bksk)
, (SR1) (3)

where a♭ denotes the flat of a ∈ TxM, i.e., a♭ : TxM→ R : v → g(a, v);
5: if ρk > c then

6: xk+1 ← Rxk
(sk); Bk+1 ← TSsk

◦ B̃k+1 ◦ T −1Ssk
;

7: else

8: xk+1 ← xk; Bk+1 ← B̃k+1;
9: end if

10: if ρk > 3
4 then

11: if ‖sk‖ ≥ 0.8∆k then

12: ∆k+1 ← τ2∆k;
13: else

14: ∆k+1 ← ∆k;
15: end if

16: else if ρk < 0.1 then

17: ∆k+1 ← τ1∆k;
18: else

19: ∆k+1 ← ∆k;
20: end if

21: k ← k + 1, goto 2 until convergence.

Instrumental in the Riemannian SR1 update is the notion of vector transport, introduced
in [AMS08, §8.1] as a generalization of the classical Riemannian concept of parallel translation.
A vector transport on a manifoldM on top of a retraction R is a smooth mapping

TM⊕ TM→ TM : (ηx, ξx) 7→ Tηx(ξx) ∈ TM

satisfying the following properties for all x ∈M:

1. (Associated retraction) Tηx(ξx) ∈ TRx(ξx)M for all ξx ∈ TxM;
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2. (Consistency) T0x(ξx) = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

The Riemannian SR1 update uses tangent vectors at the current iterate to produce a new Hessian
approximation at the next iterate, hence the need to perform a vector transport (see Step 6) from
the current iterate to the next.

In the Input step of Algorithm 1, the requirement that the vector transport TS is isometric
means that, for all x ∈M and all ξx, ζx, ηx ∈ TxM, the equation

g(TSηx
ξx, TSηx

ζx) = g(ξx, ζx) (4)

holds. Techniques for constructing an isometric vector transport on submanifolds of Euclidean
spaces are described in Section 2.3.

The symmetry requirement on B0 with respect to the Riemannian metric g means that g(B0ξx0 , ηx0) =
g(ξx0 ,B0ηx0) for all ξx0 , ηx0 ∈ Tx0M. It is readily seen from (3) and Step 6 of Algorithm 1 that Bk
is symmetric for all k. Note however that Bk is, in general, not positive definite.

A possible stopping criterion for Algorithm 1 is ‖ grad f(xk)‖ < ǫ for some specified ǫ > 0,
where ‖ · ‖, which also appears in the statement of Algorithm 1, denotes the norm induced by the
Riemannian metric g, i.e.,

‖ξ‖ =
√

g(ξ, ξ). (5)

In the spirit of [RW12, Remark 4], we point out that it is possible to formulate the SR1
update (3) in the new tangent space Txk+1

M; in the present case of SR1, the algorithm remains
equivalent since the vector transport is isometric.

Otherwise, Algorithm 1 does not call for comments other than those made in [AMS08, Ch. 7]. In
particular, we point out that the meaning of “approximately” in Step 2 of Algorithm 1 depends on
the desired convergence results. We will see in the convergence analysis (Section 3) that enforcing
the Cauchy decrease (9) is enough to ensure global convergence to stationary points, but another
condition such as (10) is needed to guarantee superlinear convergence. The truncated CG method,
discussed in [AMS08, §7.3.2] in the Riemannian context, is an inner iteration for Step 2 that returns
an sk satisfying conditions (9) and (10).

2.2 Representation of tangent vectors

Let us now consider the frequently encountered situation where the manifoldM is described as a
d-dimensional submanifold of an m-dimensional Euclidean space E . In particular, this is the case
of the sphere and the Stiefel manifold involved in the numerical experiments in Section 5.

A tangent vector in TxM can be represented either by its d-dimensional vector of coordinates
in a given basis Bx of TxM, or else as an m-dimensional vector in E since TxM⊂ Tx E ≃ E . The
latter option may be preferable when the codimension m − d is small (e.g., the sphere) because
building, storing and manipulating the basis Bx of TxM may be inconvenient.

Likewise, since Bk is a linear transformation of Txk
M, it can be represented in the basis Bx as

a d× d matrix, or as an m×m matrix restricted to act on Txk
M. Here again, the latter approach

may be computationally more efficient when the codimension m− d is small.
A related choice has to be made for the representation of the vector transport, since Tηx is a

linear map from TxM to TRx(ηx)M. This question is addressed in Section 2.3.
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2.3 Isometric vector transport

We present two ways of constructing an isometric vector transport on a d-dimensional submanifold
M of an m-dimensional Euclidean space E .

2.3.1 Vector transport by parallelization

An open subset U of M is termed parallelizable if it admits a smooth field of tangent bases, i.e.,
a smooth function B : U → R

m×d : z 7→ Bz where Bz is a basis of TzM. The whole manifold
M itself may not be parallelizable; in particular, every manifold of nonzero Euler characteristic is
not parallelizable [Sti35, §1.6], and it is also known that the only parallelizable spheres are those
of dimension 1, 3, and 7 [Boo03, p. 116]. However, for the global convergence analysis carried out
in Section 3.2, the vector transport is not required to be smooth or even continuous, and for the
local convergence analysis in Section 3.4, we only need a parallelizable neighborhood U of the limit
point x∗. Such a neighborhood always exists (take for example a coordinate neighborhood [AMS08,
p. 37]).

Given an orthonormal smooth field of tangent bases B, i.e., such that B♭
xBx = I for all x (where

I stands for the identity matrix of adequate size), the proposed isometric vector transport from
TxM to TyM is given by

T = ByB
♭
x. (6)

The d× d matrix representation of this vector transport in the pair of bases (Bx, By) is simply the
identity. This considerably simplifies the implementation of Algorithm 1.

2.3.2 Vector transport by rigging

IfM is described as a d-dimensional submanifold of an m-dimensional Euclidean space E and the
codimension (m − d) is much smaller than the dimension d, then the vector transport by rigging,
introduced next, may be preferable. For generality, we do not assume that M is a Riemannian
submanifold of E ; in other words, the Riemannian metric g onM may not be the one induced by
the metric of E . A motivation for this generality is to be able to handle the canonical metric of the
Stiefel manifold [EAS98, (2.22)]. For simplicity of the exposition, we work in an orthonormal basis
of E and, for x ∈ M, we let Gx denote a matrix expression of gx, i.e., gx(ξx, ηx) = ξTxGxηx for all
ξx, ηx ∈ TxM.

An open subset U of M is termed rigged if it admits a smooth field of normal bases, i.e., a
smooth function N : U → R

m×d : z 7→ Nz where Nz is a basis of the normal space NzM. The
whole manifoldM itself may not be rigged, but it is always locally rigged.

Given a smooth field of normal bases N , the proposed isometric vector transport T from TxM
to TyM is defined as follows. Compute (I −Nx(N

T
x Nx)

−1NT
x )Ny (i.e., the orthogonal projection

of Ny onto TxM) and observe that its column space is TxM ⊖ (TxM ∩ TyM). Obtain an
orthonormal matrix Qx by Gram-Schmidt orthonormalizing (I − Nx(N

T
x Nx)

−1NT
x )Ny. Proceed

likewise with x and y interchanged to get Qy. Finally, let

T = G
− 1

2
y (I −QxQ

T
x −QyQ

T
x )G

1
2
x . (7)

While it is clear that T satisfies the three properties of vector transport mentioned in Section 2.1,
proving that T is (locally) smooth remains an open question. Moreover, the column space of
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(I −Nx(N
T
x Nx)

−1NT
x )Ny gets more sensitive to numerical errors as the distance between x and y

decreases. Nevertheless, there is evidence that T is smooth indeed, and we have observed that using
vector transport by rigging in Algorithm 1 is a worthy alternative in large-scale low-codimension
problems.

3 Convergence analysis of RTR-SR1

3.1 Notation and standing assumptions

Throughout the convergence analysis, unless otherwise specified, we let {xk}, {Bk}, {B̃k}, {sk},
{yk}, and {∆k} be infinite sequences generated by Algorithm 1, and we make use of the notation
introduced in that algorithm. We let Ω denote the sublevel set of x0, i.e.,

Ω = {x ∈M : f(x) ≤ f(x0)}.

The global and local convergence analyses each make standing assumptions at the beginning of
their respective sections. The numbered assumptions introduced below are not standing assump-
tions and will be invoked specifically whenever needed. Note that, apart from Assumption 3.6, all
the numbered assumptions are Riemannian generalizations of assumptions made in [BKS96] for the
analysis of the Euclidean SR1 trust-region method.

3.2 Global convergence analysis

In some results, we will assume for the retraction R that there exists µ > 0 and δµ > 0 such that

‖ξ‖ ≥ µ dist(x,Rx(ξ)) for all x ∈ Ω, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ. (8)

This corresponds to [AMS08, (7.25)] restricted to the sublevel set Ω. Such a condition is instru-
mental in the global convergence analysis of Riemannian trust-region schemes. Note that, in view
of [RW12, Lemma 6], condition (8) can be shown to hold globally under the condition that R has
equicontinuous derivatives.

The next assumption corresponds to [BKS96, (A3)].

Assumption 3.1. The sequence of linear operators {Bk} is bounded by a constant M such that
‖Bk‖ ≤M for all k.

We will often require that the trust-region subproblem (2) is solved accurately enough that, for
some positive constants σ1 and σ2,

mk(0)−mk(sk) ≥ σ1‖ grad f(xk)‖min{∆k, σ2
‖ grad f(xk)‖
‖Bk‖

}, (9)

and that

Bksk = − grad f(xk) + δk with ‖δk‖ ≤ ‖ grad f(xk)‖1+θ, whenever ‖sk‖ ≤ 0.8∆k, (10)

where θ > 0 is a constant. These conditions are generalizations of [BKS96, (2.3–4)]. Observe that,
even if we restrict to the Euclidean case, condition (10) remains weaker than condition [BKS96,
(2.4)]. The purpose of introducing δk in (10) is to encompass stopping criteria such as [AMS08,
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(7.10)] that do not require the computation of an exact solution of the trust-region subproblem.
We point out in particular that (9) and (10) hold if the approximate solution of the trust-region
subproblem (2) is obtained from the truncated CG method, described in [AMS08, §7.3.2] in the
Riemannian context.

