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A Riemannian Optimization Approach for Role Model Extraction
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Abstract— The ability to compute meaningful clusters of
nodes is important in the analysis of large networks. A
particular approach to this problem is the use of role models of
a graph. For large networks, the algorithms must be specifically
designed to extract role models while maintaining efficiency
in storage and computations. Browet et al. have investigated
the computation of role models for both moderately sized and
large networks. They proposed an efficient iteration on low-
rank matrices to compute an approximation to the required
pairwise node similarity measure at MTNS 2014. In this paper,
we summarize a new approach to compute an approximation to
the pairwise node similarity measure for large networks based
on Riemannian optimization. A comparison of our optimization
approach with that of Browet et al. shows that our approach
computes the same approximate solution in significantly less
time.

I. INTRODUCTION

Many complex systems can be represented as network
structures, e.g., human interactions, food webs, and gene
interactions. Recent works have focused on the extraction of
clusters to comprehend large networks and obtain relevant
statistical properties. In recent years, researchers have pro-
posed various measures and algorithms to identify communi-
ty structures, i.e., subgroups of densely connected nodes [9],
[14], [15]. However, this structural distribution of nodes in
a graph is not always representative, for example, bipartite
networks or cycle graphs do not contain communities, even
if they might be heavily structured. Also, less attention
has been turned toward discovering more general structures,
known as role extraction or block modeling [8], [16].

In previous work, Browet et al. solved the role extraction
problem by assuming different roles in a network represent
groups of nodes that have similar flow patterns [5], [6], [7].
Thus, communities are roles where each node in a role main-
ly interacts with other nodes within the same role. However,
many other role interactions can be defined, such as, a leader-
follower model on social network interactions or a block
cycle model for food webs. To represent these flow patterns,
Browet et al. defined a pairwise node similarity measure to
compare the neighborhood patterns of every node, where the
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measure is high for any pair of nodes sharing analogous
flow properties. They proposed a two-stage role extraction
algorithm. The first stage computes a measure of node-
to-node similarity using a matrix iterative scheme and the
second stage extracts roles using a fast community detection
algorithm. For large networks, a modification of the two-
stage algorithm was developed to save on computation. The
iterative scheme to compute the matrix with elements that
measured pairwise node similarity was modified to include
projection onto low-rank matrices to converge to a low-rank
approximation of the similarity matrix. The modifications
resulted in a noticeable improvement for large networks.

In recent years, there has been significant advances in
solving optimization problems with constraints that can be
characterized as a Riemannian manifold. Improvements in
convergence theory and the characterization of the compu-
tational demands and mathematical structure of fundamen-
tal operations such as vector transport and retraction have
produced a systematic theory for families of algorithms and
well-organized computational library implementations (see
for example [3], [10], [11], [12], and [17]). In this paper,
we summarize a new approach to compute a low-rank ap-
proximation to the pairwise node similarity matrix for large
networks based on Riemannian optimization. This is done
by developing a cost function over the Riemannian manifold
of symmetric positive semidefinite matrices of fixed-rank
and, after deriving the required Riemannian objects, applying
Riemannian optimization algorithms appropriate for large
networks. A comparison of our optimization approach with
that of Browet et al. shows that our approach computes the
same approximate solution in significantly less time.

The paper is organized as follows. In Section II both
the original and low-rank approaches of Browet et al. are
described and associated convergence results stated. A cost
function is derived from the low-rank matrix iteration in
Section III. The manifold framework is discussed and the
Riemannian objects required to apply Riemannian optimiza-
tion algorithms are stated in Section IV. In Section V,
numerical experiments using role structure examples like
those used in [6] are used to demonstrate the improvement
due to the Riemannian approach to the pairwise node sim-
ilarity computation. Finally, conclusions and future work
are presented in Section VI. Details of this work will be
presented in a forthcoming dissertation.

