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ABSTRACT

Let Linp ∈ C(x)[∂] be a second order linear differential operator with rational function coefficients.

We want to find a solution (if that exists) of Linp in terms of 2F1-hypergeometric function. This

thesis presents two algorithms to find such solution in the following cases:

1. Linp has five regular singularities where at least one of them is logarithmic.

2. Linp has hypergeometric solution of degree three, i.e, Linp is solvable in terms of 2F1(a, b; c | f)

where f is a rational function of degree three.
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CHAPTER 1

INTRODUCTION

Differential equations have a huge impact in human society as they occur significantly in every

branch of science. Linear homogeneous differential equations with rational function coefficients

are very common in mathematics, combinatorics, physics and engineering. Finding closed form

solutions (solutions expressible in terms of well studied special functions, for example; Bessel,

Kummer, Liouvillian, Hypergeometric etc.) of such differential equations is a fascinating area of

research in computer algebra [9, 23, 17, 24, 7, 11].

Although there is no complete algorithm which can find closed form solution of every second

order differential equation, there are algorithms to treat some classes of differential equations. For

example, Kovacic’s algorithm [6] finds Liouvillian solutions and the algorithm in [16] finds solutions

of the differential equations with so-called irregular singularities in terms of Bessel, Kummer func-

tions. The hypergeometric case, which corresponds to Fuchsian differential equations (equations

with only regular singularities), is interesting as it incorporates a broader area (dessin d’enfants,

Belyi and near Belyi maps, constellations, . . . ) of mathematics. This motivates us to work on

hypergeometric solutions of differential equations.

A linear homogeneous differential equation with rational function coefficients corresponds to

a differential operator L ∈ C(x)[∂] where ∂ = d
dx . For example, if L = a2∂

2 + a1∂ + a0 is a

differential operator with a2, a1, a0 ∈ C(x), then the corresponding differential equation L(y) = 0

is a2y
′′+ a1y

′+ a0y = 0. We assume that L has no Liouvillian solutions, otherwise L can be solved

using Kovacic’s algorithm [6].

Definition 1. If S(x) is a special function that satisfies a differential operator LS (called a base

equation) of order n, then a function y is called a linear S-expression if there exist algebraic functions

f, r, r0, r1, . . . such that

y = exp(

∫
r dx) ·

(
r0S(f) + r1S(f)′ + · · ·+ rn−1S(f)(n−1)

)
. (1.1)

More generally, we say that y can be expressed in terms of S if it can be written in terms of

expressions of the form (1.1), using field operations and integrals.
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Higher derivatives are not needed in (1.1) since they are linear combinations of S(f), S(f)′, . . . ,

S(f)(n−1). If LS ∈ C(x)[∂] is of order n and k = C(x, r, f, r0, r1, . . .) ⊆ C(x) then y in (1.1) satisfies

an equation L ∈ k[∂] of order ≤ n.

Although form (1.1) looks technical, it is the most natural form to consider, because it is closed

under the known transformations that send irreducible linear differential operators L ∈ C(x)[∂] of

order n = 2 to linear differential operators of the same order. Given an input operator Linp of

order n, finding a solution of the form (1.1) corresponds to finding a sequence of transformations

that sends LS to Linp (or a right hand factor of Linp, but we assume Linp to be irreducible):

(i) Change of variables: y(x) 7→ y(f)

(ii) Gauge transformation: y 7→ r0y + r1y
′ + . . .+ rn−1y

(n−1)

(iii) Exponential product: y 7→ exp(
∫
r dx)y

The function f in (i) above is called the pullback function. These transformations are denoted

as
f−→C ,

r0,r1−−−→G and
r−→E respectively. They send expressions in terms of S to expressions in terms

of S. So any solver for finding solutions in terms of S, if it is complete, then it must be able to

deal with all three transformations. In other words, it must be able to find any solution of the

form (1.1).

If L ∈ C(x)[∂] has order 3 or 4, and S is a special function that satisfies a second order equation,

then the problem of solving L in terms of S can be reduced, with an algorithm and implementation

in [10], to the problem of solving second order equations. This reduction of order motivates a focus

on second order equations.

If y and S satisfy second order operators, then products of (1.1) are not needed, and the form

reduces to

y = exp(

∫
r dx) ·

(
r0S(f) + r1S(f)′

)
. (1.2)

Gauge transformation is also modified accordingly; y 7→ r0y + r1y
′. In this thesis, we consider

second order differential operators and S(x) = 2F1(a, b; c |x). So LS is the Gauss hypergeometric

differential operator (GHDO in short), details are given in Chapter 2. As such, a solution of the

form (1.2) is called a 2F1-type solution.
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Finding 2F1-type solutions of Linp corresponds to finding the transformations:

LS
f−→C M

r0,r1−−−→G

r−→E Linp.

There are algorithms [19] to find the transformations
r0,r1−−−→G and

r−→E but to apply them we first

need M (or equivalently, f and LS). Thus the crucial part is to compute f .

We compute f from the singularities of M . Since we do not yet know M , the only singularities

of M that we know are those singularities of Linp that can not disappear (turn into regular points)

under transformations
r0,r1−−−→G and

r−→E .

Definition 2. A singularity is called non-removable if it stays singular under any combination of
r0,r1−−−→G and

r−→E .

A singularity x = p of Linp that can become a regular point under
r0,r1−−−→G and/or

r−→E need not

be a singularity of M . Such singularities (removable singularities) provide no useful information

about f . They include apparent singularities (singularities where all solutions are analytic, such

singularities can disappear under
r0,r1−−−→G). More generally, if there exist functions u, y1, y2 with

y1, y2 analytic at x = p such that uy1, uy2 is a basis of local solutions of L at x = p, then x = p is

removable (such p can be sent to an apparant singularity with
r−→E ).

1.1 Motivation

Fuchsian differential equations are very common in combinatorics and physics [15, 14]. We exam-

ined many sequences u(0), u(1), u(2), . . . in [25] whose generating functions y =
∑

n u(n)xn ∈ Z[x]

are (a) convergent, and (b) holonomic, i.e; y satisfies a linear differential equation with rational

function coefficients. Such differential equations are also known as globally nilpotent differential

equations [5] or CIS (convergent integer power series)-equations [21]. All such second order dif-

ferential equations tested so far turned out to have hypergeometric (2F1 in this case) solutions or

algebraic solutions. We are interested in hypergeometric solutions, the algebraic solutions can be

found using [6]. In fact we observed the same for differential equations of order three from [25],

in this case the differential equation reduces to a second order differential equation with 2F1-type

solution. This surprising observation leads to the following question:

Question: Is every CIS-equation of order 2 or 3 solvable in terms of hypergeometric

functions?
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This question is not valid for higher order as there are already some counter examples for order

4. This question is the major topic of my future research. I want to develop a complete decision

procedure, both in theory and in implementation, to find such solutions.

There is no Fuchsian differential equation with only one non-removable singularity. Fuchsian

equations with two non-removable singularities have Liouvillian solutions. If the equation has

three non-removable singularities, then we have to find a Möbius transformation which carries

these singularities to 0, 1 and ∞. This case was treated in [24]. The case where a differential

equation has four singularities (Heun equation) is done in [9]. In this thesis, we will discuss our

algorithm [11] to treat the case where the differential equation has five singularities with at least

one logarithmic singularity. These projects require large tables of rational functions which produce

the desired number of singularities under
f−→C .

Differential equations with logarithmic singularities are very common. Section 3 in [14] mentions

92 integer sequences coming from counting paths in a 2D lattice, of which 36 appear to be holonomic.

Of these 36 differential equations, there are 19 with algebraic solutions. All remaining 17 equations

are 2F1-solvable and have logarithmic singularities. CIS-equations arising from [25] mentioned

earlier also have logarithmic singularities. More surprisingly, all differential equations discussed

above lie in the same class, namely Class
(
H

1
12 , 5

12

1,x

)
where H

1
12 , 5

12

1,x is the GHDO with exponent

differences (e0, e1, e∞) = (0, 12 ,
1
3), more details are given in section 2.3. For five singularities, f in

logarithmic case has degree bound 18 and ramification bound of 2 points outside {0, 1,∞}. For

arbitrary a, b, c, the degree bound for such f would be 60 for four singularities, and 96 for five

singularities.

Definition 3. The class of a differential operator L, denoted Class(L), is a minimal set of operators

with the following properties:

1. L ∈ Class(L),

2. If L1 can be solved in terms of L2 (this means solutions of L1 are expressible in terms of

solutions of L2 using the transformations
f−→C ,

r0,r1−−−→G ,
r−→E with f, r, r0, r1 ∈ C(x) ) and

Class(L) ∩ {L1, L2} 6= ∅ then {L1, L2} ⊆ Class(L).

Definition 4. If the transformations in property 2 above involve algebraic functions, the class is

denoted as Classalg(L).
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Remark 1. Class(L) ⊆ Classalg(L).

If L1 ∈ Classalg(L2), then the monodromy groups of L1 and L2 are commensurable. Kisao

Takeuchi classified [10, Section 2, Table (1)] commensurable classes of arithmetic triangle groups.

The first class (Section 4, Diagram (I)) in Takeuchi’s table gives the reciprocals of exponent differ-

ences of the GHDO’s in Class
(
H

1
12 , 5

12

1,x

)
. We show the diagram here:

(∞, 2, 6) (∞, 2, 3) (∞, 2, 4)
�

�
��

HHH
HHH

!!!!!!!

aaaaaaa

Q
Q
QQ

���
���

�
�
�
�

(∞, 3, 3)
(∞, 6, 6) (∞,∞, 3) (∞,∞, 2) (∞, 4, 4)

PPPPP

�
�

��
(∞,∞,∞)

2 2 4
2

3 2 2

3

2

Figure 1.1: [10, Section 4, Diagram (I)], which gives the reciprocals of exponent differences

of GHDO’s in Class
(
H

1
12 , 5

12

1,x

)

Each triangle group in Figure 1.1 corresponds to the denominators of exponent differences of

GHDO whereas ∞ corresponds to exponent difference 0 (logarithmic singularity, see Chapter 2).