We can now state and prove the main global convergence results. Point (iii) generalizes [BKS96,
Theorem 2.1] while points (i) and (ii) are based on [AMS08, §7.4.1].
Theorem 3.1 (convergence). (i) If f ∈ C2 is bounded below on the sublevel set Ω, Assumption 3.1
holds, condition (9) holds, and (8) is satisfied then limk→∞ grad f(xk) = 0. (ii) If f ∈ C2, M is
compact, Assumption 3.1 holds, and (9) holds then limk→∞ grad f(xk) = 0, {xk} has at least one
limit point, and every limit point of {xk} is a stationary point of f . (iii) If f ∈ C2, the sublevel set
Ω is compact, f has a unique stationary point x∗ in Ω, Assumption 3.1 holds, condition (9) holds,
and (8) is satisfied then {xk} converges to x∗.

Proof. (i) Observe that the proof of [AMS08, Theorem 7.4.4] still holds when condition [AMS08,
(7.25)] is weakened to its restriction (8) to Ω. Indeed, since the trust-region method is a de-
scent iteration, it follows that all iterates are in Ω. The assumptions thus allow us to conclude,
by [AMS08, Theorem 7.4.4], that limk→∞ grad f(xk) = 0. (ii) It follows from [AMS08, Proposi-
tion 7.4.5] and [AMS08, Corollary 7.4.6] that all the assumptions of [AMS08, Theorem 7.4.4] hold.
Hence limk→∞ grad f(xk) = 0, and every limit point is thus a stationary point of f . Since M is
compact, {xk} is guaranteed to have at least one limit point. (iii) Again by [AMS08, Theorem 7.4.4],
we get that limk→∞ grad f(xk) = 0. Since {xk} belongs to the compact set Ω and cannot have limit
points other than x∗, it follows that {xk} converges to x∗.

3.3 More notation and standing assumptions

For the purpose of conducting a local convergence analysis, we now assume that {xk} converges to
a point x∗. Moreover, we assume throughout that f ∈ C2.

We let Utrn be a totally retractive neighborhood of x∗, a concept inspired from the notion of
totally normal neighborhood (see [dC92, §3.3]). By this, we mean that there is δtrn > 0 such that,
for each y ∈ Utrn, we have that Ry(B(0y, δtrn)) ⊇ Utrn and Ry(·) is a diffeomorphism on B(0y, δtrn),
where B(0y, δtrn) denotes the ball of radius δtrn in TyM centered at the origin 0y. The existence
of a totally retractive neighborhood can be shown along the lines of [dC92, Theorem 3.3.7]. We
assume without loss of generality that {xk} ⊂ Utrn. Whenever we consider an inverse retraction
R−1x (y), we implicitly assume that x, y ∈ Utrn.

3.4 Local convergence analysis

The purpose of this section is to obtain a superlinear convergence result for Algorithm 1, stated
in Theorem 3.18. The analysis can be viewed as a Riemannian generalization of the local analysis
in [BKS96, §2]. As we proceed, we will point out the main hurdles that had to be overcome in the
generalization. The analysis makes use of several preparation lemmas, independent of Algorithm 1,
that are of potential interest in the broader context of Riemannian optimization. These preparation
lemmas become trivial or well known in the Euclidean context.

The next assumption corresponds to a part of [BKS96, (A1)].

Assumption 3.2. The point x∗ is a nondegenerate local minimizer of f . In other words, grad f(x∗) =
0 and Hess f(x∗) is positive definite.
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The next assumption generalizes the assumption, contained in [BKS96, (A1)], that the Hessian
of f is Lipschitz continuous near x∗. (Recall that TS is the vector transport invoked in Algorithm 1.)
Note that the assumption holds if f ∈ C3; see Lemma 3.5.

Assumption 3.3. There exists a constant c0 such that for all x, y ∈ Utrn,

‖Hess f(y)− TSη Hess f(x)T −1Sη
‖ ≤ c dist(x, y),

where Hess f(x) is the Riemannian Hessian of f at x (see, e.g., [AMS08, §5.5]), η = R−1x (y), and
‖ · ‖ is also used to denote the operator norm induced by the Riemannian norm (5).

The next assumption is introduced to handle the Riemannian case; in the classical Euclidean
setting, Assumption 3.4 follows from Assumption 3.3. Assumption 3.4 is mild since it holds if
f ∈ C3, as shown in Lemma 3.5.

Assumption 3.4. There exists a constant c0 such that for all x, y ∈ Utrn, all ξx ∈ TxM with
Rx(ξx) ∈ Utrn, and all ξy ∈ TyM with Ry(ξy) ∈ Utrn, the inequality

‖Hess f̂y(ξy)− TSη Hess f̂x(ξx)T −1Sη
‖ ≤ c0(‖ξy‖+ ‖ξx‖+ ‖η‖)

holds, where η = R−1x (y), f̂x = f ◦Rx, and f̂y = f ◦Ry.

The next assumption corresponds to [BKS96, (A2)]. It implies that no updates of Bk are
skipped. In the Euclidean case, Khalfan et al. [KBS93] show that this is usually the case in
practice.

Assumption 3.5. The inequality

|g(sk, yk − Bksk)| ≥ ν‖sk‖‖yk − Bksk‖

holds.

The next assumption is introduced to handle the Riemannian case. It states that the iterates
eventually continuously stay in the totally retractive neighborhood Utrn (the terminology is bor-
rowed from [ATV13, Definition 2.8]). The assumption is needed, in particular, for Lemma 3.6.
Note that, whereas in the Euclidean setting the assumption follows from the standing assumption
that {xk} converges to x∗, this is no longer the case on some Riemannian manifolds, where {xk}
may converge to x∗ while the connecting segments {Rxk

(tsk) : t ∈ [0, 1]} do not. Assumption 3.6
is thus invoked to ensure that we are in a position to carry out a local convergence analysis.

Assumption 3.6. There exists N such that, for all k ≥ N and all t ∈ [0, 1], Rxk
(tsk) ∈ Utrn.

The next lemma is proved in [GQA12, Lemma 14.1].

Lemma 3.2. Let M be a Riemannian manifold, let U be a compact coordinate neighborhood in
M, and let the hat denote coordinate expressions. Then there are c2 > c1 > 0 such that, for all
x, y ∈ U , we have

c1‖x̂− ŷ‖2 ≤ dist(x, y) ≤ c2‖x̂− ŷ‖2,
where ‖ · ‖2 denotes the Euclidean norm, i.e., ‖x̂‖2 =

√
x̂T x̂.
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Lemma 3.3. LetM be a Riemannian manifold endowed with a retraction R and let x̄ ∈M. Then
there exist a0 > 0, a1 > 0, and δa0,a1 > 0 such that for all x in a sufficiently small neighborhood of
x̄ and all ξ, η ∈ TxM with ‖ξ‖ ≤ δa0,a1 and ‖η‖ ≤ δa0,a1, the inequalities

a0‖ξ − η‖ ≤ dist(Rx(η), Rx(ξ)) ≤ a1‖ξ − η‖

hold.

Proof. Since R is smooth, we can choose a neighborhood small enough such that R satisfies the
condition of [RW12, Lemma 6], and the result follows from that lemma.

The following lemma follows from Lemma 3.3 by setting η = 0. We state it separately for
convenience as we will frequently invoke it in the analysis.

Lemma 3.4. Let M be a Riemannian manifold endowed with retraction R and let x̄ ∈ M. Then
there exist a0 > 0, a1 > 0, and δa0,a1 > 0 such that for all x in a sufficiently small neighborhood of
x̄ and all ξ ∈ TxM with ‖ξ‖ ≤ δa0,a1, the inequalities

a0‖ξ‖ ≤ dist(x,Rx(ξ)) ≤ a1‖ξ‖

hold.

Lemma 3.5. If f ∈ C3, then Assumptions 3.3 and 3.4 hold.

Proof. First, we prove that Assumption 3.3 holds. Define a function h : M ×M × TM →
TM, (x, y, ξy) → TSη Hess f(x)T −1Sη

ξy, where η = R−1x (y). Since f ∈ C3, we know that h(x, y, ξy)

is C1. Then there exists b0 such that for all x, y ∈ Utrn, ξy ∈ TyM, ‖ξy‖ = 1,

‖h(y, y, ξy)− h(x, y, ξy)‖ ≤ b0 dist({y, y, ξy}, {x, y, ξy})
≤ b1‖{ŷ, ŷ, ξ̂y} − {x̂, ŷ, ξ̂y}‖2 (by Lemma 3.2)

= b1‖ŷ − x̂‖2
≤ b2 dist(y, x), (by Lemma 3.2)

where b0, b1 and b2 are some constants. So we have

b2 dist(y, x) ≥ ‖h(y, y, ξy)− h(x, y, ξy)‖
= ‖(Hess f(y)− TSη Hess f(x)T −1Sη

)ξy‖

Given any linear operator A on TyM, we have ‖A‖ by definition is sup‖ξ‖=1 ‖Aξ‖. Note that
‖ξ‖ = 1 is a compact set. Hence, there exists ‖ξ∗‖ = 1 such that ‖A‖ = ‖Aξ∗‖. Therefore, we can
choose ξy, ‖ξy‖ = 1 such that

‖(Hess f(y)− TSη Hess f(x)T −1Sη
)ξy‖ = ‖(Hess f(y)− TSη Hess f(x)T −1Sη

)‖.

We obtain
‖Hess f(y)− TSη Hess f(x)T −1Sη

‖ ≤ b2 dist(y, x).
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To prove Assumption 3.4, we redefine h as h(y, x, ξx) = TSη Hess f̂x(ξx)T −1Sη
. If we use orthonor-

mal vector fields to obtain the coordinate expression of h, denoted by ĥ, then the manifold norm
and the Euclidean norm of coordinate expressions are the same and we have

‖Hess f̂y(ξy)− TSη Hess f̂x(ξx)T −1Sη
‖ = ‖Hess f̂y(ξ̂y)− T̂Sη Hess f̂x(ξ̂x)T̂ −1Sη

‖2. (11)

Since f ∈ C3, we know that ĥ is also in C1. Hence there exists a constant b3 such that

‖ĥ(ŷ, ŷ, ξ̂y)− ĥ(ŷ, x̂, ξ̂x)‖2 ≤ b3‖{ŷ, ŷ, ξ̂y} − {ŷ, x̂, ξ̂x}‖2.

Therefore

‖Hess f̂y(ξ̂y)− T̂Sη Hess f̂x(ξ̂x)T̂ −1Sη
‖2 = ‖ĥ(ŷ, ŷ, ξ̂y)− ĥ(ŷ, x̂, ξ̂x)‖2
≤ b3‖{ŷ, ŷ, ξ̂y} − {ŷ, x̂, ξ̂x}‖2
≤ b4(‖ŷ − x̂‖2 + ‖ξ̂y‖2 + ‖ξ̂x‖2)
≤ b5(dist(x, y) + ‖ξ̂y‖2 + ‖ξ̂x‖2) (by Lemma 3.2)

≤ b6(‖η‖+ ‖ξy‖+ ‖ξx‖) (by Lemma 3.4)

This and (11) give us Assumption 3.4.