II. LOW-RANK APPROXIMATION OF SIMILARITY MATRIX
BY BROWET ET AL.

Given a weighted and directed graph GA(V,E), where
V is the set of vertices and E is the set of edges and its
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adjacency matrix A ∈ Rn×n is defined as Ai,j 6= 0 if (i, j) ∈
E for i, j ∈ V , the pairwise node similarity measure S ∈
Rn×n, presented in [5], is defined as

Sk+1 = ΓA[I + β2Sk] (1)

where

ΓA : Rn×n → Rn×n : ΓA[X] = AXAT +ATXA, (2)

I is the identity matrix, and β ∈ R. The similarity score Si,j

is the number of common target nodes from node i to node j
with the same neighborhood patterns. Note that the similarity
matrix S is a symmetric positive semidefinite matrix and that
the parameter β can be chosen to increase the weight of long
neighborhood paths while guaranteeing convergence of the
sequence Sk in (1) [5] [6].

The iteration of Browet et al. to compute S is given by
(with S0 = 0),

Sk+1 = S1 + β2ΓA[Sk] (3)

where
S1 = AAT +ATA.

Browet et al. showed that if β is chosen such that

β2 ≤ 1

ρ (A⊗A+ (A⊗A)T )
,

where ρ(·) denotes the spectral radius, then the sequence
converges to the fixed point solution S∗ given by

vec(S∗) =
[
I − β2

(
A⊗A+ (A⊗A)T

)]−1
vec(S1), (4)

where vec(S) denotes the vectorization of the matrix S
formed by stacking the columns of S into one column
vector. A less computationally expensive bound to ensure
convergence is given by

β2 ≤ 1

ρ ((A+AT ))
2 .

However, even if the sequence is guaranteed to converge,
its computational cost to compute the fixed point solution
may be unacceptably high. Thus, Browet et al. defined a low-
rank approximation of the similarity matrix Sk. For S(r)

k =
XkX

T
k , where Xk ∈ Rn×r

∗ is a full-column rank matrix of
size n× r, the low-rank similarity approximation scheme is
defined as

S
(r)
1 = Π(r)

[
[A | AT ][A | AT ]T

]
= X1X

T
1

S
(r)
k+1 = Π(r)

[
S
(r)
1 + β2Γ

[
S
(r)
k

]]
= Xk+1X

T
k+1 (5)

where Π(r)[·] is an orthogonal projector onto the dominant
subspace of dimension at most r, which is computed as a
truncated SVD on the Rk-factor (i.e., Rk = UkΣkVk) of the
QR factorization of Yk defined as

Yk =
[
X1 | βAXk | βATXk

]
.

The updated factor Xk+1 is computed as

Xk+1 = QkUkΣk.

The stopping criterion for the low-rank iteration of Browet
et al. is

‖R
(
Ir 0
0 −Ir

)
RT ‖F ≤ ε (6)

where R ∈ R2r×2r is from the QR factorization of
[Xk+1 | Xk].

Browet et al. proved, using perturbation theory, that the
low-rank iterative scheme (5) converges locally to a fixed
point S(r) if the spectral gap at the rth singular value is
sufficiently large [5].

III. COST FUNCTION DERIVATION

The first step in developing a Riemannian optimization
approach to replace the low-rank algorithm above is to write
it in a form that is related to an iteration that is more clearly
related to optimization and then to deduce a cost function.
Observe that (5) can be written as

S
(r)
k+1 = Π(r)

[
S
(r)
k +

(
S
(r)
1 − S(r)

k + β2Γ
[
S
(r)
k

])]
= Π(r)

[
S
(r)
k +∇f

(
S
(r)
k

)]
.

where

f(S) = trace
(
ST

(
S
(r)
1 − 1

2
S + β2ASAT

))
=

〈
S, S

(r)
1 − 1

2
S + β2ASAT

〉
F

, (7)

trace(·) denotes the trace operator, i.e., for matrix A ∈
Rn×n, trace(A) =

∑n
i=1 ai,i, and 〈·, ·〉F denotes the Frobe-

nius inner product. One can verify this by considering the
directional derivative of f along Z ∈ Rn×n, that is,

Df(S)[Z] = trace
(
S
(r)T

1 Z − 1

2
(ZTS + STZ)

+ β2(AZATST +ASATZT )
)

= trace
(
ZT (S

(r)
1 − S + β2(ATSA+ASAT ))

)
=
〈
Z, S

(r)
1 − S + β2Γ[S]

〉
F
.