This diagram includes all logarithmic cases in Takeuchi’s classification. From the classification

[10, Section 2, Table (1)], we observe the following:

If a differential operator L has (i) logarithmic singularities and (ii) arithmetic monodromy

group, then L ∈ Classalg
(
H

1
12 , 5

12

1,x

)
.

(∞, 2, 3) in Figure 1.1 corresponds to the GHDO with exponent differences

(e0, e1, e∞) = (0, 12 ,
1
3) (up to ± and mod Z). This choice of the exponent differences gives

(a, b, c) = ( 1
12 ,

5
12 , 1). The correspondence can also be given as:

3←→ ±1

3
+ Z, 2←→ ±1

2
+ Z and ∞←→ 0 + Z.

The numbers along the lines in Figure 1.1 represent the degree of the pullback function f in
f−→C

which produces one triple of exponent differences from another. For example, a degree 2 pullback

produces the exponent differences (0, 0, 13) from (0, 12 ,
1
6).

Taking (e0, e1, e∞) = (0, 0, 13) gives (a, b, c) = (13 ,
2
3 , 1), and taking (e0, e1, e∞) = (0, 12 ,

1
6) gives

(a, b, c) = (16 ,
1
3 , 1). That means H

1
3 , 23

1,x can be solved in terms of solutions of H
1
6 , 13

1,x using the pullback
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f of degree 2 (Moreover if a differential operator L can be solved in terms of solutions of H
1
3 , 23

1,x , then

L can also be solved in terms of solutions of H
1
6 , 13

1,x ). Such f has the branching pattern [1, 1], [2], [2]

above 0, 1,∞ respectively, i.e, f ramifies of order 2 above 1 and ∞. A quick computation gives

f = −4x(x− 1).

Our ultimate goal is to solve all logarithmic cases, yet we want to deal with the differential

equations associated with Figure 1.1 first because that covers nearly all cases with logarithmic

singularities. The other cases, for example, differential equations solvable in terms of the GHDO

with (e0, e1, e∞) = (0, 12 ,
1
5), which have lower degree bound for f and hence smaller table than

H
1
12 , 5

12

1,x , can be done in the similar way. Everything in Figure 1.1 is solvable in terms of solu-

tions of H
1
12 , 5

12

1,x , H
1
8 , 38

1,x or H
1
6 , 13

1,x which correspond to (∞, 2, 3), (∞, 2, 4) and (∞, 2, 6) respectively.

Hence, treating these 3 cases covers everything for this project.

Algorithms which compute 2F1-type solutions with specific degree of f in 2F1(a, b; c | f) are

very effective in practice. The 2-descent approach [17] computes 2F1-type solutions whenever f

has degree two, and also reduces the differential equation to another differential equation with

fewer singularities whenever f has a decomposition f = g(h) with h of degree 2 (the number

of singularities drops from n to ≤ n/2 + 2). This thesis presents another project; an algorithm

[13] to compute 2F1-hypergeometric solutions when f has degree three. These algorithms are

very useful because they solve many differential equations, but they also significantly reduce the

tabulation work for the algorithms [9, 11] designed to solve the differential equations with n regular

singularities.
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CHAPTER 2

PRELIMINARIES

This chapter will give background concepts. We will discuss differential operators and their singu-

larities. Then we will talk about the base equation; the Gauss hypergeometric differential equation.

Transformations discussed in Chapter 1 play a crucial role in this thesis, we will talk about their

properties. We will list some useful results, more details can be found in [7, 23, 24].

2.1 Differential Operators

Definition 5. Let K be a field with characteristic zero. A derivation ∂ in K is a map ∂ : K −→ K

which satisfies the following properties:

∂(a+ b) = ∂(a) + ∂(b),

∂(ab) = ∂(a)b+ a∂(b)

where a, b ∈ K.

Remark 2.

1. A field K equipped with a derivation is called a differential field.

2. CK := {k ∈ K | ∂(k) = 0} is also a field, called the constant field of K.

Example 1. K = C(x) is a differential field with derivation ∂ = d
dx and C is the constant field.

The associated ring of differential operators is denoted by K[∂].

Definition 6. Given a differential field K with derivation ∂, a differential operator L is an element

of K[∂] given as:

L =
n∑
i=0

ai∂
i

where ai ∈ K.

Remark 3. If an 6= 0 then we say that L has order n and write deg(L) = n.

7



Note: K[∂] is non commutative in general. For example, ∂x = x∂ + 1 when K = C(x) and

∂ = d
dx .

The solutions y of differential equation L(y) = 0 lie in a universal extension Ω of K, where

Ω is a minimal differential ring in which every operator L ∈ K[∂] has precisely deg(L) linearly

independent solutions, more details can be found in [23].

Definition 7. The set of all solutions of a differential operator L is called its solution space. It is

denoted by V (L) and defined as:

V (L) := {y ∈ Ω |L(y) = 0}

2.2 Singularities

Consider a differential operator L =
∑n

i=0 ai∂
i where ai ∈ K. After clearing denominators, we

may assume that the ai’s are polynomials.

Definition 8.

1. A point p ∈ CK is called a regular (or non-singular) point when an(p) 6= 0. Otherwise it is

called a singular point (or a singularity).

2. The point p = ∞ is called regular if the change of variable x 7→ 1/x produces an operator

L1/x with a regular point at x = 0.

Remark 4. Let y be a solution of a differential operator L. Singularities of y are also singularities

of L but the converse is not true, see apparent singularities in Chapter 1.

Definition 9. Given p ∈ CK ∪ {∞}, we define the local parameter tp as

tp =

{
x− p if p 6=∞
1
x if p =∞.

Below we discuss the types of singularities.

Definition 10. Let L =
∑n

i=0 ai∂
i where ai are polynomials. A singularity p of L is:

(1) regular singularity (p 6=∞) if tip ·
an−i

an
is analytic at x = p for 1 ≤ i ≤ n.

(2) regular singularity (p =∞) if L1/x has a regular singularity at x = 0.

(3) irregular singularity otherwise.
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Definition 11. A differential operator is called Fuchsian (or regular singular) if all of its singu-

larities are regular singularities.

This thesis considers only Fuchsian operators of order 2. The non-Fuchsian case (L having

at least one irregular singularity) was treated in [23]. The following classical theorem gives the

structure of local solutions of a second order differential operator at a regular singularity or a

non-singular point:

Theorem 1. Let L ∈ K[∂] be an operator of order 2 and p ∈ CK . If x = p is a regular singularity or

a non-singular point of L, then there exists the following basis of V (L) in the neighborhood of x = p;

y1 = te1p

∞∑
i=0

ait
i
p, a0 6= 0 and

y2 = te2p

∞∑
i=0

bit
i
p + cy1 log(tp), b0 6= 0 where e1, e2, ai, bi, c ∈ CK

such that:

(i) If e1 = e2 then c 6= 0.

(ii) Conversely, if c 6= 0 then e1 − e2 ∈ Z.

More details can be found in [2, 23].

Remark 5. In Theorem 1:

1. If c 6= 0 then x = p is called a logarithmic singularity.

2. The constants e1, e2 are called local exponents or exponents of L at x = p.

For a second order differential operator L = ∂2 + a0∂ + a1 ∈ K[∂], these exponents e1, e2 of a

regular singular point p can be obtained as the roots of the indicial equation:

1. X(X − 1) + q0X + q1 = 0, where qi = limx7→p(x− p)i+1ai, i ∈ {0, 1} ( if p ∈ CK ).

2. If p =∞ then take the indicial equation of L1/x at x = 0.

Remark 6.

1. Logarithmic singularities are non-removable. They stay logarithmic under the transformations
f−→C ,

r0,r1−−−→G and
r−→E .
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2. If e1 − e2 ∈ Z and x = p is non logarithmic then the point x = p is either a regular point or

a removable singularity.

3. x = p is non-singular ⇐⇒ {e1, e2} = {0, 1} and c = 0.

4. x = p is a non-removable singularity ⇐⇒ c 6= 0 or e1 − e2 6∈ Z.

Proofs and more details can be found in [22].

Definition 12. Let e1, e2 be the exponents of L at x = p. The exponent difference of L at x = p

is denoted ∆p(L) (or ∆p) and is defined as ∆p(L) = ± (e1 − e2).

Let ∆p1 ,∆p2 be the exponent differences of L at p1, p2 respectively. We say that ∆p1 and ∆p2

match if ∆p1 ≡ ∆p2 mod Z.

Definition 13. The singularity structure of L is:

Sing(L) = {(p,∆p(L) mod Z) : p is a non-removable singularity}.

It is often more convenient to express singularities in terms of monic irreducible polynomials.

Definition 14. Let F be a field of constants with characteristic 0.

places(F ) := {f ∈ F [x] | f is monic and irreducible}
⋃
{∞}.

The degree of a place p is 1 if p =∞ and deg(p) otherwise.

Example 2. Consider the following differential operator:

L = 2
(
2x2 − 1

) (
8x2 − 1

)
∂2 + 4x

(
24x2 − 7

)
∂ + 24x2 − 3.

We obtain the singularity structure of L as:

Sing(L) =
{( 1√

2
,
1

6

)
,
(
− 1√

2
,
1

6

)
,
( 1

2
√

2
,
1

3

)
,
(
− 1

2
√

2
,
1

3

)}
.

In terms of places(Q) it is written as:

Sing(L) =
{(
x2 − 1

2
,
1

6

)
,
(
x2 − 1

8
,
1

3

)}
.