The next lemma generalizes [BKS96, Lemma 2.2]. The key difference with the Euclidean case
is the following: in the Euclidean case, when sk is accepted, we simply have ‖sk‖ = ‖xk+1 − xk‖,
while in the Riemannian generalization, we invoke Assumption 3.6 and Lemma 3.4 to deduce that
‖sk‖ ≤ 1

a0
dist(xk+1, xk). Note that Assumption 3.6 cannot be removed. To see this, consider

for example the unit sphere with the exponential retraction, where we can have xk = xk+1 with
‖sk‖ = 2π.

Lemma 3.6. Suppose Assumption 3.6 holds. Then either

∆k → 0 (12)

or there exist K > 0 and ∆ > 0 such that for all k > K

∆k = ∆. (13)

In either case sk → 0.

Proof. Let ∆ = lim inf ∆k and suppose first that ∆ > 0. From line 11 of Algorithm 1, if ∆k is
increased, then ‖sk‖ ≥ 0.8∆k and xk+1 = Rxk

(sk), which implies by Lemma 3.4 and Assumption 3.6
that dist(xk, xk+1) ≥ a00.8∆k. The latter inequality cannot hold for infinitely many values of k
since xk → x∗ and lim inf ∆k > 0. Hence, there exists K ≥ 0 such that ∆k is not increased for
any k ≥ K. Since ∆ > 0, this implies that ∆k ≥ ∆ for all k ≥ K. In view of the trust-region
update mechanism in Algorithm 1 and since ∆ = lim inf ∆k, we also know that, for some K1 > K,
∆K1 < 1

τ1
∆. If the trust region radius were to be decreased we would have ∆K1+1 < ∆, which we

have ruled out. Since neither increase nor decrease can occur, we must have ∆k = ∆ for all k ≥ K1.
Suppose now that ∆ = 0. Since xk → x∗, for every ǫ > 0 there exists Kǫ ≥ 0 such that

dist(xk+1, xk) < ǫ for all k ≥ Kǫ. Since lim inf ∆k = 0, there exists j ≥ Kǫ such that ∆j < ǫ. But
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since ∆k is increased only if ∆k ≤ 1
0.8‖sk‖ ≤ 1

0.8a0
dist(xk+1, xk) <

ǫ
0.8a0

, and the increase factor is
τ2, we have that ∆k < τ2ǫ

0.8a0
for all k ≥ j. Therefore (12) follows.

To show that ‖sk‖ → 0, note that if (12) is true, then clearly ‖sk‖ → 0. If (13) is true, then for
all k > K, the step sk is accepted and ‖sk‖ ≤ 1

a0
dist(xk+1, xk) (by Lemma 3.4), hence ‖sk‖ → 0

since {xk} converges.

Lemma 3.7. LetM be a Riemannian manifold endowed with two vector transports T1 and T2, and
let x̄ ∈M. Then there exist a constant a4 and a neighborhood U of x̄ such that for all x, y ∈ U and
all ξ ∈ TyM,

‖T −11η
ξ − T −12η

ξ‖ ≤ a4‖ξ‖‖η‖,
where η = R−1x (y).

Proof. We use the hat to denote coordinate expressions. Let T1(x̂, η̂) and T2(x̂, η̂) denote the
coordinate expression of T −11η

and T −12η
, respectively. Then

‖T −11η
ξ − T −12η

ξ‖ ≤ b0‖(T1(x̂, η̂)− T2(x̂, η̂))ξ̂‖2
≤ b0‖ξ̂‖2‖T1(x̂, η̂)− T2(x̂, η̂)‖2
≤ b1‖ξ̂‖2‖η̂‖2 (since T1(x̂, 0) = T2(x̂, 0) and both T1 and T2 are smooth)

≤ b2‖ξ‖‖η‖
for some constants b0, b1, and b2.

The next lemma is proved in [GQA12, Lemma 14.5].

Lemma 3.8. Let F be a C1 vector field on a Riemannian manifold M and let x̄ ∈ M be a
nondegenerate zero of F . Then there exist a neighborhood U of x̄ and a5, a6 > 0 such that for all
x ∈ U ,

a5 dist(x, x̄) ≤ ‖F (x)‖ ≤ a6 dist(x, x̄).

In the Euclidean case, the next lemma holds with ã7 = 0 and reduces to the Fundamental
Theorem of Calculus.

Lemma 3.9. Let F be a C1 vector field on a Riemannian manifold M, let R be a retraction on
M, and let x̄ ∈ M. Then there exist a neighborhood U of x̄ and a constant ã7 such that for all
x, y ∈ U ,

‖P 0←1
γ F (y)− F (x)− [

∫ 1

0
P 0←t
γ DF (γ(t))P t←0

γ dt]η‖ ≤ ã7‖η‖2,

where η = R−1x (y) and Pγ is the parallel translation along the curve γ given by by γ(t) = Rx(tη).

Proof. Define G : [0, 1] → TxM : t 7→ G(t) = P 0←t
γ F (γ(t)). Observe that G(0) = F (x) and

G(1) = P 0←1
γ F (y). We have

G′(t) =
d

dǫ
G(t+ ǫ)|ǫ=0

= P 0←t
γ

d

dǫ
P t←t+ǫ
γ F (γ(t+ ǫ))|ǫ=0

= P 0←t
γ DF (γ(t))[

d

dǫ
γ(t+ ǫ)]|ǫ=0

= P 0←t
γ DF (γ(t))[TR(tη)η],
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where we have used an expression of the covariant derivative D in terms of the parallel translation P
(see, e.g., [Cha06, theorem I.2.1]), and where TR(tη)η = d

dt(R(tη)). Since G(1)−G(0) =
∫ 1
0 G′(t)dt,

we obtain

‖P 0←1
γ F (y)− F (x)−

∫ 1

0
P 0←t
γ DF (γ(t))P t←0

γ ηdt‖

= ‖
∫ 1

0
P 0←t
γ DF (γ(t))(TR(tη)η − P t←0

γ η)dt‖

≤
∫ 1

0
‖P 0←t

γ DF (γ(t))P t←0
γ ‖‖(P 0←t

γ TR(tη)η − η)‖dt

≤
∫ 1

0
‖P 0←t

γ DF (γ(t))P t←0
γ ‖‖(P 0←t

γ TR(tη)η − T −1R(tη)TR(tη)η)‖dt

≤ b0‖η‖2 (by Lemma 3.7)

where b0 is some constant.

Lemma 3.10. Suppose Assumptions 3.2 and 3.3 hold. Then there exist a neighborhood U and a
constant a7 such that for all x1, x̃1, x2, and x̃2 ∈ U , we have

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)| ≤ a7max{dist(x1, x∗), dist(x2, x∗), dist(x̃1, x∗), dist(x̃2, x∗)}‖ξ1‖‖ξ2‖,

where ζ = R−1x1
(x2), ξ1 = R−1x1

(x̃1), ξ2 = R−1x2
(x̃2), y1 = T −1Sξ1

grad f(x̃1) − grad f(x1), and y2 =

T −1Sξ2
grad f(x̃2)− grad f(x2).

Proof. Define ȳ1 = P 0←1
γ1 grad f(x̃1)− grad f(x1) and ȳ2 = P 0←1

γ2 grad f(x̃2)− grad f(x2), where P
is the parallel transport, γ1(t) = Rx1(tξ1), and γ2(t) = Rx2(tξ2). From Lemma 3.9, we have

‖ȳ1 − H̄1(x1, x̃1)ξ1‖ ≤ b0‖ξ1‖2 and ‖ȳ2 − H̄2(x2, x̃2)ξ2‖ ≤ b0‖ξ2‖2, (14)

where H̄1(x1, x̃1) =
∫ 1
0 P 0←t

γ1 Hess f(γ1(t))P
t←0
γ1 dt, H̄2(x2, x̃2) =

∫ 1
0 P 0←t

γ2 Hess f(γ2(t))P
t←0
γ2 dt, and

b0 is a constant. It follows that

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)|
≤ |g(TSζ

ξ1, ȳ2)− g(TSζ
ȳ1, ξ2)|+ |g(TSζ

ξ1, y2 − ȳ2)− g(TSζ
(y1 − ȳ1), ξ2)|

≤ |g(TSζ
ξ1, H̄2(x2, x̃2)ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)|+ b1(‖ξ1‖+ ‖ξ2‖)‖ξ1‖‖ξ2‖ (by (14))

+ |g(TSζ
ξ1, T −1Sζ2

grad f(x̃2)− P 0←1
γ2 grad f(x̃2))|+ |g(TSζ

(T −1Sζ1
grad f(x̃1)− P 0←1

γ1 grad f(x̃1)), ξ2)|
≤ |g(TSζ

ξ1, H̄2(x2, x̃2)ξ2)− g(TSζ
H̄1(x1, x̃1)ξ1, ξ2)|+ b1(‖ξ1‖+ ‖ξ2‖)‖ξ1‖‖ξ2‖

+ b2‖ξ1‖‖ξ2‖‖ grad f(x̃2)‖+ b3‖ξ1‖‖ξ2‖‖ grad f(x̃1)‖ (by Lemma 3.7)

≤ |g(H̄2(x2, x̃2)TSζ
ξ1, ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)| (average Hessian is also self-adjoint)

+ b4‖ξ1‖‖ξ2‖(dist(x1, x̃1) + dist(x2, x̃2) + dist(x̃2, x
∗) + dist(x̃1, x

∗)) (by Lemmas 3.4 and 3.8)

≤ b5‖ξ1‖‖ξ2‖max{dist(x1, x∗), dist(x2, x∗), dist(x̃1, x∗), dist(x̃2, x∗)} (by triangle inequality of distance)

+ |g(H̄2(x2, x̃2)TSζ
ξ1, ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)| (15)
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where b1, b2, b3, b4 and b5 are some constants. Using hat to denote coordinate expressions, T (x̂1, x̂2)
to denote Tζ and Ĝ(x̂2) to denote the matrix expression of the Riemannian metric at x2, we have

|g(H̄2(x2, x̃2)TSζ
ξ1, ξ2)− g(TSζ

H̄1(x1, x̃1)ξ1, ξ2)|
= |ξ̂T1 T (x̂1, x̂2)T ˆ̄H2(x̂2, ˆ̃x2)

T Ĝ(x̂2)ξ̂2 − ξ̂T1
ˆ̄H1(x̂1, ˆ̃x1)

TT (x̂1, x̂2)
T Ĝ(x̂2)ξ̂2|

≤ ‖ξ̂1‖2‖T (x̂1, x̂2)T ˆ̄H2(x̂2, ˆ̃x2)
T − ˆ̄H1(x̂1, ˆ̃x1)

TT (x̂1, x̂2)
T ‖2‖Ĝ(x̂2)‖2‖ξ̂2‖2 (16)

where ‖ · ‖2 denotes the Euclidean norm. Define a function

J(x̂1, ˆ̃x1, x̂2, ˆ̃x2) = T (x̂1, x̂2)
T ˆ̄H2(x̂2, ˆ̃x2)

T − ˆ̄H1(x̂1, ˆ̃x1)
TT (x̂1, x̂2)

T .