Thus, the gradient of f is, as desired,

∇f(S) = S
(r)
1 − S + β2Γ[S]. (8)

If the similarity matrix S is not full-rank, i.e., S = XXT

where X ∈ Rn×r and rank(X) = r then S can be defined
viewed as an element of the symmetric positive semidefinite
fixed-rank manifold, S+(n, r), where S+(n, r) is defined by

S+(n, r) :=
{
S ∈ Rn×n|S = ST � 0, rank(S) = r

}
:=
{
XXT | X ∈ Rn×r, rank(X) = r

}
. (9)

Finally, given the cost function f : S+(n, r) → R : S 7→
f(S), we define the function F : Rn×r → R : X 7→ F (X)
where F (X) = f(XXT ) and the optimization problem

max
X∈Rn×r

F (X). (10)

is considered for the approximation of the pairwise similarity
matrix.



IV. RIEMANNIAN OPTIMIZATION ON SYMMETRIC
POSITIVE SEMIDEFINITE FIXED-RANK MANIFOLD

Observe that (10) is invariant by right-multiplication of X
by orthogonal matrices O of size r × r. Thus, we need to
remove the degeneracy of the critical points. To do this, we
will define the equivalence class as

[X] = {XO|O ∈ Or} (11)

where Or is the orthogonal group, i.e., Or :={
O ∈ Rr×r|OTO = Ir

}
. The set of all equivalence classes

is defined as

Rn×r
∗ /Or :=

{
[X]|X ∈ Rn×r

∗
}

(12)

where Rn×r
∗ is the noncompact Stiefel manifold, i.e., the set

of full-rank matrices in Rn×r. Absil et al. showed in [1] that
the quotient Rn×r

∗ /Or is a quotient manifold. Therefore, (10)
can be rewritten on the quotient manifold Rn×r

∗ /Or, i.e.,

max
[X]∈Rn×r

∗ /Or

Fr([X]) (13)

where the function Fr : Rn×r
∗ /Or → R : [X] 7→

Fr([X]) = F (X). To use known Riemannian optimization
methods (e.g., Riemannian steepest descent, limited-memory
Riemannian Broyden-Fletcher-Goldfarb-Shanno (BFGS)) to
solve (13), a few important mathematical objects are re-
quired. They are defined below.

A. Notation

Given a manifold M, TXM denotes the tangent space
space of M at X ∈M. For the quotient manifold, M/ ∼ ,
the tangent space decomposes into the vertical space, denoted
VXM/ ∼, and the horizontal space, denoted HXM/ ∼
where X ∈M is the representative element for the element
of the quotient space X̃ ∈ M/ ∼. The Riemannian metric,
which is the smooth varying inner product between two
elements on the tangent space TXM, is denoted

gX(η, ξ) = 〈η, ξ〉X
for η, ξ ∈ TXM. The flat [ notation is used as ξ[ which
denotes a function from TXM to R, which is ξ[η =
gX(ξ, η), for all η ∈ TXM.

Lastly, given a function f(X) on M, gradf(X) denotes
the Riemannian gradient of f at X .

B. Riemannian Objects

The derivations of the Riemannian objects for the symmet-
ric positive semidefinite fixed-rank manifold, S+(n, r), are
given in [13]. However, due to the size of the networks used
for the role model problem, we would like to use the intrinsic
dimension representation discussed in [10, Section 9.5]. That
is, a tangent vector η ∈ TXM can be represented by a d-
dimensional vector, denoted v, of coordinates in a given basis
BX of TXM. If the columns of BX forms an orthonormal
basis of TXM, then many operations are inexpensive to
compute [10, Section 9.5]. However, the basis derived from
the horizontal space given in [13] is not an orthonormal basis
with respect to the metric also in [13]. Thus, we will use an

alternative Riemannian metric for S+(n, r), which will give
us an alternative horizontal space.