For the rest of the thesis, we will consider K = C(x). So we want to solve second order

differential operators Linp ∈ C(x)[∂].
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2.3 Gauss Hypergeometric Differential Equation

The Gauss hypergeometric differential equation (GHE) has the following form:

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0. (2.1)

It has three regular singularities at 0, 1, and ∞. It has exponents {0, 1− c} at x = 0, {0, c− a− b}

at x = 1 and {a, b} at x =∞. The corresponding differential operator is denoted by:

Ha,b
c,x = x(1− x)∂2 + (c− (a+ b+ 1)x)∂ − ab. (2.2)

One of the solutions of the GHE at x = 0 is 2F1(a, b; c |x). Computing a 2F1-type solution of a

second order Linp (inp = input) corresponds to computing transformations from Ha,b
c,x to Linp.

Remark 7. The exponent differences of Ha,b
c,x can be obtained from the parameters a, b, c and vice

versa: (e0, e1, e∞) = (1− c, c− a− b, b− a).

Remark 8. We assume that Ha,b
c,x has no Liouvillian solutions. For such Ha,b

c,x , the points 0, 1,∞

are never non-singular or removable singularities. So if Ha,b
c,x has ep ∈ Z (with p ∈ {0, 1,∞}) then

p is a logarithmic singularity.

2.4 Properties of Transformations

For second order operators, we use the notation L1 −→ L2 if L1 can be transformed to

L2 with any combination of the three transformations from Chapter 1. If L1 −→ L2 then

L1
f−→C

r0,r1−−−→G

r−→E L2. More details can be found in [7].

Definition 15. Let L1, L2 ∈ C(x)[∂] be second order differential operators. L2 is solvable in terms

of L1 (or L2 is L1 solvable) if L1 −→ L2.

Example 3. In Figure 1.1;

1. GHDO’s with (e0, e1, e∞) ∈ {(0, 0, 13), (0, 13 ,
1
3), (0, 0, 12)} are H

1
12 , 5

12

1,x solvable, so they all are

in Class
(
H

1
12 , 5

12

1,x

)
.

2. GHDO with (e0, e1, e∞) = (0, 0, 13) is H
1
6 , 13

1,x solvable, so H
1
6 , 13

1,x ∈ Class
(
H

1
12 , 5

12

1,x

)
.
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Definition 16. Two operators L1, L2 are called projectively equivalent (notation: L1 ∼p L2) if

L1
r0,r1−−−→G

r−→E L2.

Remark 9.

1.
r0,r1−−−→G and

r−→E are equivalence relations.

2. ∆p remains same under
r−→E but may change by an integer under

r0,r1−−−→G.

So if L1
f−→C M

r0,r1−−−→G

r−→E Linp for some input Linp with L1,M unknown, then ∆p(M)

can be ( mod Z and up to ±) read from ∆p(Linp),

Sing(Linp) = Sing(M).

Hence L1, f,M should be reconstructed from Sing(Linp).

3. If one of e0, e1, e∞ is in 1
2 +Z then Ha,b

c,x is determined, up to projective equivalence ∼p by the

triple (e0, e1, e∞) up to ± and mod Z.

If {e0, e1, e∞}
⋂

(12+Z) = ∅ then the triple leaves two separate cases for Ha,b
c,x up to ∼p; we need

to consider (e0, e1, e∞) up to ± and mod Z, and (e0 + 1, e1, e∞) up to ±. See Theorem 8,

Section 5.3 in [24] for details.

Because of the transformation M
r0,r1−−−→G

r−→E Linp in Remark 9 only non-removable singularities

of Linp provide usable data for M and f .

Definition 17. Let f : P1 → P1 be a rational function of degree n, where the degree of a rational

function is defined as the maximum of the degrees of its numerator and denominator. A point

b ∈ P1 is called a branch point if #(f−1(b)) < n, i.e; f has multiple roots above b. The multiple

root (if any) a ∈ P1 is called a ramification point. Set of all branch points is called the branched set.

The branching pattern of a rational function f above a point q is given as a list of multiplicities of

all points p ∈ f−1(q).

Example 4. Consider the following function:

f = −1

4

(3x− 1)2

(x− 3) (x− 1)3 x2
where 1− f =

1

4

(
−1 + 3x− 6x2 + 2x3

)2
(x− 3) (x− 1)3 x2

The branching pattern of f above 0, 1,∞ is [2, 4], [2, 2, 2], [1, 2, 3] (f has a root at∞ with multiplicity

4). It turns out that there is no more branching left outside {0, 1,∞}. Such f is called a Belyi

map, see Section 5.2 for more details.
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Singularity structure of a differential operator is preserved under the transformations
r0,r1−−−→G

and
r−→E . However, the change of variables

f−→C can change everything. The following lemma gives

the effect of
f−→C on the singularities and their exponent differences (see [4] for more details):

Lemma 1. Let e0, e1, e∞ be the exponent differences of Ha,b
c,x at 0, 1,∞. Let Ha,b

c,f be the operator

obtained from Ha,b
c,x by applying x 7→ f . Let d = ∆p be the exponent difference of Ha,b

c,f at x = p.

Then:

1. If p is a root of f with multiplicity m, then d = me0.

2. If p is a root of 1− f with multiplicity m, then d = me1.

3. If p is a pole of f of order m, then d = me∞.

Example 5. Let L be the Gauss hypergeometric differential operator with (e0, e1, e∞) = (0, 12 ,
1
4),

i.e; L := H
1
8
, 3
8

1,x :

L := 64x(x− 1)∂2 + 32(3x− 2)∂ + 3

Singularity structure of L is the following:

> Sing(L); {
[x, 0], [∞,−1

4
], [x− 1,

1

2
]

}
Exponent difference is defined up to ±. Let M be the differential operator obtained after applying

the change of variables with f = (1−x)(4x+1)
(x+1)3

, i.e; M := H
1
8
, 3
8

1,f ;

M := 16(x+1)2(x−1)(4x+1)(x+7)(2x−7)∂2+16(x+1)(x+4)(8x3−48x2−75x+35)∂+3(2x−7)3

We find the following singularity structure of M ;

> Sing(M);

{[∞, 0], [x+ 7,
1

2
], [x− 1, 0], [x+ 1,−3

4
], [x+

1

4
, 0]}
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Following diagram illustrates the result:

H
1
8
, 3
8

1,f :
p ∞ 1 −1

4 −7 −1

∆p 0 0 0 1
2

3
4

6

f = (1−x)(4x+1)
(x+1)3

1− f = x2(x+7)
(x+1)3

H
1
8
, 3
8

1,x :
p 0 1 ∞

∆p 0 1
2

1
4

p: singularity, ∆p: exponent difference

Figure 2.1: Effect of
f−→C on the singularity structure

The branching pattern of f above 0, 1,∞ is [1, 1, 1], [1, 2], [3]. Exponent differences of the base

operator H
1
8
, 3
8

1,x get multiplied by the corresponding multiplicities of f to produce the exponent dif-

ferences of the resulting operator H
1
8
, 3
8

1,f . The point 0 above 1 becomes a regular point (exponent

difference is 2 · 12 = 1) and thus does not show up in Sing
(
H

1
8
, 3
8

1,f

)
.

Remark 10. Let Ha,b
c,x be the Gauss hypergeometric differential operator. Suppose [a1, . . . , ai],

[b1, . . . , bj ], [c1, . . . , ck] be the branching pattern of f above 0, 1,∞ respectively. Using Lemma 1 and

Remark 6, the singularities of Ha,b
c,f are as follows:

P0 = {x : f(x) = 0 and (e0 ∈ Z or al e0 /∈ Z) for 1 ≤ l ≤ i}

P1 = {x : 1− f(x) = 0 and (e1 ∈ Z or bl e1 /∈ Z) for 1 ≤ l ≤ j}

P∞ = {x : 1
f(x) = 0 and (e∞ ∈ Z or cl e∞ /∈ Z) for 1 ≤ l ≤ k}

where (e0, e1, e∞) are the exponent differences of Ha,b
c,x at (0, 1,∞) respectively. The union of

P0, P1 and P∞ are the non-removable singularities of Ha,b
c,f , or Linp by Remark 9.
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CHAPTER 3

HYPERGEOMETRIC SOLUTIONS

3.1 Problem Discussion

Starting with a Fuchsian linear differential operator Linp of order 2, which is irreducible and

has no Liouvillian solutions, we want to find a solution of the form :

y = exp(

∫
rdx)

(
r0S(f) + r1S(f)′

)
6= 0 (3.1)

such that Linp(y) = 0 where S(x) = 2F1(a, b; c |x), f, r, r0, r1 ∈ C(x) and f 6∈ C.

Finding solution of the form (3.1) corresponds to finding the transformations
f−→C ,

r0,r1−−−→G ,
r−→E

such that:

Ha,b
c,x

f−→C Ha,b
c,f

r0,r1−−−→G

r−→E Linp.

Once we find such transformations, we compute a 2F1-type solution of Linp as:

S(x)
f−→C S(f)

r0,r1−−−→G

r−→E exp(

∫
rdx)

(
r0S(f) + r1S(f)′

)
.

The procedure involves the following two key steps:

1. Compute f and (e0, e1, e∞) such that

Sing
(
Ha,b
c,f

)
= Sing(Linp). (3.2)

See Remark 7 for the relation between (e0, e1, e∞) and (a, b, c). Such f and (e0, e1, e∞) need

not be unique, we call them Candidates.

2. For each Candidate, compute projective equivalence ∼p between Ha,b
c,f and Linp which sends

solutions

S(f) = 2F1(a, b; c | f) of Ha,b
c,f to solutions of Linp of the form (3.1).