We can see that when (x̂T1 ,
ˆ̃xT1 ) = (x̂T2 ,

ˆ̃xT2 ), J = 0. Since, in view of Assumption 3.3, J is Lipschitz
continuous, it follows that (16) becomes

|g(H̄2TSζ
ξ1, ξ2)− g(TSζ

H̄1ξ1, ξ2)| ≤ b6‖(x̂T1 , ˆ̃xT1 )− (x̂T2 , ˆ̃x
T
2 )‖2‖ξ̂1‖2‖ξ̂2‖2

≤ b7‖ξ1‖‖ξ2‖max{dist(x1, x2), dist(x̃1, x̃2)},
where b6, b7 are some constants. Combining this equation with (15), we obtain

|g(TSζ
ξ1, y2)− g(TSζ

y1, ξ2)| ≤ b8‖ξ1‖‖ξ2‖max{dist(x1, x∗), dist(x2, x∗), dist(x̃1, x∗), dist(x̃2, x∗)},
where b8 is a constant.

Lemma 3.11. LetM be a Riemannian manifold endowed with a vector transport T with associated
retraction R, and let x̄ ∈M. Then there is a neighborhood U of x̄ and a8 such that for all x, y ∈ U ,

‖ id−T −1ξ T −1η Tζ‖ ≤ a8max(dist(x, x̄), dist(y, x̄)),

‖ id−T −1ζ TηTξ‖ ≤ a8max(dist(x, x̄), dist(y, x̄)),

where ξ = R−1x̄ (x), η = R−1x (y), ζ = R−1x̄ (y), id is the identity operator, and ‖ · ‖ is the operator
norm induced by the Riemannian metric.

Proof. Let the hat denote coordinate expressions, chosen such that the matrix expression of the
Riemannian metric at x̄ is the identity. Let L(x, y) denote TR−1

x (y). We have

‖ id−T −1ξ T −1η Tζ‖ = ‖I − L(x̄, x)−1L(x, y)−1L(x̄, y)‖.

Define a function J(x̄, ξ, ζ) = I − L(x̄, Rx̄(ξ))
−1L(Rx̄(ξ), Rx̄(ζ))

−1L(x̄, Rx̄(ζ)). Notice that J is a
smooth function and J(x̄, 0x̄, 0x̄) = 0. So

‖J(x̄, ξ, ζ)‖ = ‖J(x̄, ξ, ζ)− J(x̄, 0x̄, 0x̄)‖
= ‖Ĵ(ˆ̄x, ξ̂, ζ̂)− Ĵ(ˆ̄x, 0̂x̄, 0̂x̄)‖2
≤ b0(‖ξ̂‖2 + ‖ζ̂‖2) (smoothness of J)

≤ b1(dist(x, x̄) + dist(y, x̄)) (by Lemma 3.4)

≤ b2max(dist(x, x̄), dist(y, x̄)),

where b0, b1 and b2 are some constants and ‖ · ‖2 denotes the Euclidean norm. So

‖ id−T −1ξ T −1η Tζ‖ ≤ b2max(dist(x, x̄), dist(y, x̄)).

This concludes the first part of the proof. The second part of the result follows from a similar
argument.
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The next lemma generalizes [CGT91, Lemma 1]. It is instrumental in the proof of Lemma 3.14
below. In the Euclidean setting, it is possible to give an expression for a9 and a10 in terms of c
of Assumption 3.3 and ν of Assumption 3.5. In the Riemannian setting, we could not obtain such
an expression, in part because the constant b2 that appears in the proof below is no longer zero.
However, the existence of a9 and a10 can still be shown, under the assumption that {xk} converges
to x∗, and this is all we need in order to carry on with Lemma 3.14.

Lemma 3.12. Suppose Assumptions 3.1, 3.2, 3.3, and 3.5 hold. Then

yj − B̃j+1sj = 0 (17)

for all j. Moreover, there exist constants a9 and a10 such that

‖yj − (Bi)jsj‖ ≤ a9a
i−j−2
10 ǫi,j‖sj‖ (18)

for all j, i ≥ j + 1, where ǫi,j = maxj≤k≤i dist(xk, x∗) and

(Bi)j = T −1Sζj,i
BiTSζj,i

with ζj,i = R−1xj
(xi).

Proof. From (3), we have

B̃j+1sj = (Bj +
(yj − Bjsj)(yj − Bjsj)♭

g(sj , yj − Bjsj)
)sj = yj .

This yields (17), as well as (18) with i = j + 1. The proof of (18) for i > j + 1 is by induction. We
choose k ≥ j + 1 and assume that (18) holds for all i = j + 1, . . . , k. Let rk = yk − Bksk. We have

|g(rk, TSζj,k
sj)| = |g(yk − Bksk, TSζj,k

sj)|
≤ |g(yk, TSζj,k

sj)− g(sk, TSζj,k
yj)|+ |g(sk, TSζj,k

(yj − (Bk)jsj))|+ |g(sk, TSζj,k
((Bk)jsj))− g(Bksk, TSζj,k

sj)|
≤ |g(yk, TSζj,k

sj)− g(sk, TSζj,k
yj)|+ ‖TSζj,k

(yj − (Bk)jsj)‖‖sk‖+ |g(sk,BkTSζj,k
sj)− g(Bksk, TSζj,k

sj)|

≤ |g(yk, TSζj,k
sj)− g(sk, TSζj,k

yj)|+ b0a9a
k−j−2
10 ǫk,j‖sj‖‖sk‖ (Bk self-adjoint and induction assumption)

≤ b0a9a
k−j−2
10 ǫk,j‖sj‖‖sk‖+ b1ǫk+1,j‖sk‖‖sj‖, (by Lemma 3.10)

where b0 and b1 are some constants. It follows that

‖yj − (Bk+1)jsj‖
= ‖yj − T −1Sζj,k+1

Bk+1TSζj,k+1
sj‖

= ‖yj − T −1Sζj,k+1
TSsk
B̃k+1T −1Ssk

TSζj,k+1
sj‖

≤ ‖yj − T −1Sζj,k
B̃k+1TSζj,k

sj‖+ ‖T −1Sζj,k
B̃k+1TSζj,k

sj − T −1Sζj,k+1
TSsk
B̃k+1T −1Ssk

TSζj,k+1
sj‖

≤ ‖yj − ((Bk)j + T −1Sζj,k

(rk)(rk)
♭

g(sk, rk)
TSζj,k

)sj‖+ b2ǫk+1,j‖sj‖ (by Lemma 3.11, Assumption 3.1, and (3))

≤ ‖yj − (Bk)jsj‖+ b3
|g(rk, TSζj,k

sj)|
‖sk‖

+ b2ǫk+1,j‖sj‖ (by Assumption 3.5)

≤ a9a
k−j−2
10 ǫk,j‖sj‖+ b3b0a9a

k−j−2
10 ǫk,j‖sj‖+ b3b1ǫk,j‖sj‖+ b2ǫk+1,j‖sj‖

≤ (a9a
k−j−2
10 + b3b0a9a

k−j−2
10 + b3b1 + b2)ǫk+1,j‖sj‖, (note that ǫk,j ≤ ǫk+1,j)
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where b2, b3 are some constant. Because b0, b1, b2 and b3 are independent of a9 and a10, we can
choose a9 and a10 large enough such that

(a9a
k−j−2
10 + b3b0a9a

k−j−2
10 + b3b1 + b2) ≤ a9a

k+1−j−2
10 .

for all j, k ≥ j + 1. Take for example, a9 > 1 and a10 > 1 + b3b0 + b3b1 + b2. Therefore

‖yj − (Bk+1)jsj‖ ≤ a9a
k+1−j−2
10 ǫk+1,j‖sj‖.

This concludes the argument by induction.

Lemma 3.13. If Assumption 3.3 holds then there exist a neighborhood U of x∗ and a constant a11
such that for all x1, x2 ∈ U , the inequality

‖y − TSζ1
Hess f(x∗)T −1Sζ1

s‖ ≤ a11‖s‖max{dist(x1, x∗), dist(x2, x∗)}

holds, where ζ1 = R−1x∗ (x1), s = R−1x1
(x2), y = T −1Ss

grad f(x2)− grad f(x1).

Proof. Define ȳ = P 0←1
γ grad f(x2)− grad f(x1), where P is the parallel transport along the curve

γ defined by γ(t) = Rx1(ts). From Lemma 3.9, we have

‖ȳ − H̄s‖ ≤ b0‖s‖2, (19)

where H̄ =
∫ 1
0 P 0←t

γ Hess f(γ(t))P t←0
γ dt and b0 is a constant. We then have

‖y − TSζ1
Hess f(x∗)T −1Sζ1

s‖ ≤ ‖y − ȳ‖+ ‖ȳ − H̄s‖+ ‖H̄s− TSζ1
Hess f(x∗)T −1Sζ1

s‖
= ‖T −1Sζ

grad f(x2)− P 0←1
γ grad f(x2)‖+ b0‖s‖2 + ‖H̄ − TSζ1

Hess f(x∗)T −1Sζ1
‖‖s‖

≤ b1‖s‖max{dist(x1, x∗), dist(x2, x∗)}+ b0‖s‖2 (by Lemma 3.7)

+ (‖
∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt−Hess f(x1)‖

+ ‖Hess f(x1)− TSζ1
Hess f(x∗)T −1Sζ1

‖)‖s‖
≤ b2‖s‖max{dist(x1, x∗), dist(x2, x∗)}, (by Assumption 3.3)

where b1 and b2 are some constants.

With these technical lemmas in place, we now start the Riemannian generalization of the se-
quence of lemmas in [BKS96] that leads to the main result [BKS96, Theorem 2.7], generalized here
as Theorem 3.18. For an easier comparison with [BKS96], in the rest of the convergence analysis,
we let n (instead of d) denote the dimension of the manifoldM.