An alternative Riemannian metric on the quotient manifold
Rn×r
∗ /Or is

gX(η, ξ) = trace
(
(XTX)ηT ξ

)
(14)

for all η, ξ ∈ HXRn×r
∗ /Or where the horizontal space is

defined as

HXRn×r
∗ /Or : =

{
XS +X⊥K | S = ST , S ∈ Rr×r,

K ∈ R(n−r)×r
}

(15)

and the vertical space is defined as

VXRn×r
∗ /Or :=

{
XΩ | ΩT = −Ω, Ω ∈ Rr×r} . (16)

Then, an orthonormal basis of (15) with respect to (14) is{
XL−T eie

T
i L
−1, i = 1, . . . , r

}
∪
{

1√
2
XL−T

(eie
T
j − ejeTi )L−1, i = 1, . . . , r, j = i+ 1, . . . , r

}
∪
{
X⊥ẽie

T
i L
−1, i = 1, . . . , n− r, j = 1, . . . , r

}
,

where (e1, . . . , er) is the canonical basis of Rr,
(ẽ1, . . . , ẽ(n−r)) is the canonical basis of Rn−r, and
XTX = LLT is the Cholesky decomposition. The
dimension of the manifold is

dimS+(n, r) = nr − 1

2
r(r − 1) (17)

where n is the size of the network and r is the rank.
Since Riemannian algorithms need a retraction and, for

some, a vector transport, these objects must be defined for
S+(n, r). The retraction used is represented by the mapping
RX : HXRn×r

∗ /Or → Rn×r
∗ , where it is defined as

RX(η) = X + η. (18)

The vector transport by parallelization is defined by

T = BYB
[
X (19)

where BY and BX are orthonormal bases of HY Rn×r
∗ /Or

and HXRn×r
∗ /Or, respectively, i.e., B[

XBX = I for all X
where I is the identity matrix [11]. Then, the d-dimensional
representation of (19) for v = B[

Xη is

T dv = B[
Y T η = B[

YBYB
[
Xη

= (B[
YBY )(B[

XBX)v = v (20)

where T d is a d-dimensional representation of the vector
transport [10, Section 9.5].

Since BX forms an orthonormal basis of HXRn×r
∗ /Or,

then the Riemannian metric (14) reduces to the Euclidean
metric for the intrinsic representations, i.e.,

ĝX(η, ξ) = vTu, (21)

where η = BXv and ξ = BXu ∈ HXRn×r
∗ /Or [10, Section

9.5].



C. Riemannian Gradient

Recall the definition of Riemannian gradient [2, Section
3.6]: Given a smooth scalar field f on a Riemannian manifold
M, the gradient of f at X , denoted by gradf(X), is defined
as the unique element of TXM that satisfies

Df(X)[η] = gX(gradf(X), η) (22)

for all η ∈ TXM where gX(·, ·) denotes the Riemannian
metric. Consider the directional derivative of F along any
η ∈ HXRn×r

∗ /Or, i.e.,

DF (X)[η] = trace
(
ηXTS

(r)
1 +XηTS

(r)
1 − 1

2
(ηXTXXT

+ XηTXXT +XXT ηXT +XXTXηT )

+ β2(ηXTAXXTAT +XηTAXXTAT

+ XXTAηXTAT +XXTAXηTAT )
)

= trace
((
ηXT +XηT

)T
S
(r)
1 −

(
ηXT +XηT

)T
XXT

+ β2
(
ηXT +XηT

)T (
AXXTAT +ATXXTA

))
= trace

((
ηXT +XηT

)T (
S
(r)
1 +XXT + β2Γ

[
XXT

]))
= trace

((
ηXT +XηT

)T
gradf(XXT )

)
= trace

(
XηT gradf(XXT )

)
+ trace

(
ηXT gradf(XXT )

)
= trace

(
ηT gradf(XXT )X

)
+ trace

(
ηT gradf(XXT )TX

)
.