[19] takes care of step 2. Hence the crucial part is step 1; i.e, to compute Candidates f (as well as

a, b, c, or equivalently, e0, e1, e∞). Below we will discuss some examples whose solutions involve all

three transformations.
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3.2 An Example of Degree Three Solution

Let

u(0) = 1, u(1) = 828 and u(n+ 2) =
4(592(n− 1)2 − 977)u(n+ 1)− 283(16n2 − 9)u(n))

(n+ 2)2
(3.3)

This defines a sequence 1, 828, -121212, . . . How to prove that this is an integer sequence?

Consider the following differential operator:

L̃ = (x− 37)
(
x2 + 3

)
∂2 +

(
x2 + 3

)
∂ − 9

16
(x+ 9). (3.4)

Our implementation on ‘Hypergeometric solutions of degree three’ solves this equation, see

Chapter 4 and www.math.fsu.edu/~vkunwar/hypergeomdeg3/ for more details. One solution is:

sol(L̃) = s
(
g · 2F1

( 1

12
,

5

12
; 1 | f

)
+ h · 2F1

( 5

12
,
13

12
; 1 | f

))
. (3.5)

where s = 98
1
4

126(3x−13)
5
4

, g = (3x+ 1)(3x− 13), h = 36x+ 40 and f = 27(x−37)(x2+3)
(3x−13)3 .

One can convert between differential equations and recurrences (see ‘gfun’ package in Maple)

and find:

sol(L̃) =
∞∑
n=0

u(n)
(x− 37

27 · 73
)n

(3.6)

where u(n) are given by the recurrence relation in (3.3).

The explicit expression (3.5) can be used to prove u(n)∈ Z for n = 0, 1, . . . (it is not clear if

there is a different way to prove that for this example).

Suppose y(x) =
∑∞

n=0 u(n)xn is convergent with u(n) ∈ Z, (n = 0, 1, 2, . . .) and satisfies a

second order differential operator L ∈ Q(x)[∂]. In all known examples such y(x) is either algebraic

or expressible in terms of 2F1 hypergeometric functions. Hence algorithms for finding 2F1-type

solutions are useful for integer sequences.

3.3 Examples of Five Singularities

Consider the following differential operators:

L1 = (x− 16)(x2 + 18x− 15)∂2 + (x+ 7)(x− 39)∂ − 1

36

(25x3 − 1006x2 − 5523x− 894)

(x2 − 3)
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L2 = ∂2 +

(
459x4 + 354x3 − 12x2 − 24x− 4

)
x (17x− 1) (9x+ 4) (3x2 + 3x+ 1)

∂ − (4131x3 + 1218x2 − 509x− 184)

16x (17x− 1) (9x+ 4) (3x2 + 3x+ 1)

These operators have five regular singularities (and at least one logarithmic singularity). L1 has

the following singularity structure:

> Sing(L1); {
[∞,−5

3
], [x2 − 3, 1], [x2 + 18x− 15, 0]

}
L1 has logarithmic singularities at the roots of x2 + 18x − 15 and x2 − 3. Our algorithm

on ‘Five singularities’ solves L1, see Chapter 5 and www.math.fsu.edu/~vkunwar/FiveSings/ for

more details. One of the solutions is:

Sol(L1) = h1(x)S(f) + h2(x)S(f)′

where h1(x) = 1
3

(x3−36x2+69x−54)(x2−3)
(4x3−29x2+42x−21)5/4

, h2(x) =
(x2−3)(x2+18x−15)

(4x3−29x2+42x−21)1/4(x+7)
and

S(f) = 2F1

(
1
12 ,

5
12 ; 1 | 49

(x2+18x−15)
2
(x2−3)

3

(4x3−29x2+42x−21)3

)
.
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CHAPTER 4

HYPERGEOMETRIC SOLUTIONS OF DEGREE

THREE

This chapter explains the theoretical and computational aspects of the project on finding hyperge-

ometric solutions where the pullback function f has degree three.

4.1 Relating Singularities to f

Let f = A/B where A,B ∈ C[x] with gcd(A,B) = 1. The hypergeometric operator Ha,b
c,x

has singularities at x = 0, 1,∞. So one might expect the input differential operator Linp to have

singularities whenever f = 0, 1 or ∞; i.e. at the roots of A,A−B andB. If all roots of A,A−B,B

would appear among the singularities of Linp, then it would be fairly easy to reconstruct f = A/B.

However, that is not true in general (it is true for 8 out of the 18 cases in the Table 4.1). For

example, if f has a root p with multiplicity 2 and e0 is a half-integer (an odd integer divided by

2), then p will be a removable singularity or a non-singular point of Ha,b
c,f . Such p does not appear

in Sing(Linp).

When f has degree 3, the input differential operator Linp can have at most 9 singularities.

The least we could have is 2 when we choose the branching pattern of f as [3],[1,2],[1,2] and

(e0, e1, e∞) ≡ (±1
3 ,

1
2 ,

1
2) mod Z. But a hypergeometric equation with two exponent-differences

in 1
2 + Z has Liouvillian solutions, so we do not treat this case here. If Linp has 3 non-removable

singularities, then we can move these to 0, 1,∞ via a Möbius transformation and express the solution

accordingly (with f of degree 1). This case is already treated in [24]. So we do not consider these

cases (Liouvillian or 3 non-removable singularities).

4.2 Tabulating Cases

Let 4 ≤ d ≤ 9 be the total number of non-removable singularities in Linp. The first step

is to enumerate all possibilities for exponent differences e0, e1, e∞ and branching patterns above

{0, 1,∞}. We list all cases for degree 3 in the following table:
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Notation 1.

d: number of non-removable singularities in Linp.

E1, E2, E3: arbitrary elements of C.

∗
2 : an element of 1

2 + Z.

∗
3 : an element of (13 + Z) ∪ (23 + Z).

Table 4.1: Cases for degree 3 pullback up to permutation of 0, 1,∞

d Case Exponent difference Branching pattern
at 0, 1, ∞ resp. above 0, 1, ∞ resp.

case4.1 ∗
2 , ∗3 , E1 [1,2], [3], [1,1,1]

case4.2 6= ∗
3 , ∗3 , E1 [3], [3], [1,1,1]

4 case4.3 6= ∗
2 , 6= ∗

2 , ∗3 [1,2], [1,2], [3]
case4.4 6= ∗

3 , 6= ∗
2 , ∗2 [3], [1,2], [1,2]

Liouv 6= ∗
2 , ∗2 , ∗2 [1,2], [1,2], [1,2]

case5.1 6= ∗
3 , 6= ∗

3 , E1 [3], [3], [1,1,1]
Liouv ∗

2 , ∗2 , E1 [1,2], [1,2], [1,1,1]
5 case5.2 6= ∗

2 , ∗3 , E1 [1,2], [3], [1,1,1]
case5.3 ∗

2 , E1, 6= ∗
3 [1,2], [1,1,1], [3]

case5.4 6= ∗
2 , 6= ∗

2 , ∗2 [1,2], [1,2], [1,2]
case5.5 6= ∗

3 , 6= ∗
2 , 6= ∗

2 [3], [1,2], [1,2]

case6.1 ∗
3 , E1, E2 [3], [1,1,1], [1,1,1]

6 case6.2 6= ∗
2 , ∗2 , E1 [1,2], [1,2], [1,1,1]

case6.3 6= ∗
3 , 6= ∗

2 , E1 [3], [1,2], [1,1,1]
case6.4 6= ∗

2 , 6= ∗
2 , 6= ∗

2 [1,2], [1,2], [1,2]

case7.1 6= ∗
3 , E1, E2 [3], [1,1,1], [1,1,1]

7 case7.2 ∗
2 , E1, E2 [1,2], [1,1,1], [1,1,1]

case7.3 6= ∗
2 , 6= ∗

2 , E1 [1,2], [1,2], [1,1,1]

8 case8.1 6= ∗
2 , E1, E2 [1,2], [1,1,1], [1,1,1]

9 case9.1 E1, E2, E3 [1,1,1], [1,1,1], [1,1,1]

Two cases (denoted Liouv) in Table 4.1 correspond to the hypergeometric equations with two

singularities having a half-integer exponent difference. Such equations have Liouvillian solutions

(this follows from Kovacic’s algorithm and also from Theorem 8, Section 5.3 in [24]). Now the main

task is to compute f for the remaining 18 cases. Recall that non removable singularities of Ha,b
c,f

come from (form a subset of) the roots of f , 1 − f and poles of f . We will use the singularity

structure of Linp to recover f .
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4.3 Treating One Case

The main algorithm in Section 4.4 takes as input C, Linp, x where C is a field of character-

istic 0, and Linp ∈ C(x)[∂] has order 2 and no Liouvillian solutions. It computes Sing(Linp) and

d. Then it loops over the corresponding cases in Table 4.1. For example; if d = 4 then it loops

over cases4.1 – 4.4 in Table 4.1. Each case in Table 4.1 is a subprogram. Each of these subpro-

grams takes C, Sing(Linp) as input, checks if Sing(Linp) is compatible with that particular case,

and if so, returns a set of candidates for f, (e0, e1, e∞) that are compatible with that particular

case. We give details for only one case, namely ComputeF[5.3] (notation: cased, i is handled by

ComputeF[d.i]). The other cases are treated by similar programs (details can be found at

www.math.fsu.edu/~vkunwar/hypergeomdeg3/).

Suppose Linp ∈ C(x)[∂] has d = 5 non-removable singularities. In terms of places(C), there are

7 ways to end up with 5 points:

1. One place of degree 5 (note: a place of degree > 1 is always a monic irreducible polynomial

of that degree. A place of degree 1 can be either ∞ or a monic polynomial of degree 1.)