The next lemma generalizes [BKS96, Lemma 2.3], itself a slight variation of [KBS93, Lemma 3.2].
The proof of [BKS96, Lemma 2.3] involves considering the span of a few sj ’s. In the Riemannian
setting, a difficulty arises from the fact that the sj ’s are not in the same tangent space. We overcome
this difficulty by transporting the sj ’s to Tx∗M.

Lemma 3.14. Let sk be such that Rxk
(sk)→ x∗. If Assumptions 3.1, 3.2, 3.3, and 3.5 hold then

there exists K ≥ 0 such that for any set of n + 1 steps S = {skj : K ≤ k1 < . . . < kn+1}, there
exists an index km with m ∈ {2, 3, . . . , n+ 1} such that

‖(Bkm −Hkm)skm‖
‖skm‖

< (a12a
kn+1−k1−2
10 + ā12)ǫ

1
n
S ,
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where ǫS = max1≤j≤n+1{dist(xkj , x∗), dist(Rxkj
(skj ), x

∗)}, Hkm = TSζkm
Hess f(x∗)T −1Sζkm

, ζkm =

R−1x∗ (xkm), a12, ā12 are some constants, and n is the dimension of the manifold.

Proof. Given S, for j = 1, 2, . . . , n+ 1, define

Sj =

[

s̄k1
‖s̄k1‖

,
s̄k2
‖s̄k2‖

, . . . ,
s̄kj
‖s̄kj‖

]

,

where s̄ki = T −1Sζki

ski , i = 1, 2, . . . , j. The proof is organized as follows. We will first obtain in (28)

that there exists m ∈ [2, n + 1] and u ∈ R
m−1, w ∈ Tx∗M such that s̄km/‖s̄km‖ = Sm−1u − w,

Sm−1 has full column rank and is well conditioned, and ‖w‖ is small. We will also obtain in (30)
that (T −1Sζkm

BkmTSζkm
− Hess f(x∗))Sm−1 is small due to the Hessian approximating properties of

the SR1 update given in Lemma 3.13 above. The conclusion follows from these two results.
Let G∗ denote the matrix expression of inner product of Tx∗M and Ŝj denote the coordinate

expression of Sj , for j ∈ {1, . . . , n}. Let κj be the smallest singular value of G
1/2
∗ Ŝj and define

κn+1 = 0. We have
1 = κ1 ≥ κ2 . . . ≥ κn+1 = 0.

Let m be the smallest integer for which

κm
κm−1

< ǫ
1
n
S . (20)

Since m ≤ n+ 1 and κ1 = 1, we have

κm−1 = κ1(
κ2
κ1

) . . . (
κm−1
κm−2

) > ǫ
(m−2)/n
S > ǫ

(n−1)/n
S . (21)

Since xk → x∗ and Rxk
(sk) → x∗, we can assume that ǫS ∈ (0, (14)

n) for all k. Now, we choose
z ∈ R

m such that
‖G1/2
∗ Ŝmz‖2 = κm‖z‖2 (22)

and

z =

(

u
−1

)

,

where u ∈ R
m−1. (The last component of z is nonzero due to that m is the smallest such that (20)

is true.) Let w = Smz and its coordinate expression ŵ = Ŝmz. From the definition of G
1/2
∗ Ŝm and

z, we have

G
1/2
∗ Ŝm−1u−G

1/2
∗ ŵ =

G
1/2
∗ ˆ̄skm

‖G1/2
∗ ˆ̄skm‖2

, (23)

where ˆ̄skm is the coordinate expression of s̄km . Since κm−1 is the smallest singular value of

G
1/2
∗ Ŝm−1, we have that

‖u‖2 ≤
1

κm−1
‖G1/2
∗ Ŝm−1u‖2 =

1

κm−1
‖G1/2
∗ ŵ +

G
1/2
∗ ˆ̄skm

‖G1/2
∗ ˆ̄skm‖2

‖2 ≤
‖G1/2
∗ ŵ‖2 + 1

κm−1
=
‖w‖+ 1

κm−1
(24)

<
‖G1/2
∗ ŵ‖2 + 1

ǫ
(n−1)/n
S

=
‖w‖+ 1

ǫ
(n−1)/n
S

. (by (21)) (25)
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Using (22) and (24), we have that

‖w‖2 = ‖G1/2
∗ ŵ‖22 = ‖G

1/2
∗ Ŝmz‖22 = κ2m‖z‖22 = κ2m(1 + ‖u‖22)

≤ κ2m + (
κm
κm−1

)2(‖G1/2
∗ ŵ‖2 + 1)2 = κ2m + (

κm
κm−1

)2(‖w‖+ 1)2.

Therefore, since (20) implies that κm < ǫ
1/n
S , using (20),

‖w‖2 < ǫ
2/n
S + ǫ

2/n
S (‖w‖+ 1)2 < 4ǫ

2/n
S (‖w‖+ 1)2. (26)

This implies

‖w‖(1− 2ǫ
1/n
S ) < 2ǫ

1/n
S ,

and hence ‖w‖ < 1, since ǫS < (14)
n. Therefore, (25) and (26) imply that

‖u‖2 <
2

ǫ
(n−1)/n
S

, (27)

‖w‖ < 4ǫ
1/n
S . (28)

Equation (28) is the announced result that w is small. The bound (27) will also be invoked below.
Now we show that ‖(T −1Sζkj

BkjTSζkj
−Hess f(x∗))Sj−1‖ is small for all j ∈ [2, n+1] (and thus in

particular for j = m). By Lemma 3.12, we have

‖yi − (Bkj )isi‖ ≤ a9a
kj−i−2
10 ǫkj ,i‖si‖ ≤ a9a

kn+1−k1−2
10 ǫS‖si‖, (29)

for all i ∈ {k1, k2, . . . , kj−1}. Therefore,

‖(T −1Sζkj

BkjTSζkj
−Hess f(x∗))

s̄i
‖s̄i‖
‖

≤ ‖
T −1Sζi

yi − T −1Sζkj

BkjTSζkj
s̄i

‖s̄i‖
‖+ ‖

T −1Sζi
yi −Hess f(x∗)s̄i

‖s̄i‖
‖

≤ ‖
T −1Sζi

yi − T −1Sζkj

BkjTSζkj
s̄i

‖s̄i‖
‖+ b1ǫS (by Lemma 3.13)

= ‖
T −1Sζi

(yi − TSζi
T −1Sζkj

BkjTSζkj
T −1Sζi

si)

‖s̄i‖
‖+ b1ǫS

≤ b2
‖(yi − (Bkj )isi)‖

‖si‖
+ b3ǫS (by Lemma 3.11 and Assumption 3.1)

≤ (b4a
kn+1−k1−2
10 + b3)ǫS (by (29))

where b2, b3 and b4 are some constants. Therefore, we have that for any j ∈ [2, n+ 1],

‖(T −1Sζkj

BkjTSζkj
−Hess f(x∗))Sj−1‖g,2 ≤ b5ǫS , (30)

where b5 =
√
n(b4a

kn+1−k1−2
10 + b3) and ‖ · ‖g,2 is the norm induced by the Riemannian metric g and

the Euclidean norm, i.e., ‖A‖g,2 = sup ‖Av‖/‖v‖2 with ‖ · ‖ defined in (5).
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We can now conclude the proof as follows. Using (23) and (30) with j = m, (27) and (28), we
have

‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))s̄m‖

‖s̄m‖
= ‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))(Sm−1u− w)‖

≤ ‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))Sm−1‖g,2‖u‖2 + ‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))‖‖w‖

≤ b5ǫS
2

ǫ
(n−1)/n
S

+ (M +Hess f(x∗))4ǫ1/nS (by Assumption 3.1)

≤ (2b5 + b6)ǫ
1/n
S

where b6 is some constant. Finally,

‖(Bkm −Hkm)skm‖
‖skm‖

=
‖(Bkm − TSζkm

Hess f(x∗)T −1Sζkm

)skm‖
‖skm‖

=
‖(T −1Sζkm

BkmTSζkm
−Hess f(x∗))s̄km‖

‖s̄km‖
≤ (2b5 + b6)ǫ

1/n
S .

The next lemma generalizes [BKS96, Lemma 2.4]. Its proof is a translation of the proof
of [BKS96, Lemma 2.4], where we invoke two manifold-specific results: the equality of Hess f(x∗)
and Hess(f ◦ Rx∗)(0x∗) (which holds in view of [AMS08, Proposition 5.5.6] since x∗ is a critical
point of f), and the bound in Lemma 3.4 on the retraction R.

Lemma 3.15. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 hold and the trust-region
subproblem (2) is solved accurately enough for (9) to hold. Then there exists N such that for any
set of p > n consecutive steps sk+1, sk+1, . . . , sk+p with k ≥ N , there exists a set, Gk, of at least
p− n indices contained in the set {i : k + 1 ≤ i ≤ k + p} such that for all j ∈ Gk,

‖(Bj −Hj)sj‖
‖sj‖

< a13ǫ
1
n

k ,

where a13 = a12a
p−2
10 + ā12, Hj = TSζj

Hess f(x∗)T −1Sζj
, ζj = R−1x∗ (xj), and

ǫk = max
k+1≤j≤k+p

{dist(xj , x∗), dist(Rxj (sj), x
∗)}.

Furthermore, for k sufficiently large, if j ∈ Gk, then

‖sj‖ < a14 dist(xj , x
∗), (31)

where a14 is a constant, and
ρj ≥ 0.75. (32)
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Proof. By Lemma 3.6, sk → 0. Therefore, by Lemma 3.14, applied to the set

{sk, sk+1, . . . , sk+p}, (33)

there exists N such that for any k ≥ N there exists an index l1, with k + 1 ≤ l1 ≤ k + p satisfying

‖(Bl1 −Hl1)sl1‖
‖sl1‖

< a13ǫ
1
n

k ,

where a13 = a12a
p−2
10 + ā12. Now we can apply Lemma 3.14 to the set {sk, sk+1, . . . , sk+p} − sl1 to

get l2. Repeating this p− n times, we get a set of p− n indices Gk = {l1, l2, . . . , lp−n} such that if
j ∈ Gk, then

‖(Bj −Hj)sj‖
‖sj‖

< a13ǫ
1
n

k . (34)

We show (31) next. Consider j ∈ Gk. By (34), we have

g(sj , (Hj − Bj)sj) ≤ ‖sj‖‖(Hj − Bj)sj‖ ≤ a13ǫ
1
n

k ‖sj‖2.