Since gradf(XXT ) = gradf(XXT )T , then the directional
derivative of F along any η ∈ HXRn×r

∗ /Or is

DF (X)[η] = trace
(
ηT 2gradf(XXT )X

)
. (23)

Using the definition of the Riemannian gradient (22), (23)
can be rewritten to look like the Riemannian metric (14),
i.e.,

DF (X)[η] = trace
(
ηT 2gradf(XXT )X

)
= trace

(
ηT 2gradf(XXT )X(XTX)−1(XTX)

)
= trace

(
(XTX)ηT 2gradf(XXT )X(XTX)−1

)
.

Thus, the Riemannian gradient of (13) at X is

gradFr(X) = 2gradf(XXT )X(XTX)−1. (24)

V. NUMERICAL EXPERIMENTS

All codes were written in Matlab and all experiments are
performed in Matlab R2015a on a 64 bit Mac platform with
2.5 GHz and 4 GB of memory.

The Riemannian optimization methods used in the experi-
ments are steepest descent (RSD) [2] and limited-memory
BFGS (LRBFGS) [12]. Both algorithms are line search
algorithms and use the back tracking line search to find
an Armijo point [2, Definition 4.2.2]. The initial stepsize
is taken to be 1, the coefficient c1 in the Armijo condition is
10−4, and the ratio ρ for the decreasing the stepsize is 0.25.

The stopping criterion for both optimization methods re-
quires the norm of the final gradient over the initial gradient
to be less than 10−6, and for the algorithm of Browet et
al. ε = 10−6 in (6). The maximum number of iterations for
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Fig. 1. Two different types of role graphs. Left: Community structure.
Right: Block cycle.

the algorithm of Browet et al. and outer iterations for the
optimization algorithms was 2000. The relative error was
computed for each fixed-rank r, i.e.,

‖S(r)
approx − S∗‖F
‖S∗‖F

(25)

where S(r)
approx is the approximate similarity matrix computed

from either the algorithm of Browet et al. or our optimization
approach and S∗ is the fixed point solution given by (4).
Table I summarizes the notation used when stating the
experimental results.

As in [6], we computed the similarity measure of Erdós-
Rényi random graphs containing a block structure (see
Figure 1). To build our graphs, first we chose a directed role
graph GB(VB , EB), i.e., each node in GB defines a role
that we want to identify. The first role graph we considered
corresponds to a community structure where the nodes in a
role interact mainly with other nodes in the same role. The
second role graph corresponds to a block cycle where each
node in a role interacts mainly with nodes in the following
role in the cycle.

Given the role graph GB , we built our random graph
GA(VA, EA) in the same manner used in Browet et al. [6]
where each node in GA has a corresponding role in GB .
Edges were added to EA according to two probability param-
eters pin and pout. For every pair of nodes i, j ∈ VA, an edge
(i, j) ∈ EA was added with probability pin if there is an edge
between the corresponding roles in GB . If the edges does not
exist between the corresponding roles in GB , then the edge is
added with probability pout. This created adjacency matrices
A that were numerically low-rank (i.e., the numerical rank

TABLE I
NOTATION FOR REPORTING EXPERIMENTAL RESULTS.

iter number of iterations
nf number of function evaluations
ng number of gradient evaluations
nV number of vector transport operations
nR number of retraction evaluations
ff final function value
gf0 Riemannian metric value of the initial gradient
gff Riemannian metric value of the final gradient

rel error relative error defined by (25)
norm diff stopping criterion (6)

t time (seconds)



of A for both role graphs is 3). Experimental results for
(pin, pout) = (0.9, 0.1) and (pin, pout) = (0.7, 0.3) for both
examples are displayed below.