2. Places of degrees 4, 1.

3. Places of degrees 3, 2.

4. Places of degrees 3, 1, 1.

5. Places of degrees 2, 2, 1.

6. Places of degrees 2, 1, 1, 1.

7. Places of degrees 1, 1, 1, 1, 1.

Algorithm 4.1: ComputeF[5.3]

Compute f ∈ C(x) of degree 3 and exponent differences (e0, e1, e∞) for Ha,b
c,x corresponding

to ‘case5.3’ in Table 4.1.

Input: Field C and Sing(Linp) in terms of places(C).

Output: A set of lists [f, (e0, e1, e∞)] where f ∈ C(x) has degree 3 and branching pattern

[1,2], [1,1,1], [3] above 0, 1,∞ such that Sing
(
Ha,b
c,f

)
= Sing(Linp) where (a, b, c) corresponds

to (e0, e1, e∞) by Remark 7 and (see Table 4.1) e0 ∈ 1
2 + Z, e1 is arbitrary, and e∞ 6∈ ±1

3 + Z.
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1. Check if Sing(Linp) is consistent with case 5.3 (if not, return the empty set and stop) as

follows:

The branching pattern [1,2] at f = 0 indicates that f has two roots a1, a2 ∈ C
⋃
{∞}

with multiplicities 1 resp. 2. Then x = a1 will have an exponent-difference e0 ∈ 1
2 + Z

but x = a2 will be a regular point or a removable singularity, and so it does not appear

in Sing(Linp).

The branching pattern [3] at f =∞ indicates that f has precisely one pole b ∈ C
⋃
{∞},

of order 3. Then x = b will have an exponent-difference ±3e∞ mod Z. In case 5.3 we have

e∞ 6∈ ±1
3 + Z and hence the point x = b must be a non-removable singularity. Combined

with x = a1 we see that case 5.3 is only possible when Sing(Linp) has at least two places

of degree 1. So in the above listed 7 cases (5, 4+1, . . .), we can exit Algorithm 4.1

immediately if we are not in case 4, 6, or 7.

The branching pattern [1,1,1] at f = 1 indicates that 1− f has three distinct roots, each

of multiplicity 1. Thus there must be at least three distinct singularities that match the

exponent-difference ±e1 mod Z. If we can not find three singularities (one place of degree

3, or places of degrees 2 and 1, or three places of degree 1) whose exponent-differences

match (up to ± and mod Z) then Algorithm 4.1 stops. This condition determines e1

(up to ± and mod Z).

We know from Kovacic’s algorithm that if there are two ei ∈ 1
2 + Z then Ha,b

c,x will have

Liouvillian solutions. Since we exclude Liouvillian cases, it follows that only e0 is in
1
2 + Z. We conclude that Sing(Linp) must have either 1 or 2 singularities in C

⋃
{∞}

with an exponent-difference in 1
2 + Z and that 2 such singularities can only occur when

e∞ ∈ ±1
6 + Z. So if there are more than 2, then Algorithm 4.1 stops.

2. Set Candidates = ∅ and write f = k1
(x−a1)(x−a2)2

(x−b)3 where a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C.

We replace any factor x−∞ in f by 1 in the implementation. Compute the set of places

with an exponent-difference in 1
2 + Z. This set may only have 1 or 2 elements that must

have degree 1. Now a1 loops over this set, and e0 is the exponent-difference at x = a1.

3. Loop b over the places in Sing(Linp) of degree 1, skipping a1, and only considering a1, b

for which the remaining three singularities have matching exponent-differences. Let eb be

the exponent-difference at x = b. Now loop e∞ over eb
3 ,

(eb−1)
3 , (eb+1)

3 . For e1 one can take

the exponent-difference at any of the 3 remaining singularities. The reason that there

are three cases for e∞ is because we have to determine e∞ mod Z. Now 3e∞ = eb but

if a gauge transformation occurred, i.e, if the r1 in (3.1) in Section 3.1 is non-zero, then

eb is only known mod Z, and this leaves in general three candidate values for e∞ mod Z
(it suffices to compute the ei mod Z, see Section 5.3 in [24], summarized in Remark 9).
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4. Among the remaining 3 singularities, let P ∈ C[x] be the product of their places (replacing

x−∞ by 1 if that is among them). So P has degree 3 if ∞ is not among the 3 remaining

singularities, and otherwise it has degree 2. In each loop, the a1, b appearing in f are

known, while k1 and a2 are unknown. Take the numerator of 1 − f and compute its

remainder mod P . Equate the coefficients of this remainder to 0. This gives deg(P )

equations for k1, a2. If deg(P ) = 2 we obtain one more equation by setting f(∞) = 1 (the

resulting equation is k1 = 1). Then we have 3 equations for 2 unknowns k1, a2. Compute

the solutions k1 ∈ C and a2 ∈ C
⋃
{∞}. If any solution exists, then add the resulting

[f, (e0, e1, e∞)] to the set Candidates.

5. Return the set Candidates (which could be empty, but could also have one or more

members).

Example 6.

Take C = Q. Let Sing(Linp) in terms of places(Q) be given by:

Sing(Linp) =
{

[∞,−1
2 ], [x, 27 ], [x− 2, 12 ], [x2 + 26x+ 44, 57 ]

}
.

Our input is the following:

Sing(Linp) =
{

[1,−1
2 ], [x, 27 ], [x− 2, 12 ], [x2 + 26x+ 44, 57 ]

}
.

Notations in the steps below come from Algorithm 4.1.

Write f(x) = k1
(x−a1)(x−a2)2

(x−b)3 .

Step 1: Sing(Linp) satisfies the conditions for ‘case5.3’;

1. [1,−1
2 ] and [x− 2, 12 ] have degree 1 and both have a half-integer exponent difference.

2. The exponent differences in [x, 27 ] and [x2 + 26x+ 44, 57 ] match, after all, we are working up

to ± and mod Z.

Step 2: The candidates for x− a1 are 1 and x− 2. For the first case, we get f = k1
(x−a2)2
(x−b)3 and

e0 = −1
2 (note: we may equally well take 1

2). For the second case, we get f = k1
(x−2)(x−a2)2

(x−b)3 and

e0 = 1
2 .

Step 3: For the first case, x − b can only be x − 2 and eb = 1
2 (because if we take x − b = x

then there would not remain three singularities with matching exponent-differences). Likewise, for

the second case, x− b can only be 1 and eb = −1
2 .

First case: f = k1
(x−a2)2
(x−2)3 and e∞ = 1

6 (note: we should consider e∞ ∈ { eb3 ,
(eb+1)

3 , (eb−1)3 } since eb
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is determined mod Z, and we have to determine e∞ mod Z. However, (eb+1)
3 = 1

2 is discarded since

there should not be two e′is in 1
2 +Z. And (eb−1)

3 = −1
6 but an exponent-difference −1

6 is equivalent

to an exponent-difference 1
6 .)

Second case: f = k1(x− 2)(x− a2)2 and e∞ = −1
6 .

Step 4: In both cases P = x ·(x2 +26x+44) and e1 = 2
7 (we could equally well take 5

7). Dividing

the numerator of 1 − f by P produces equations in k1 and a2. In first case the equations have a

solution; {k1 = −32, a2 = −1
2}, and in second case they do not.

Step 5: The output Candidates has one element, namely;{
[−32 (x+1/2)2

(x−2)3 , (−1
2 ,

2
7 ,

1
6)]
}

.

4.4 Main Algorithm

We have developed the algorithms to compute f ’s and possible exponent differences (e0, e1, e∞)

for Ha,b
c,x corresponding to all 18 cases as given in Table 4.1. Now we give our main algorithm:

Let C ⊆ C be a field and Linp ∈ C(x)[∂] be the input differential operator. The main algorithm

first computes the singularity structure of Linp in terms of places(C). Suppose d is the total number

of non-removable singularities of Linp. Now we call all algorithms corresponding to d to produce a

set of candidates for f ∈ C(x) and the exponent differences (e0, e1, e∞) = (1−c, c−a−b, b−a). For

each member from that list we compute Ha,b
c,x , Ha,b

c,f and apply projective equivalence [19] between

Ha,b
c,f and Linp to find (if it exists) a nonzero map from V

(
Ha,b
c,f

)
to V (Linp) which sends solutions

S(f) = 2F1(a, b; c | f) of Ha,b
c,f to solutions exp(

∫
rdx)(r0S(f) + r1S(f)′) of Linp.

Algorithm 4.2: hypergeomdeg3

Solve an irreducible second order linear differential operator Linp ∈ C(x)[∂] in terms of

2F1(a, b; c | f), with f ∈ C(x) of degree 3.

Input: A field C of characteristic 0, Linp ∈ C(x)[∂] of order 2 which has no Liouvillian

solutions, and a variable x.

Output: A non zero solution y = exp(
∫
rdx)(r0S(f) + r1S(f)′), if it exists, such that

Linp(y) = 0, where S(f) = 2F1(a, b; c | f), f, r,r0,r1 ∈ C(x) and f has degree 3.

Step 1: Find the singularity structure of Linp in terms of places(C). Let d be the total

number of non-removable singularities.
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Step 2: Let k be the total number of cases in Table 4.1 for d. For example; if d = 6 then

k = 4.

Let Candidates =
⋃

ComputeF[d.i], where i = {1 . . . k}. That produces a set of lists

[f, (e0, e1, e∞)] of all possible rational function f ∈ C(x) of degree 3 and corresponding exponent

differences (e0, e1, e∞) for Ha,b
c,x .

Step 2.1 : Ha,b
c,x = x(1−x)∂2 + (c− (a+ b+ 1)x)∂−ab, where a, b, c come from the relation

(e0, e1, e∞) = (1− c, c− a− b, b− a).

For each element [f, (e0, e1, e∞)] in Candidates (Step 2 ),

(i) If {e0, e1, e∞}
⋂ 1

2 + Z 6= ∅ then FinalCandidates := {[f, (e0, e1, e∞)]} otherwise

FinalCandidates := {[f, (e0, e1, e∞)], [f, (e0 + 1, e1, e∞)]} (That determines Ha,b
c,x up to

projective equivalence, see Remark 9).