Therefore,

g(sj ,Bjsj) ≥ g(sj , Hjsj)− a13ǫ
1
n

k ‖sj‖2

> b0‖sj‖2, (choosing k large enough)

where b0 is a constant and we have

0 ≤ mj(0)−mj(sj) = −g(grad f(xj), sj)−
1

2
g(sj ,Bjsj)

≤ ‖ grad f(xj)‖‖sj‖ −
1

2
b0‖sj‖2

≤ b1 dist(xj , x
∗)‖sj‖ −

1

2
b0‖sj‖2, (by Lemma 3.8)

where b1 is some constant. This yields (31).
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Finally, we show (32). Let j ∈ Gk and define f̂x(η) = f(Rx(η)). It follows that

|f(xj)− f(Rxj (sj))− (mj(0)−mj(sj))|

= |f(xj)− f(Rxj (sj)) + g(grad f(xj), sj) +
1

2
g(sj ,Bjsj)|

= |f̂xj (0xj )− f̂xj (sj) + g(grad f(xj), sj) +
1

2
g(sj ,Bjsj)|

= |1
2
g(sj ,Bjsj)−

∫ 1

0
g(Hess f̂xj (τsj)[sj ], sj)(1− τ)dτ | (by Taylor’s theorem)

≤ |1
2
g(sj ,Bjsj)−

1

2
g(sj , Hjsj)|+ |

1

2
g(sj , Hjsj)−

∫ 1

0
g(Hess f̂xj (τsj)[sj ], sj)(1− τ)dτ |

= |1
2
g(sj , (Bj −Hj)sj)|

+ |
∫ 1

0
(g(sj , TSζj

Hess f(x∗)T −1Sζj
sj)− g(Hess f̂xj (τsj)[sj ], sj))(1− τ)dτ |

≤ 1

2
‖sj‖‖(Bj −Hj)sj‖

+ ‖sj‖2
∫ 1

0
‖(TSζj

Hess f̂x∗(0x∗)T −1Sζj
−Hess f̂xj (τsj))‖(1− τ)dτ (by [AMS08, Proposition 5.5.6])

≤ b2‖sj‖2ǫ
1
n

k + b3‖sj‖2(dist(xj , x∗) + ‖sj‖) (by (34), Lemma 3.4 and Assumption 3.4)

≤ b4‖sj‖2ǫ
1
n

k , (by (31) and dist(xj , x
∗) is smaller than ǫ

1
n

k eventually)

where b2, b3 and b4 are some constants. In view of (31) and Lemma 3.8, we have

‖sj‖ < b5‖ grad f(xj)‖,

where b5 is some constant. Combining with ‖sj‖ ≤ ∆j , we obtain

‖sj‖2 ≤ b5‖ grad f(xj)‖min{∆j , b5‖ grad f(xj)‖}.

Noticing (9), we have

|f(xj)− f(Rxj (sj))− (mj(0)−mj(sj))| ≤ b6ǫ
1
n

k (mj(0)−mj(sj)),

where b6 is a constant. This implies (32).

The next result generalizes [BKS96, Lemma 2.5] in two ways: the Euclidean setting is extended
to the Riemannian setting, and inexact solves are allowed by the presence of δk. The main hurdle
that we had to overcome in the Riemannian generalization is that the equality dist(xk + sk, x

∗) =
‖sk − ξk‖ does not necessarily hold. As we will see, Lemma 3.3 comes to our rescue.

Lemma 3.16. Suppose Assumptions 3.2 and 3.3 hold. If the quantities

ek = dist(xk, x
∗) and

‖(Bk −Hk)sk‖
‖sk‖
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are sufficiently small and if Bksk = − grad f(xk) + δk with ‖δk‖ ≤ ‖ grad f(xk)‖1+θ, then

dist(Rxk
(sk), x

∗) ≤ a15
‖(Bk −Hk)sk‖

‖sk‖
ek + a16e

1+min{θ,1}
k , (35)

h(Rxk
(sk)) ≤ a17

‖(Bk −Hk)sk‖
‖sk‖

h(xk) + a18h
1+min{θ,1}(xk), (36)

and
a19h(xk) ≤ ek ≤ a20h(xk) (37)

where a15, a16, a17 and a18 are some constants and h(x) = (f(x)− f(x∗))
1
2 .

Proof. By definition of sk, we have

sk = H−1k [(Hk − Bk)sk − grad f(xk) + δk]. (38)

Define ξk = R−1xk
x∗. Therefore, letting γ be the curve defined by γ(t) = Rxk

(tξk), we have

‖sk − ξk‖
= ‖H−1k [(Hk − Bk)sk − grad f(xk) + δk −Hkξk]‖

≤ b0(‖(Hk − Bk)sk‖+ ‖δk‖+ ‖P 0←1
γ grad f(x∗)− grad f(xk)− (

∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt)ξk‖

+ ‖(
∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt)ξk −Hess f(xk)ξk‖+ ‖Hess f(xk)ξk −Hkξk‖)

≤ b0(‖(Hk − Bk)sk‖+ b1‖ξk‖1+min{θ,1} (by Lemmas 3.8 and 3.9)

+ ‖(
∫ 1

0
P 0←t
γ Hess f(γ(t))P t←0

γ dt)ξk −Hess f(xk)ξk‖+ ‖Hess f(xk)−Hk‖‖ξk‖)

≤ b0‖(Hk − Bk)sk‖+ b0b1‖ξk‖1+min{θ,1} + b0b3‖ξk‖2 (by Assumption 3.3)

≤ b0‖(Hk − Bk)sk‖+ b4‖ξk‖1+min{θ,1} (39)

where b1, b2, b3 and b4 are some constants. From Lemma 3.3, we have

dist(Rxk
(sk), x

∗) = dist(Rxk
(sk), Rxk

(ξk)) ≤ b5‖sk − ξk‖, (40)

where b5 is a constant. Combining (39) and (40) and using Lemma 3.4, we obtain

dist(Rxk
(sk), x

∗) ≤ b0b5‖(Hk − Bk)sk‖+ b̄4b5e
1+min{θ,1}
k . (41)

From (38), for k large enough such that ‖H−1k ‖‖(Hk − Bk)sk‖ ≤ 1
2‖sk‖, we have

‖sk‖ ≤
1

2
‖sk‖+ ‖H−1k ‖(‖ grad f(xk)‖+ ‖ grad f(xk)‖1+θ).

Using Lemma 3.8, this yields
‖sk‖ ≤ b6 dist(xk, x

∗),
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where b6 is a constant. Using the latter in (41) yields

dist(Rxk
(sk), x

∗) ≤ b0b5b6
‖(Hk − Bk)sk‖

‖sk‖
dist(xk, x

∗) + b̄4b5e
1+min{θ,1}
k ,

which shows (35).
We show (37) next. Define f̂x(η) = f(Rx(η)) and let ζk = R−1x∗ (xk). We have, for some t ∈ (0, 1),

f̂x∗(ζk)− f̂x∗(0x∗) = g(grad f(x∗), ζk) + g(Hess f̂x∗(tζk)[ζk], ζk)

= g(Hess f̂x∗(tζk)[ζk], ζk),

where we have used (Euclidean) Taylor’s theorem to get the first equality and the fact that x∗ is a
critical point of f (Assumption 3.2) for the second one. Therefore, since Hess f̂x∗ = Hess f(x∗) is
positive definite (in view of [AMS08, Proposition 5.5.6] and Assumption 3.2), there exist b7 and b8
such that

b7(f̂x∗(ζk)− f̂x∗(0x∗)) ≤ ‖ζ̂k‖2 ≤ b8(f̂x∗(ζk)− f̂x∗(0x∗))

Then, using Lemma 3.4, we obtain that there exist b9 and b10 such that

b9(f(xk)− f(x∗)) ≤ dist(xk, x
∗)2 ≤ b10(f(xk)− f(x∗)).

In other words,
b9h

2(xk) ≤ e2k ≤ b10h
2(xk),

and we have shown (37). Combining it with (35), we get (36).

With Lemmas 3.15 and 3.16 in place, the rest of the local convergence analysis is essentially a
translation of the analysis in [BKS96]. The next lemma generalizes [BKS96, Lemma 2.6].

Lemma 3.17. If Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold and the subproblem is solved
accurately enough for (9) and (10) to hold, then

lim
k→∞

hk
∆k

= 0,

where hk = h(xk).

Proof. Let p be the smallest integer greater than 2n+n(− ln τ1/ ln τ2), where τ1 and τ2 are defined
in Algorithm 1. Then

τn1 τ
p−2n
2 ≥ 1. (42)

Applying Lemma 3.15 with this value of p, there exists N such that if k ≥ N , then there exists a
set of at least p− n indices, Gk ⊂ {j : k + 1 ≤ j ≤ k + p}, such that if j ∈ Gk, then

‖(Bj −Hj)sj‖
‖sj‖

< cǫ
1
n

k , (43)

ρj ≥ 0.75.

We now show that for such steps,

hj+1

∆j+1
≤ 1

τ2

hj
∆j

. (44)
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If ‖sj‖ ≥ 0.8∆j , then since from Step 12 of Algorithm 1, ∆j+1 = τ2∆j and since {hi} is decreasing,
(44) follows. If on the other hand ‖sj‖ < 0.8∆j , then from Step 14 of Algorithm 1, we have
that ∆j+1 = ∆j . Also since the trust region is inactive, by condition (10), we have that Bjsj =
− grad f(xj) + δk, ‖δk‖ ≤ ‖ grad f(xj)‖1+θ. Therefore, in view of (36) in Lemma 3.16 and of (43),
if N is large enough, we have that

hj+1 ≤
1

τ2
hj .

This implies that (44) is true for all j ∈ Gj , where k ≥ N .
In addition, note that for any j, hj+1 ≤ hj and ∆j+1 ≥ τ1∆j and so

hj+1

∆j+1
≤ 1

τ1

hj
∆j

. (45)

Since (44) is true for p− n values of j ∈ Gk and (45) holds for all j, we have that for all k ≥ N ,

hk+p

∆k+p
≤ (

1

τ1
)n(

1

τ2
)p−n

hk
∆k
≤ (

1

τ2
)n

hk
∆k

,

where the second inequality follows from (42). Therefore, starting at k = N , it follows that

hN+lp

∆N+lp
→ 0

as l→∞. Using (45) again, we complete the proof.

The next result generalizes [BKS96, Theorem 2.7].

Theorem 3.18. If Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold and the subproblem is solved
accurately enough for (9) and (10) to hold then, the sequence {xk} generated by Algorithm 1 is
n+ 1-step q-superlinear (where n denotes the dimension ofM); i.e.,

dist(xk+n+1, x
∗)

dist(xk, x∗)
→ 0.