Table II displays the results for the Erdós-Rényi random
graph with community structure for pin = 0.9 and pout =
0.1. From the table, we can see that the relative error for
all three methods was the same as r increased and that after
r = 3 the relative error changed very little. In comparing the
time, the Riemannian methods were faster than the algorithm
of Browet et al. for each fixed-rank r. Comparing the number
of iterations it took for the methods to converge to a solution,

the algorithm of Browet et al. was consistent in taking
34 iterations to converge to an approximate solution while
LRBFGS took between 6 and 7 iterations to converge and
RSD took 18 iterations to converge. Thus, the optimization
algorithms were faster at converging to the same solution as
the algorithm of Browet et al. in iterations and time. The effi-
ciency of the LRBFGS method can be attributed to the fewer
function evaluations, gradient evaluations, and number of
retractions. Also, even though LRBFGS has vector transport
computations and RSD does not, the vector transport is by
parallelization, and due to the intrinsic representation of our

TABLE II
RESULTS FOR ERDÓS-RÉNYI GRAPH WITH COMMUNITY STRUCTURE FOR (pin, pout) = (0.9, 0.1). THE SUBSCRIPT ν INDICATES A SCALE OF 10ν .

r 1 2 3 4 5 10 15

RSD

iter 18 18 18 18 18 18 18
nf 37 37 37 37 37 37 37
ng 19 19 19 19 19 19 19
nV 0 0 0 0 0 0 0
nR 36 36 36 36 36 36 36
ff −1.9411 −2.3111 −2.4111 −2.4111 −2.4111 −2.4111 −2.4111
gff 2.04−1 2.04−1 2.04−1 2.04−1 2.04−1 2.04−1 2.04−1

rel error 1.10 6.48−1 2.14−1 2.13−1 2.13−1 2.10−1 2.06−1

gff/gf0 4.89−7 4.72−7 4.71−7 4.71−7 4.71−7 4.71−7 4.71−7

t (sec) 8.61−2 1.26−1 1.50−1 2.20−1 2.26−1 2.26−1 3.95−1

LRBFGS

iter 6 6 7 7 7 7 7
nf 8 8 9 9 9 9 9
ng 7 7 8 8 8 8 8
nV 44 44 52 52 52 52 52
nR 7 7 8 8 8 8 8
ff −1.9411 −2.3111 −2.4111 −2.4111 −2.4111 −2.4111 −2.4111
gff 1.45−2 1.73−1 1.25−1 1.26−1 1.26−1 1.75−1 2.24−1

rel error 1.10 6.48−1 2.14−1 2.13−1 2.13−1 2.10−1 2.06−1

gff/gf0 3.48−8 4.01−7 2.89−7 2.92−7 2.92−7 4.06−7 5.18−7

t (sec) 8.82−2 5.05−2 6.27−2 7.76−2 9.19−2 9.17−2 1.28−1

Browet’s LR Alg
iter 34 34 34 34 34 34 34

rel error 1.10 6.48−1 2.14−1 2.13−1 2.13−1 2.10−1 2.06−1

norm diff 8.21−7 8.19−7 8.23−7 8.17−7 8.26−7 8.22−7 8.24−7

t (sec) 2.27−1 2.59−1 2.93−1 3.08−1 5.36−1 6.23−1 7.30−1

TABLE III
RESULTS FOR ERDÓS-RÉNYI GRAPH WITH COMMUNITY STRUCTURE FOR (pin, pout) = (0.7, 0.3). THE SUBSCRIPT ν INDICATES A SCALE OF 10ν .

r 1 2 3 4 5 10 15

RSD

iter 18 18 18 18 18 18 18
nf 37 37 37 37 37 37 37
ng 19 19 19 19 19 19 19
nV 0 0 0 0 0 0 0
nR 36 36 36 36 36 36 36
ff −2.8611 −2.8811 −2.8911 −2.8911 −2.8911 −2.8911 −2.8911
gff 2.47−1 2.47−1 2.47−1 2.47−1 2.47−1 2.47−1 2.47−1

rel error 7.11−1 6.13−1 5.45−1 5.43−1 5.41−1 5.31−1 5.21−1

gff/gf0 4.89−7 4.89−7 4.89−7 4.89−7 4.89−7 4.89−7 4.89−7

t (sec) 8.80−2 1.33−1 1.56−1 1.59−1 2.25−1 2.45−1 3.20−1

LRBFGS

iter 6 7 7 7 7 7 7
nf 8 14 9 9 9 9 9
ng 7 8 8 8 8 8 8
nV 44 52 52 52 52 52 52
nR 7 13 8 8 8 8 8
ff −2.8611 −2.8811 −2.8911 −2.8911 −2.8911 −2.8911 −2.8911
gff 1.62−2 3.94−2 4.52−2 1.57−1 1.70−1 2.91−1 4.29−1