(ii) From each element in FinalCandidates above (a) compute a, b, c, (b) substitute the

values of a, b, c in Ha,b
c,x , and (c) apply the change of variable x 7→ f on Ha,b

c,x . That produces a

list of operators Ha,b
c,f .

Step 2.2 : Compute the projective equivalence [19] between each operator Ha,b
c,f in Step 2.1

and Linp. If the output is zero, then go back to Step 2.1 and take the next element from

Candidates. Otherwise, we get a map of the form:

G = exp(
∫
rdx)(r0 + r1∂), where r, r0, r1 ∈ C(x) and ∂ = d

dx .

Step 2.3: S(f) = 2F1(a, b; c | f) is a solution of Ha,b
c,f . Apply the operator G to S(f). That

gives a solution of Linp.

Step 2.4: Repeat the same procedure for each element in Candidates. That gives us a list

of solutions of Linp.

Step 2.5: Choose the best solution (with shortest length) from the list (to obtain a second

independent solution of Linp, just use a second solution of Ha,b
c,x).

4.5 An Example

Example 7. Consider the operator in Section 3.2;

Linp = (x− 37)
(
x2 + 3

)
∂2 +

(
x2 + 3

)
∂ − 9

16(x+ 9).

Procedure to solve this equation is the following:
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Step 1: Read the file hypergeomdeg3 from www. math. fsu. edu/ ~ vkunwar/ hypergeomdeg3/ .

Step 2: Linp ∈ Q(x)[∂]. We want the solution of Linp in the base field Q.

Type hypergeomdeg3({ }, Linp, x). (in Maple { } is the code for Q)

Step 3: The program first finds the singularity structure;

Sing(Linp) =
{

[1,−3
2 ], [x− 37, 0], [x2 + 3, 1]

}
. (our implementation uses “1” to encode a

singularity at ∞, and polynomials to encode finite singularities).

Step 4: We get d = 4. The program loops over the four subprograms corresponding to

case4.1,. . . case4.4 to compute f :

1. ComputeF[4.1] returns the following:

F =
{

[f, [−3
2 , 0,

1
3 ]], [f, [−3

2 , 1,
1
3 ]], [f, [−3

2 , 0,
2
3 ]], [f, [−3

2 , 1,
2
3 ]]
}

where f = 8 (9x+10)2

(3x−13)3 .

Note: this set contains ∼p-duplicates, the four triples (e0, e1, e∞) all give projectively equivalent

Ha,b
c,x so we could delete three and still find a solution (if it exists). The reason they were left in the

current version of the implementation is because they may help to find a solution of smaller size.

In the next version, we plan to make the code more efficient by removing ∼p-duplicates, keeping

only those for which the integer-differences between the exponent-differences of Ha,b
c,f and Linp are

minimized (in this example, only the second element of F would be kept in this approach).

2. ComputeF[4.2] returns NULL.

3. ComputeF[4.3] and ComputeF[4.4] require at least 3 linear polynomials in Q[x] for

Sing(Linp) which is not the case here. So Sing(Linp) does not qualify the conditions for these

algorithms.

Hence F gives the Candidates. Note that we are in the case {e0, e1, e∞}
⋂ 1

2 + Z 6= ∅. Hence

the FinalCandidates are the Candidates themselves.

Step 5: Taking first element i =
[
8 (9x+10)2

(3x−13)3 , [−
3
2 , 0,

1
3 ]
]

in Candidates and applying Step 2.1

and Step 2.2 of Algorithm 4.2, we get G = exp(
∫
rdx)(r0 + r1∂) with

exp(
∫
rdx) =

( 9
10
x+1)( 1

3
x2+1)(− 1

37
x+1)

( 1
12
x+1)(− 3

13
x+1)

13
4

, r1 = 1 + 90
19x−

27
19x

2 and

r0 = 3
38

729x4−19845x3−251919x2+1114345x+239772
(x−37)(3x−13)(9x+10) .

Step 6: We have S(f) = 2F1

(
13
12 ,

17
12 ; 5

2 | 8
(9x+10)2

(3x−13)3

)
. Applying G to S(f) produces

exp(
∫
rdx)(r0S(f) + r1S(f)′) as a solution of Linp where exp(

∫
rdx), r0, r1 are given in Step 5.
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Step 7: Taking second element i =
[
8 (9x+10)2

(3x−13)3 , [−
3
2 , 1,

1
3 ]
]

in Candidates we get another solution

exp(
∫
rdx)(r0S(f) + r1S(f)′) with exp(

∫
rdx) =

( 9
10
x+1)

( 1
12
x+1)(− 3

13
x+1)

7
4

, r1 = x2 + 3,

r0 = (2187x3+22284x2−37813x+116484)
98(13−3x)(9x+10) and S(f) = 2F1

(
7
12 ,

11
12 ; 5

2 | 8
(9x+10)2

(3x−13)3

)
.

Steps 8 and 9: Process the third and fourth element. Each produces a solution that looks quite

similar to that given in Steps 6 and 7.

Step 10: The solution in Step 7 has the shortest length. So the implementation returns that as

a solution of Linp. After minor simplification this leads to the solution given in Section 3.2.
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CHAPTER 5

DIFFERENTIAL EQUATIONS WITH FIVE

REGULAR SINGULARITIES

In this chapter we will discuss the theoretical and computational aspects of the project on solving

differential equations in Class
(
H

1
12
, 5
12

1,x

)
with five regular singularities where at least one singularity

is logarithmic. Recall from Section 1.1 that it is enough to consider the cases

(e0, e1, e∞) ∈ {(0, 12 ,
1
3), (0, 12 ,

1
4), (0, 12 ,

1
6)} which correspond to the Gauss hypergeometric differ-

ential operators H
1
12 , 5

12

1,x , H
1
8 , 38

1,x and H
1
6 , 13

1,x . The major task is to construct the tables consisting of

all rational functions f which produce five non removable singularities from {0, 1,∞} for each case

Ha,b
c,x ∈ {H

1
12 , 5

12

1,x , H
1
8 , 38

1,x , H
1
6 , 13

1,x }.

5.1 Types and Bounds for f

For a rational function f : P1 → P1 of degree n, total amount of ramification is given by:∑
p∈P1

(ep − 1) = 2n− 2 (Riemann-Hurwitz) (5.1)

where ep is the ramification order of f at p. Let the amount of ramification of f be R01∞ (above

{0, 1,∞}) and Rout (above P1 \ {0, 1,∞}). As in [8], using (5.1), we find the largest bounds for the

degree of f and ramification outside {0, 1,∞} for our project as:

deg(f) ≤ 18 and Rout ≤ 2

when we choose (e0, e1, e∞) = (0, 12 ,
1
3). We have to compute all rational functions (up to Möbius

transformation) that can occur as f in the solution (3.1) of Linp in this project. The bound on

ramification outside {0, 1,∞} further classifies such f ’s as:

1. Belyi maps: Rout = 0

2. Belyi-1 maps: Rout = 1

3. Belyi-2 maps: Rout = 2
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Belyi maps are zero-dimensional families. But Belyi-1 (resp. Belyi-2) maps are one (resp two)-

dimensional families as they ramify above 1 (resp. 2) arbitrary points outside {0, 1,∞}. We use

the term near Belyi maps for such maps. We summarize the bounds in the following table:

Table 5.1: Bounds and types

(e0, e1, e∞) GHDO Rout Type max. degree

0 Belyi 18

(0, 12 ,
1
3) H

1
12 , 5

12

1,x 1 Belyi-1 12

2 Belyi-2 6

0 Belyi 12

(0, 12 ,
1
4) H

1
8 , 38

1,x 1 Belyi-1 8

2 Belyi-2 4

0 Belyi 9

(0, 12 ,
1
6) H

1
6 , 13

1,x 1 Belyi-1 6

2 Belyi-2 3

The data in Figure 1.1 and Table 5.1 indicate that the case H
1
12 , 5

12

1,x alone requires more work

than the other two cases H
1
8 , 38

1,x and H
1
6 , 13

1,x combined together. Additionally, H
1
12 , 5

12

1,x shares some

part from both H
1
8 , 38

1,x and H
1
6 , 13

1,x in terms of solvability (see Figure 1.1).

Our solver will be complete if the tables for H
1
12 , 5

12

1,x , H
1
8 , 38

1,x and H
1
6 , 13

1,x are complete. The major task

in this project is to prove that our tables are complete, i.e; How do we know that our tables contain

all such maps up to Aut(P1)? The next section addresses the completeness for Belyi maps. Near

Belyi maps will be discussed later.

5.2 Belyi Maps

Definition 18. A rational map f : P1 → P1 is called a Belyi map if its branched set lies inside

{0, 1,∞}. That means f is unramified outside {0, 1,∞}.

Definition 19. Let f be a Belyi map. The (0, 12 ,
1
3)-singularity-count of f is the sum of

1. the number of roots of f (not counting with multiplicity)

2. the number of roots of 1− f that do not have multiplicity 2

3. the number of poles of f that do not have multiplicity 3.
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The motivation for Definition 19 is that this counts the number of singular points (including

removable singularities) after a change of variables x 7→ f applied to the hypergeometric equation

with exponent differences (e0, e1, e∞) = (0, 12 ,
1
3). In general, we can define the same for any

(e0, e1, e∞). Usually we want to count only non-removable singularities, then replace ‘do not have

multiplicity k’ by ‘whose multiplicity is not divisible by k’ in the above definition. We usually count

only non removable singularities, there are some Belyi maps which produce removable singularities.