Proof. By Lemma 3.15, there exists N such that if k ≥ N , then the set of steps {sk+1, . . . , sk+n+1}
contains at least one step sk+j , 1 ≤ j ≤ n+ 1, for which

‖(Bj −Hj)sj‖
‖sj‖

< a13ǫ
1
n

k .

By (31) in Lemma 3.15 and (37) in Lemma 3.16 (when checking the assumptions, recall the standing
assumption made in Section 3.3 that ek := dist(xk, x

∗)→ 0), there exists a constant b0 such that

‖sk+j‖ < b0hk+j .

Therefore, by Lemma 3.17, if N is large enough and k ≥ N , then ‖sk+j‖ < 0.8∆k+j . By (10), this
implies Bk+jsk+j = − grad f(xk+j) + δk+j , with ‖δk+j‖ ≤ ‖ grad f(xk+j)‖1+θ. Thus by inequality
(36) of Lemma 3.16, if N is large enough and k ≥ N , then

hk+j+1 = h(Rxk+j
(sk+j)) ≤ (a17a13ǫ

1
n

k + a18h
min{θ,1}
k+j )hk+j .
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The first equality holds because (32) implies that the step is accepted. Since the sequence {hi} is
decreasing, this implies that

hk+n+1 ≤ (a17a13ǫ
1
n

k + a18h
min{θ,1}
k+j )hk

By (37),

ek+n+1 ≤ a20hk+n+1

≤ a20(a17a13ǫ
1
n

k + a18h
min{θ,1}
k+j )hk

≤ a20(a17a13ǫ
1
n

k + a18(
ek
a19

)min{θ,1})
ek
a19

.

This implies n+ 1-step q-superlinear convergence.

It is also possible to extend to the Riemannian setting the result [BKS96, Theorem 2.8] that the
percentage of Bk being positive semidefinite approaches 1 provided that Bk is positive semidefinite
whenever ‖sk‖ ≤ 0.8∆k. In the proof of [BKS96, Theorem 2.8], replace Lemma 2.6 by Lemma 3.17,
Lemma 2.4 by Lemma 3.15, (2.14) by (31), and (2.9) by (37).

4 Limited memory version of RTR-SR1

In RTR-SR1 (Algorithm 1), storing Bk+1 = Tηk ◦ B̃k+1 ◦ T −1ηk
in matrix form may be inefficient for

two reasons. The first reason, which is also present in the Euclidean case, is that B̃k+1 = Bk +
(yk−Bksk)(yk−Bksk)♭

g(sk,yk−Bksk) is a rank-one modification of Bk. The second reason, specific to the Riemannian
setting, is that when M is a low-codimension submanifold of a Euclidean space E , it may be
beneficial to express Tηk as the restriction to Txk

M of a low-rank modification of the identity (7).
Instead of storing full dense matrices, it may then be beneficial to store a few vectors that implicitly
represent them. This is the purpose of the limited memory version of RTR-SR1 presented in this
section.

The proposed limited memory RTR-SR1, called LRTR-SR1, is described in Algorithm 2. It
relies on a Riemannian generalization of the compact representation of the classical (Euclidean)
SR1 matrices presented in [BNS94, §5]. We set B0 = id. At step k > 0, we first choose a basic
Hessian approximation Bk0 , which in the Riemannian setting becomes a linear transformation of
Txk
M. We advocate the choice

Bk0 = γk id,

where

γk =
g(yk−1, yk−1)
g(sk−1, yk−1)

,

which generalizes a choice usually made in the Euclidean case [NW06, (7.20)]. As in the Eu-
clidean case, we let Sk,m and Yk,m contain the (at most) m most recent corrections, which in the

Riemannian setting must be transported to Txk
M, yielding Sk,m = {s(k)k−ℓ, s

(k)
k−ℓ+1, . . . , s

(k)
k−1} and

Yk,m = {y(k)k−ℓ, y
(k)
k−ℓ+1, . . . , y

(k)
k−1}, where ℓ = min{m, k} and where s(k) denotes s transported to

Txk
M. We then have the following Riemannian generalization of the limited-memory update

based on [BNS94, (5.2)]:

Bk = Bk0 + (Yk,m − Bk0Sk,m)(Pk,m − S♭
k,mBk0Sk,m)−1(Yk,m − Bk0Sk,m)♭, k > 0,
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where Pk,m = Dk,m+Lk,m+LT
k,m, Dk,m = diag{g(sk−ℓ, yk−ℓ), g(xk−ℓ+1, yk−ℓ+1), . . . , g(sk−1, yk−1)},

and

(Lk,m)i,j =

{

g(sk−ℓ+i−1, yk−ℓ+j−1), if i > j;
0, otherwise.

Moreover, letting Qk,m denote the matrix S♭
k,mSk,m, we obtain

Bk = γk id+(Yk,m − γkSk,m)(Pk,m − γkQk,m)−1(Yk,m − γkSk,m)♭, k > 0. (46)

For all η ∈ Txk
M, Bkη can thus be obtained from (46) using Yk,m, Sk,m, Pk,m and Qk,m. This

is how Bk is defined in Algorithm 2, except that the technicality that the B update may be skipped
is also taken into account therein.

5 Numerical experiments

As an illustration, we investigate the performance of RTR-SR1 (Algorithm 1) and LRTR-SR1 (Algo-
rithm 2) on a Rayleigh quotient minimization problem on the sphere and on a joint diagonalization
(JD) problem on the Stiefel manifold.

For the Rayleigh quotient problem, the manifoldM is the sphere

S
n−1 = {x ∈ R

n : xTx = 1}

and the objective function f is defined by

f(x) = xTAx, (47)

where A is a given n-by-n symmetric matrix. Minimizing the Rayleigh quotient of A is equivalent
to computing its leftmost eigenvector (see, e.g., [AMS08, §2.1.1]). The Rayleigh quotient problem
provides convenient benchmarking experiments since, except for pathological cases, there is essen-
tially one local minimizer (specifically, there is one pair of antipodal local minimizers), which can
be readily computed by standard eigenvalue software for verification. Moreover, the Hessian of f
is readily available, and this allows for a comparison with RTR-Newton [AMS08, Ch. 7], which
corresponds to Algorithm 1 with the exception that Bk is replaced by the Hessian of f at xk (and
thus the vector transport is no longer needed).

In the JD problem considered, the manifoldM is the (compact) Stiefel manifold,

St(p, n) = {X ∈ R
n×p : XTX = Ip},

and the objective function f is defined by

f(X) = −
N
∑

i=1

‖ diag(XTCiX)‖2, (48)

where C1, . . . , CN are given symmetric matrices, diag(M) denotes the vector formed by the diagonal
entries of M , and ‖ diag(M)‖2 thus denotes the sum of the squared diagonal elements of M . This
problem has applications in independent component analysis for blind source separation [TCA09].

The comparisons are performed in Matlab 7.0.0 on a 32 bit Windows platform with 2.4 GHz
CPU (T8300).
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Algorithm 2 Limited-memory RTR-SR1 (LRTR-SR1)

Input: Riemannian manifoldM with Riemannian metric g; retraction R; isometric vector trans-
ports TS ; smooth function f onM; initial iterate x0 ∈M;

1: Choose an integer m > 0 and real numbers ∆0 > 0, ν ∈ (0, 1), c ∈ (0, 0.1), τ1 ∈ (0, 1) and
τ2 > 1; Set k ← 0, ℓ← 0, γ0 ← 1;

2: Obtain sk ∈ Txk
M by (approximately) solving

sk = min
s∈Txk

M
mk(s) = min

s∈Txk
M

f(xk) + g(grad f(xk), s) +
1

2
g(s,Bks), s.t. ‖s‖ ≤ ∆k,

where Bk is defined in accordance with (46);

3: Set ρk ←
f(xk)−f(Rxk

(sk))

mk(0)−mk(sk)
;

4: Set yk ← T −1Sηk
grad f(Rxk

(sk))− grad f(xk);

5: if |g(sk, yk − Bksk)| ≥ ν‖sk‖‖yk − Bksk‖ then
6: γk+1 ← g(yk,yk)

g(sk,yk)
; Add s

(k)
k and y

(k)
k into storage; If ℓ ≥ m, then discard vector pair {s(k)k−ℓ, y

(k)
k−ℓ}

from storage, else ℓ← ℓ+1; Compute matrices Pk,m andQk,m by updating Pk−1,m andQk−1,m
if available;

7: else

8: Set γk+1 ← γk, Pk+1,m ← Pk,m, Qk+1,m ← Qk,m and {s(k)k , y
(k)
k } ←

{s(k)k−1, y
(k)
k−1}, . . . , {s

(k)
k−ℓ+1, y

(k)
k−ℓ+1} ← {s

(k)
k−ℓ, y

(k)
k−ℓ}.

9: end if

10: if ρk > c then

11: xk+1 ← Rxk
(sk); Transport s

(k)
k−ℓ+1, s

(k)
k−ℓ+2, . . . , s

(k)
k and y

(k)
k−ℓ+1, y

(k)
k−ℓ+2, . . . , y

(k)
k from Txk

M
to Txk+1

M by TS ;
12: else

13: xk+1 ← xk;
14: end if

15: if ρk > 3
4 then

16: if ‖ηk‖ ≥ 0.8∆k then

17: ∆k+1 ← τ2∆k;
18: else

19: ∆k+1 ← ∆k;
20: end if

21: else if ρk < 0.1 then

22: ∆k+1 ← τ1∆k;
23: else

24: ∆k+1 ← ∆k;
25: end if

26: k ← k + 1, goto 2 until convergence.

The chosen Riemannian metric g on S
n−1 is obtained by making Sn−1 a Riemannian submanifold

of the Euclidean space R
n. The gradient and the Hessian of f (47) with respect to the metric are

given in [AMS08, §6.4]. The chosen Riemannian metric g on St(p, n) is the one obtained by viewing
St(p, n) as a Riemannian submanifold of the Euclidean space R

n×p, as in [EAS98, §2.2]. With
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respect to this Riemannian metric, the gradient of the objective function (48), required in the three
methods, is given in [TCA09, §2.3]. The Riemannian Hessian of (48), required for RTR-Newton,
is also given therein.

The initial Hessian approximation B0 is set to the identity in RTR-SR1. The θ, κ parameters in
the inner iteration stopping criterion [AMS08, (7.10)] of the truncated CG inner iteration [AMS08,
§7.3.2] are set to 0.1, 0.9 for RTR-SR1 and LRTR-SR1 and to 1, 0.1 for RTR-Newton. The initial
radius ∆0 is set to 1, ν is the square root of machine epsilon, c is set to 0.1, τ1 to 0.25, and τ2 to
2.