rel error 7.11−1 6.13−1 5.45−1 5.43−1 5.41−1 5.31−1 5.21−1

gff/gf0 3.20−8 7.80−8 8.93−8 3.11−7 3.37−7 5.76−7 8.48−7

t (sec) 8.87−2 9.03−2 6.79−2 7.40−2 7.72−2 1.33−1 2.04−1

Browet’s LR Alg
iter 34 34 34 34 34 35 35

rel error 7.11−1 6.13−1 5.45−1 5.43−1 5.41−1 5.31−1 5.21−1

norm diff 9.95−7 9.99−7 9.97−7 9.93−7 9.96−7 4.55−7 4.53−7

t (sec) 2.81−1 2.64−1 3.01−1 3.26−1 3.28−1 6.31−1 8.53−1



tangent vectors, it just happens to be the identity. Hence, the
vector transport does not slow down the computational time
of LRBFGS. After we approximated our similarity measures,
we implemented the fast community detection algorithm
by Browet et al. described in [7] to extract the roles. The
roles extracted from the similarity matrix approximations of
the algorithm of Browet et al. were the same as the roles
extracted from the similarity matrix approximations of the
Riemannian methods.

In Table III, the probability parameters are pin = 0.7 and
pout = 0.3. For these parameters, the blocks in the adjacency

matrix have become less distinct and we can see that there
is less of a distinction in the relative error across the fixed-
ranks. Also, as before, LRBFGS took the fewest number of
iterations and converged to a solution in the smallest time.

The results for the Erdós-Rényi random graph with block
cycle structure for pin = 0.9 and pout = 0.1 are in Table IV.
For this example, the methods were all able to detect the
numerical rank 3 as there is little change in the relative error
after r = 3. However, as the blocks become less distinct, the
change in the relative error across r becomes less distinct
(see Table V). Also, as in the previous example, LRBFGS

TABLE IV
RESULTS FOR ERDÓS-RÉNYI GRAPH WITH BLOCK CYCLE STRUCTURE FOR (pin, pout) = (0.9, 0.1). THE SUBSCRIPT ν INDICATES A SCALE OF 10ν .

r 1 2 3 4 5 10 15

RSD

iter 19 19 18 18 18 18 18
nf 39 39 37 37 37 37 37
ng 20 20 19 19 19 19 19
nV 0 0 0 0 0 0 0
nR 38 38 36 36 36 36 36
ff −1.3411 −1.6011 −1.8811 −1.8811 −1.8811 −1.8811 −1.8811
gff 1.81−1 2.83−1 1.72−1 1.72−1 1.72−1 1.72−1 1.72−1

rel error 1.08 6.41−1 2.17−1 2.16−1 2.16−1 2.12−1 2.09−1

gff/gf0 5.33−7 8.19−7 4.60−7 4.60−7 4.60−7 4.60−7 4.60−7

t (sec) 8.59−2 1.33−1 1.46−1 1.66−1 2.35−1 2.30−1 3.34−1

LRBFGS

iter 6 10 9 9 9 9 9
nf 8 12 11 11 11 11 11
ng 7 11 10 10 10 10 10
nV 44 76 68 68 68 68 68
nR 7 11 10 10 10 10 10
ff −1.3411 −1.6011 −1.8811 −1.8811 −1.8811 −1.8811 −1.8811
gff 2.54−1 1.13−1 2.72−1 2.72−1 2.71−1 2.69−1 2.66−1