Remark 11. Consider (e0, e1, e∞) = (0, 12 ,
1
3) and take the branching pattern [1, 2, 3, 4], [2, 2, 2, 4],

[1, 3, 3, 3] above 0, 1,∞ respectively. Such branching pattern produces a Belyi map f with singularity-

count 6. But the only singularity above 1 is a removable singularity (its exponent difference is

4 · 12 = 2). So f produces 5 non-removable singularities and 1 removable singularity, we denote this

as 5 + 1 singularities.

Algorithm 5.8 in section 5.2.4 will skip this branching pattern (and its dessin) when singularity-

count d = 5, and will find it when d = 6. We omit such 5 + 1 singularities (and their Belyi maps)

from our Belyi table for d = 5 because the corresponding differential operator will be solved by our

Belyi-1 solver. Some Belyi-1 maps g(x, s) (see section 5.3 for more details) from our table for

some s ∈ P1 will cover such f (additional ramified point in Belyi-1 maps produces a removable

singularity). So we don’t compute such Belyi maps. Likewise, Belyi maps with 4+1 singularities

are found in d = 5, but we also skip them.1 They are covered by Belyi-1 maps in d = 4.

The crucial part on finding 2F1-type solution of a differential operator Linp is to compute f and

a, b, c such that:

Ha,b
c,x

f−→C Ha,b
c,f

r0,r1−−−→G

r−→E Linp

In particular, we want to have Sing(Ha,b
c,f ) = Sing(Linp). The Gauss hypergeometric differential

operator Ha,b
c,x has singularities at 0, 1 and ∞. So the singularity structure Sing(Ha,b

c,f ) depends

solely on the branching pattern of f above 0, 1,∞ and the choice of a, b, c. Belyi maps are very

special as their branching occurs only above 0, 1 and ∞.

The main task is to compute all Belyi maps and near Belyi maps (up to Möbius transformation)

whose singularity-count is 5. The goal in this section is to find all Belyi maps f (up to Möbius

transformation) with (0, 12 ,
1
3)-singularity-count 5 (Note: the cases < 5 are done previously, see

15 out of 416 Belyi maps in [20] produce 4+1 singularities. We don’t include them in our Belyi table.
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[24, 9] for details). We have also done the cases (0, 12 ,
1
4) and (0, 12 ,

1
6) but we explain only (0, 12 ,

1
3)

here for convenience of writing. We prove completeness by computing dessins.

Definition 20. [1] A sequence [g1, g2, . . . , gk] of permutations in Sn is called a k-constellation if

the following properties hold:

1. the group 〈g1, g2, . . . , gk〉 acts transitively on the set of n points;

2. g1g2 · · · gk = 1.

Here k is called length and n is called degree of the constellation. The group 〈g1, g2, . . . , gk〉 is

called the cartographic group or the monodromy group of the constellation [g1, g2, . . . , gk].

Definition 21. Any two k-constellations [g1, g2, · · · , gk] and [h1, h2, · · · , hk] are said to be equiv-

alent or conjugated (notation; [g1, g2, · · · , gk] ∼ [h1, h2, · · · , hk]) if there exists σ ∈ Sn such that

hi = σgiσ
−1 for all i ∈ {1, 2, · · · , k}.

We will work with 3, 4 and 5-constellations in this paper. The braid group Bk generated by

the braids σ1, . . . , σk−1 acts on a k-constellation in the following way:

σi : gi 7→ gi+1,

gi+1 7→ g−1i+1gigi+1 and

gj 7→ gj , j 6= i, i+ 1.

i.e, σi : [g1, . . . , gi−1, gi, gi+1, . . . , gk] 7→ [g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, . . . , gk]

Definition 22. Any two Belyi maps f and g are said to be Möbius equivalent if there exists a Möbius

transformation m such that f = g(m). A Belyi map f up to Möbius equivalence corresponds to a

3-constellation [g0, g1, g∞] up to equivalence (i.e, conjugation). We use the notation g0, g1, g∞ as

these are the monodromy permutations around 0, 1,∞ respectively.

Definition 23. A dessin is a connected and oriented graph whose vertices are bi-colored (say, black

and white) in such a way that any edge joins a black and a white vertex.

Remark 12. Given a Belyi map f , the corresponding dessin is the graph of f−1([0, 1]) where

1. f−1({0}) is the set of black vertices,

2. f−1({1}) is the set of white vertices,
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3. f−1((0, 1)) are the edges and

4. f−1({∞}) corresponds to the set of faces.

Here are two examples of dessins which correspond to the Belyi maps with (13 ,
1
2 , 0)-singularity-

count 5:

"!
# 

• •.................
................

................

...............

..................
....................

.......................
..........................

.

........

........

.........
.......

.........
......

...........
....

..............
...

...................
.

....................... .........................

•

•

.
.....................

..................

...............

.............
.............
............ ........... ............ .............

............
.

..........
.....

.........
.........

.........
.........
...

.
.........
.........
...

.........
.........

..........
.....

............
.

............. ............ ........... ............
.............
.............

...............

..................

.....................
•

.
.....................

..................

...............

.............
............ ............ ........... ............ ............. .............

...........
...

.........
.......

.........
.........
.

.
.........
.........
...

.........
.........

..........
.....

.............
.

............. ............ ........... ............
............
...........
............

..............

.................

...................
•

.
..................

....

.............
......

..........
.......

..........
........

.........
........

........

........

........

.......

.........

.......

.........
........

..........
........

..........
.......

.............
......

..................
....1

3
2

4
5

6

7

10 11

12
18

16
17

14

138

9 15

◦ •....................
.................

................

...............

................
................. ◦. ............. ............ ............ ............. ............. .............

.
.........
.........
.

.........
........

..........
......

...........
....

..............
..

................. ◦. ............. ............ ............ .............
.............
.............•

•

.
...............

.................

...................

.....................
◦

.
...........

...

..........
....

.........
......

.........
.......

.

..........
..........
..........
.....

..........
..........
..........
.....

.

................................

................................

◦

◦

1 2

3 4 5

6

7
8

9

I. A clean planar dessin of degree 18 II. A planar dessin of degree 9

Figure 5.1: Planar dessins

Definition 24. A dessin in which each white vertex has valence (total number of edges coming

out of the vertex) 2 is called a clean dessin. It is customary to omit the white vertices of a clean

dessin. In such a case, any curve joining black vertices corresponds to an element of f−1({1}).

In Figure 5.1, black vertex represents a point in f−1({0}), i.e; a point above 0 and white vertex

represents a point in f−1({1}), i.e; a point above 1. The curves joining any two neighbouring

black and white vertices are called the edges. The corresponding Belyi map projects each edge

homeomorphically to (0, 1). The number of edges of a dessin is called its degree.

There is a correspondence [3] between dessins, Belyi maps up to Möbius equivalence and

3-constellations [g0, g1, g∞] up to conjugation. The ordering around black (resp. white) vertices in

the dessin correspond to the cycles in g0 (resp. g1) and their valences correspond to the length of

cycles. Faces on the dessin correspond to the points above ∞. So they produce the cycles in g∞;

labels on the faces build the cycles.

We placed labels in the dessins above to obtain permutations from the diagram but dessins are

the graphs without any labelling. Labels are also useful as they help us to understand the proce-

dure of inserting edges into existing dessins (see Figure 5.3 for details). These ‘labelled dessins’ are
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3-constellations. A dessin is basically a ‘3-constellation without labels’, more precisely, an equiva-

lence class of 3-constellations mod conjugation. Any two conjugated 3-constellations represent the

same dessin (with different labelling). The genus of a dessin can be computed from the Riemann-

Hurwitz formula as:

# black vertices + # white vertices + # faces−# edges = 2− 2 · genus

We consider the Belyi maps f : P1 → P1. So our dessins are planar, i.e; their genus is zero. The

dessin in Figure 5.1.I has 6 black vertices, 9 double edges (i.e, 18 edges plus 9 white vertices) and 5

faces. This is a clean and planar dessin. Corresponding 3-constellation [g0, g1, g∞] of order 18 can

be read from Figure 5.1.I as:

g0 = (1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15) (16 17 18).

g1 = (1 3) (2 4) (5 7) (6 10) (8 13) (9 15) (11 16) (12 18) (14 17).

We often omit g∞ because g∞ = (g0 · g1)−1.

Each planar dessin determines a Belyi map f : P1 → P1 up to Möbius equivalence. The dessin

in Figure 5.1.I corresponds to the following degree 18 Belyi map (up to Möbius equivalence) with

(13 ,
1
2 , 0)-singularity-count 5:

f =
4

27

(
x6 − 4x5 + 5x2 + 4x+ 4

)3
(x− 4) (5x2 + 4x+ 4)2 x5

. (5.2)

Swapping 0 and ∞ results in replacing f by 1
f , 2F1(

1
12 ,

5
12 ; 1 | 1f ) satisfies a differential operator

L ∈ Class
(
H

1
12 , 5

12

1,x

)
which has five non removable singularities (with at least one logarithmic sin-

gularity). The main task is to tabulate all such f ’s.

Now we explain the procedure to compute all dessins of degree ≤ 18 (equivalently, all 3-constellations

[g0, g1, g∞] of degree ≤ 18 up to conjugacy) that are relevant to our project, i.e, that are planar

and have singularity-count 5.