For the retraction R on S
n−1, following [AMS08, Example 4.1.1], we choose Rx(η) = (x+η)/‖x+

η‖2. For the retraction R on St(p, n), following [AMS08, (4.8)], we choose RX(η) = qf(X+η) where
qf denotes the Q factor of the QR decomposition with nonnegative elements on the diagonal of R.

The chosen isometric vector transport T on S
n−1 is the vector transport by rigging (7), which

is (locally) uniquely defined in case of submanifolds of co-dimension 1. In the case of Sn−1, it turns
out to be equivalent to the parallel translation along the shortest geodesic that joins the origin
point x and the target point y, i.e.,

Tηxξx = ξx −
2yT ξx
‖x+ y‖2 (x+ y), (49)

where y = Rx(ηx). This operation is well defined whenever x and y are not antipodal points. On
St(p, n), since we will conduct experiments on problems of small dimension, we find it preferable to
select a vector transport by parallelization (6), which amounts to selecting a smooth field of tangent
bases B on St(p, n). To this end, we note that TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈
R
(n−p)×p}, where the columns of X⊥ ∈ R

n×(n−p) form an orthonormal basis of the orthogonal
complement of the column space of X (see, e.g., [AMS08, Example 3.5.2]). Hence, an orthonormal
basis of TX St(p, n) is given by { 1√

2
X(eie

T
j − eje

T
i ) : i = 1, . . . , p, j = i + 1, . . . , p} ∪ {X⊥ẽieTj , i =

1, . . . , n − p, j = 1, . . . , p}, where (e1, . . . , ep) is the canonical basis of Rp and (ẽ1, . . . , ẽn−p) is the
canonical basis of Rn−p. To ensure that the obtained field of tangent bases is smooth, we need to
choose X⊥ as a smooth function of X. This can be done locally by extracting the n−p last columns
of the Gram-Schmidt orthonormalization of

[

X C
]

where C is a given n × (n − p) matrix. In
practice, we have observed that Matlab’s null function applied to X works adequately to produce
an X⊥.

The experiments on the Rayleigh quotient (47) are reported in Table 1 and Figure 1. Since
the Hessian is readily available, RTR-Newton is the a priori method of choice over the proposed
RTR-SR1 and LRTR-SR1 methods. Nevertheless, Table 1 illustrates that it is possible to exhibit a
matrix A for which LRTR-SR1 is faster than RTR-Newton. Specifically, matrix A in the Rayleigh
quotient (47) is set to UDUT , where U is an orthonormal matrix obtained by orthonormalizing
a random matrix whose elements are drawn from the standard normal distribution and D =
diag(0, 0.01, . . . , 0.01, 2, . . . , 2) with 0.01 and 2 occurring n/2− 1 and n/2 times, respectively. The
initial iterate is generated randomly. The number of function evaluations is equal to the number
of iterations (iter). ng denotes the number of gradient evaluations. The differences between iter
and ng that may be observed in RTR-Newton are due to occasional rejections of the candidate new
iterate as prescribed in the trust-region framework [AMS08, §7.2]; for RTR-SR1 and LRTR-SR1,
iter and ng are identical because one evaluation of the gradient is required at each iterate to update
Bk or store yk even if the candidate is rejected. nH denotes the number of operations of the form
Hess f(x)η or Bη. t denotes the run time (seconds). To obtain sufficiently stable timing values, an

28



average is taken over several identical runs for a total run time of at least one minute. gf0 and gff
denote the initial and final norm of the gradient. Two stopping criteria are tested: gff/gf0 <1e-3
and gff/gf0 <1e-6.

Unsurprisingly, Table 1 shows that RTR-Newton, which exploits the Hessian of f , requires fewer
iterations than the SR1 methods, which does not use this information. However, when n gets large,
the time per iteration in LRTR-SR1—with moderate memory size m—gets sufficiently smaller for
the method to become faster than RTR-Newton.

Table 2 and Figure 2 present the experimental results obtained for the JD problem (48). The Ci

matrices are selected as Ci = diag(n, n− 1, . . . , 1)+ ǫC(Ri +RT
i ), where the elements of Ri ∈ R

n×n

are independently drawn from the standard normal distribution. Table 2 and Figure 2 correspond
to ǫC = 0.1, but we have observed similar results for a wide range of values of ǫC. Table 2 indicates
that RTR-Newton requires fewer iterations than RTR-SR1, which requires fewer iterations than
LRTR-SR1. This was expected since RTR-Newton uses the Hessian of f while RTR-SR1 uses
an inexact Hessian and LRTR-SR1 is further constrained by the limited memory. However, the
iterations of RTR-Newton tend to be more time-consuming that those of the SR1 methods, all
the more so if N gets large since the number of terms in the Hessian of f is linear in N . The
experiments reported in Table 2 show that the trade-off between the number of iterations and the
time per iteration is in favor of RTR-SR1 for N sufficiently large. Note also that, even though it
is slower than the two other methods in the experiments presented in Table 2, LRTR-SR1 may
be the method of choice in certain circumstances as it does not require the Hessian of f (unlike
RTR-Newton) and it has a reduced memory usage in comparison with RTR-SR1.

Table 1: Rayleigh quotient experiments

n RTR-Newton RTR-SR1
LRTR-SR1

m = 0 m = 2 m = 4
1e-3 1e-6 1e-3 1e-6 1e-3 1e-6 1e-3 1e-6 1e-3 1e-6

64

iter 3 6 4 15 4 50 4 18 4 13
ng 3 6 4 15 4 50 4 18 4 13
nH 4 13 6 34 0 0 0 0 0 0
gff 1.48

−4 9.26
−9 1.47

−4 3.58
−8 1.47

−4 1.18
−6 1.47

−4 7.65
−7 1.47

−4 3.49
−8

gff/gf0 7.42
−5 4.66

−9 7.38
−5 1.80

−8 7.38
−5 5.94

−7 7.38
−5 3.85

−7 7.38
−5 1.76

−8

t 1.25
−3 3.12

−3 3.42
−3 1.39

−2 2.85
−3 4.69

−2 3.27
−3 2.63

−2 4.55
−3 2.40

−2

256

iter 3 9 4 13 4 43 4 13 4 15
ng 3 9 4 13 4 43 4 13 4 15
nH 4 20 6 29 0 0 0 0 0 0
gff 1.80

−3 9.13
−12 1.81

−3 2.28
−7 1.81

−3 1.57
−6 1.81

−3 7.57
−8 1.81

−3 1.08
−9

gff/gf0 9.09
−4 4.60

−12 9.14
−4 1.15

−7 9.14
−4 7.90

−7 9.14
−4 3.82

−8 9.14
−4 5.45

−10

t 2.81
−3 1.58

−2 2.11
−2 6.80

−2 3.61
−3 5.24

−2 6.93
−3 2.77

−2 8.39
−3 3.64

−2

1024

iter 3 9 4 14 4 53 4 13 4 12
ng 3 9 4 14 4 53 4 13 4 12
nH 4 19 6 30 0 0 0 0 0 0
gff 1.68

−3 5.28
−12 1.68

−3 1.78
−8 1.68

−3 8.26
−8 1.68

−3 3.32
−8 1.68

−3 3.90
−8

gff/gf0 8.47
−4 2.65

−12 8.47
−4 8.93

−9 8.47
−4 4.15

−8 8.47
−4 1.67

−8 8.47
−4 1.96

−8

t 5.50
−2 2.43

−1 2.00
−1 9.96

−1 2.94
−2 4.07

−1 3.01
−2 1.06

−1 3.09
−2 1.05

−1
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Table 2: Joint diagonalization (JD) experiments: n = 12, p = 4, ǫC = 1e-1

N RTR-Newton RTR-SR1
LRTR-SR1

m = 2 m = 4 m = 8
1e-3 1e-6 1e-3 1e-6 1e-3 1e-6 1e-3 1e-6 1e-3 1e-6

16

iter 10 12 58 81 80 328 61 150 57 131
ng 10 12 58 81 80 328 61 150 57 131
nH 63 96 160 253 0 0 0 0 0 0
gff 3.03

−1 5.99
−4 1.93 2.26

−3 2.37 2.23
−3 2.37 2.21

−3 2.14 1.96
−3

gff/gf0 1.21
−4 2.40

−7 7.74
−4 9.07

−7 9.48
−4 8.91

−7 9.48
−4 8.85

−7 8.55
−4 7.83

−7

t 4.62
−2 5.92

−2 5.48
−2 7.78

−2 1.00
−1 3.78

−1 8.75
−2 2.13

−1 1.01
−1 2.41

−1

64

iter 14 16 64 88 163 402 83 176 109 199
ng 14 16 64 88 163 402 83 176 109 199
nH 93 120 186 288 0 0 0 0 0 0
gff 1.89 2.58

−3 5.54 5.48
−3 8.63 8.57

−3 8.79 7.39
−3 7.82 7.28

−3

gff/gf0 2.13
−4 2.90

−7 6.24
−4 6.18

−7 9.72
−4 9.66

−7 9.91
−4 8.33

−7 8.82
−4 8.20

−7

t 1.73
−1 2.19

−1 1.01
−1 1.43

−1 3.24
−1 7.34

−1 1.74
−1 3.65

−1 2.73
−1 5.01

−1

256

iter 10 13 54 82 122 372 100 168 81 165
ng 10 13 54 82 122 372 100 168 81 165
nH 64 109 148 240 0 0 0 0 0 0
gff 3.491 8.08

−3 3.051 3.95
−2 3.991 2.85

−2 3.831 2.77
−2 2.771 4.01

−2

gff/gf0 8.65
−4 2.00

−7 7.56
−4 9.79

−7 9.89
−4 7.07

−7 9.51
−4 6.88

−7 6.87
−4 9.94

−7

t 4.14
−1 6.78

−1 2.31
−1 3.57

−1 6.83
−1 1.70 4.77

−1 8.06
−1 4.20

−1 8.71
−1
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Figure 1: Comparison of RTR-Newton and the new methods RTR-SR1 and LRTR-SR1 for the
Rayleigh quotient problem (47) with n = 1024
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Figure 2: Comparison of RTR-Newton and the new methods RTR-SR1 and LRTR-SR1 for the
joint diagonalization problem (48) with n = 12, p = 4, N = 1024

6 Conclusion

We have introduced a Riemannian SR1 trust-region method, where the second-order term of the
model is generated using a Riemannian generalization of the classical SR1 update. Global con-
vergence to stationary points and d + 1-step superlinear convergence are guaranteed, and the ex-
periments reported here show promise. A limited-memory version of the algorithm has also been
presented. The new algorithms will be made available in the Manopt toolbox [BM].
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