rel error 1.08 6.41−1 2.17−1 2.16−1 2.16−1 2.12−1 2.09−1

gff/gf0 7.48−7 3.27−7 7.27−7 7.26−7 7.26−7 7.21−7 7.13−7

t (sec) 8.65−2 8.15−2 8.92−2 8.27−2 1.16−1 4.62−1 1.80−1

Browet’s LR Alg
iter 34 34 34 34 34 34 34

rel error 1.08 6.41−1 2.17−1 2.16−1 2.16−1 2.12−1 2.09−1

norm diff 6.77−7 6.94−7 6.93−7 6.94−7 6.94−7 6.88−7 6.99−7

t (sec) 1.68−1 2.55−1 3.45−1 3.19−1 3.82−1 6.45−1 8.51−1

TABLE V
RESULTS FOR ERDÓS-RÉNYI GRAPH WITH BLOCK CYCLE STRUCTURE FOR (pin, pout) = (0.7, 0.3). THE SUBSCRIPT ν INDICATES A SCALE OF 10ν .

r 1 2 3 4 5 10 15

RSD

iter 18 18 18 18 18 18 18
nf 37 37 37 37 37 37 37
ng 19 19 19 19 19 19 19
nV 0 0 0 0 0 0 0
nR 36 36 36 36 36 36 36
ff −2.6311 −2.6411 −2.6511 −2.6511 −2.6511 −2.6611 −2.6611
gff 2.48−1 2.48−1 2.37−1 2.37−1 2.38−1 2.38−1 2.38−1

rel error 7.28−1 6.35−1 5.60−1 5.58−1 5.56−1 5.45−1 5.36−1

gff/gf0 5.12−7 5.11−7 4.90−7 4.90−7 4.90−7 4.90−7 4.90−7

t (sec) 7.98−2 1.25−1 1.47−1 2.17−1 2.19−1 2.25−1 3.31−1

LRBFGS

iter 6 9 8 8 8 8 8
nf 8 11 10 10 10 10 10
ng 7 10 9 9 9 9 9
nV 44 68 60 60 60 60 60
nR 7 10 9 9 9 9 9
ff −2.6311 −2.6411 −2.6511 −2.6511 −2.6511 −2.6611 −2.6611
gff 2.49−2 6.80−2 2.39−1 2.39−1 2.57−1 2.98−1 3.38−1

rel error 7.28−1 6.35−1 5.60−1 5.58−1 5.56−1 5.45−1 5.36−1

gff/gf0 5.14−8 1.40−7 4.94−7 4.94−7 5.31−7 6.14−7 6.96−7

t (sec) 3.37−2 8.26−2 1.05−1 7.64−2 8.58−2 1.21−1 1.37−1

Browet’s LR Alg
iter 34 34 34 34 34 34 34

rel error 7.28−1 6.35−1 5.60−1 5.58−1 5.56−1 5.45−1 5.36−1

norm diff 9.53−7 9.55−7 9.53−7 9.57−7 9.60−7 9.59−7 9.61−7

t (sec) 1.84−1 2.65−1 2.95−1 3.12−1 3.32−1 5.78−1 6.94−1



reached an approximate solution faster and in fewer iterations
than RSD and the algorithm of Browet et al.

VI. CONCLUSION

In this paper, a fixed-rank Riemannian optimization ap-
proach to approximate the pairwise node similarity measure
used in role extraction was summarized. When applied
to Erós-Rényi random graphs containing block structure
amenable to the identification of roles, the Riemannian
approach computed low-rank similarity approximations very
close to those produced by the low-rank iterative algorithm
of Browet et al. The Riemannian approach computed the
approximations in significantly less time. Future work in-
cludes applying the pairwise node similarity measure and
our approach to networks from applications such as food
webs and gene interactions. For these networks, the number
of roles is unknown; hence, the numerical rank of the sim-
ilarity matrix is unknown. This implies the need to include
the choice of rank in the free parameters. Algorithms and
convergence theory has been developed recently for such
problems in Zhou’s dissertation [17]. One of the applications
considered in that dissertation is the evaluation of similarity
between two graphs using the metric by Blondel et al [4]. A
more sophisticated algorithm including rank adaptation for
the pairwise node similarity in role model extraction should
be possible and a key to an effective and efficient practical
role model extraction algorithm.
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