5.2.1 Computing 3-constellations

We begin with the 3-constellation of degree 1. We can draw it as the ‘labelled dessin’ (Recall

that a dessin means the equivalence class of 3-constellations mod conjugacy). Then we compute

3-constellations of higher degree recursively, i.e; given a ‘labelled dessin’ of degree n − 1, insert
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one more edge to get a ‘labelled dessin’ of degree n for n = 2, 3, . . .. Inserting an edge means

the following modifications on g0, g1: (i) inserting a new number n into an existing cycle, or

(ii) introducing a new 1-cycle with that number n. Lets draw the ‘labelled dessin’ of degree 1:

• ◦
1

Figure 5.2: ‘Labelled dessin’ of degree 1

The corresponding permutations are: g0 = (1), g1 = (1). Now we want to insert an edge to

produce ‘labelled dessins’ of degree 2. The asterisks indicate the possible places to insert edge # 2:

g0 = (1 ∗)(∗), g1 = (1 ∗)(∗)

This procedure gives the following 4 candidates:

(i) g0 = (1 2), g1 = (1 2) (ii) g0 = (1 2), g1 = (1)(2) (iii) g0 = (1)(2), g1 = (1 2)

(iv) g0 = (1)(2), g1 = (1)(2)

Candidate (iv) is not acceptable as that gives a disconnected graph which is not a dessin. Given

a ‘labelled dessin’ D of degree n− 1, there are n2 choices to insert the new edge (labelled ‘n’) into

g0, g1. After discarding the one choice yielding a disconnected graph, we get n2−1 ‘labelled dessins’

of degree n from D.

Now we explain with an example, how the algorithm Insert(gi, j, n), i ∈ {0, 1}, 1 ≤ j ≤ n inserts

an edge n at jth position in gi:

Example 8. Let g0 = (1 2)(4 5)(6 8) ∈ S8 be given. We want to insert edge # 9 at 6th position in

g0; i.e, we want to compute Insert(g0, 6, 9).

Step 1: Rewrite g0 in complete form (including 1-cycles) so that all edges 1 – 8 appear:

g0 = (3)(7)(1 2)(4 5)(6 8)

Step 2: Placeholders (asterisks) indicate all possible positions in g0 where we can insert 9:

g0 = (3 ∗)(7 ∗)(1 ∗ 2 ∗)(4 ∗ 5 ∗)(6 ∗ 8 ∗)(∗)

Note that there are 9 possibilities in total.
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Step 3: Locate 6th placeholder and insert 9 there:

Insert(g0, 6, 9) := (3)(7)(1 2)(4 5 9)(6 8) = (1 2)(4 5 9)(6 8)

The following algorithm computes 3-constellations of degree ≤ n.

Note: we will not write g∞ in algorithms unless required. Given g0 and g1, we can compute

g∞ = (g0 · g1)−1. So a 3-constellation will be denoted as [g0, g1].

Algorithm 5.1: Compute all 3-constellations of degree ≤ n

Input: n

Output: A table with all 3-constellations of degrees 1, 2, . . . , n.

Step 1: Table[1] := {[(1), (1)]} (the 3-constellation in Figure 5.2).

Step 2: Table[n] := { [ Insert(g0, i, n), Insert(g1, j, n) ] | [ g0, g1 ] ∈ Table[n− 1],

1 ≤ i, j ≤ n, {i, j} 6= {n} }

The following diagram illustrates the procedure of computing 3-constellations:

Table[1]: • ◦
1

g0 = (1)
g1 = (1)
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���� ?

PPPPPPPPPPq
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Figure 5.3: Computing 3-constellations
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Let Tn denote the number of 3-constellations of degree n; i.e, the number of elements of Table[n].

Then we have the following recurrence relation:

T1 = 1, Tn = (n2 − 1) · Tn−1 which gives

Tn =
(n− 1)!(n+ 1)!

2
= 1, 3, 24, 360, 8640, 302400, 14515200, 914457600, 73156608000, . . .

This sequence has a huge growth. An efficient C-implementation of Algorithm 5.1 could compute

3-constellations up to n = 8, but Maple will run out of memory at that point. Our target n = 18

is unreachable unless we identify conjugated 3-constellations and discard all but one of them (not

discarding conjugated 3-constellations means computing the same dessin many times). The next

section will explain that procedure.

5.2.2 Computing Dessins

Table[2] in Figure 5.3 has three non-conjugated 3-constellations. So these are three distinct

dessins. Table[3] has twenty-four 3-constellations. After discarding 17 conjugates we get only 7

distinct dessins on that level.

Let g = (m1,m2, . . .)(n1, n2, . . .) . . . ∈ Sn. Suppose σ ∈ Sn.

Denote gσ := (σ(m1), σ(m2), . . .)(σ(n1), σ(n2), . . .) . . . = σgσ−1

Given D = [g0, g1, g∞] denote Dσ = [gσ0 , g
σ
1 , g

σ
∞].

Definition 25. If D1, D2 are 3-constellations of degree n, they represent the same dessin if and

only if ∃σ ∈ Sn such that D1 = Dσ
2 .

Conjugation is a reordering of the numbers in g0, g1, g∞. We represent the reordering with a

permutation π ∈ Sn. We represent π as a list [π(1), π(2), . . . , π(n) ] with π( i ) ∈ {1, 2, . . . , n}.

The permutation π ∈ Sn is computed as follows:

Step 1: Choose a base point b ∈ {1, 2, . . . , n}. Take π := [ b ].

Step 2: Let l be the last element of π, compute gk0 (l), k = 1, 2, . . . and append them to the list

π until gk0 (l) ∈ π. If π has n elements, then stop.

Step 3: Consider g1(c) for each c ∈ π and append the first g1(c) that is not in π to the list π.

Then return to Step 2.
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Before giving further algorithms, lets discuss some Maple codes we will use:

Maple codes: Given a list π = [ a1, a2, . . . , an ],

(i) nops(π) gives the number of elements in π.

(ii) π[ i ], i = 1, 2, . . . gives the ith element of π, π[−i ] gives ith element counted backward from

the end.

(iii) op(π) gives the sequence of elements of π without brackets.

The following algorithm computes such π ∈ Sn:

Algorithm 5.2: ComputeReordering

Input: n, [ g0, g1 ] ∈ Table[n] and a base point b ∈ {1, 2, . . . , n}.

Output: A list π = [ a1, a2, . . . , an ] which is a permutation in Sn given in list notation

(not in disjoint cycle notation).

π := [ b ];

while nops(π) < n do

c := g0(π[−1]);

if c ∈ π then

for i in π while c ∈ π do

c := g1(i);

end do;

end if;

π := [ op(π), c ];

end do;

Note: Let π = [ a1, a2, . . . , an ] be the output of ComputeReordering(n, [g0, g1], b). Then

ComputeReordering(n, [gσ0 , g
σ
1 ], σ(b)) will return the permutation σπ = [σ(a1), σ(a2), . . . , σ(an) ].

Moreover

(σπ)−1gσi (σπ) = π−1σ−1σgiσ
−1σπ = π−1giπ, i ∈ {0, 1}

That means conjugating gi by π is the same as conjugating gσi by σπ. The remaining issue is

how to match the base points. Any two conjugated 3-constellations will produce the same set of
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3-constellations if we run ComputeReordering over all b ∈ {1, 2, . . . , n} and compute the conju-

gation for each. We sort this set with the help of suitable ordering (for example, the lexicographic

ordering) and use the first element which will be unique for this dessin:

Algorithm 5.3: Sort3Constellation

Input: n and [ g0, g1 ] ∈ Table[n].

Output: [g̃0, g̃1] such that:

1. [g̃0, g̃1] ∼ [g0, g1], in other words, ∃σ ∈ Sn such that g̃i = gσi for i ∈ {0, 1}.

2. If [g0, g1] ∼ [ĝ0, ĝ1], then Algorithm 5.3 returns the same output for both.

Step 1: Reorder := {ComputeReordering(n, [g0, g1], b) | b ∈ {1, 2, . . . , n} }

Step 2: Candidates := {[π−1g0π, π−1g1π] |π ∈ Reorder}

Step 3: Return the lexicographically first element of Candidates.

We combine this algorithm with Algorithm 5.1 to discard the duplicate dessins (conjugated

3-constellations). That produces the dessins of degree n:

Algorithm 5.4: Compute dessins

Input: N .

Output: all dessins [ g̃0, g̃1 ] of degree ≤ N .

Table[1] := {[(1), (1)]};

for n from 2 to N do

Table[n] := {Sort3Constellation(n, [ Insert(g0, i, n), Insert(g1, j, n) ] ), where

[ g0, g1 ] ∈ Table[n− 1], 1 ≤ i, j ≤ n and {i, j} 6= {n}};

end do;

Now Table[n] has Tn elements where,

Tn = 1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, . . .

We can find this sequence under the name A057005 in [25]. This sequence is better than the earlier

one, but still has a huge growth. Maple will run out of memory at n = 11.
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We are looking for Belyi maps f : P1 → P1. So our dessins are drawn on the Riemann sphere

P1 = C ∪ {∞}, i.e; they are planar. Hence the next step is to discard non-planar dessins.

5.2.3 Discarding Non-planar Dessins

Given a rational Belyi map f : X −→ P1 of degree n, the genus of X is given by the following

formula [3]:

2g(X)− 2 = n− n0 − n1 − n∞

where ni = number of distinct elements in f−1({i}), which is the number of cycles in gi. The

following algorithm computes the genus of a dessin:

Algorithm 5.5: ComputeGenus

Input: n and a dessin [ g0, g1 ] of degree n.

Output: the genus of the dessin [g0, g1].

Step 1: gi = g0g1 (gi = g−1∞ , so gi and g∞ have same cycle structure)

Step 2: Count the number of cycles in g0, g1, gi (include 1-cycles in the count). Suppose

they are n0, n1, ni respectively.

Step 3: Return n−n0−n1−ni+2
2

We discard the dessins which are non-planar,i.e; those with positive genus. For example; the

last dessin of Table[3] in Fig 6 is non-planar (that has genus 1). This modification reduces the

dessin count to the following:

Tn = 1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, . . .

We can find this sequence under the name A090371 in [25]. We see that discarding the non-planar

dessins helps, but the sequence still has a huge growth. At this stage, Maple can compute dessins

up to degree 12, but it will eventually run out of memory at n = 13. With one more idea, we can

reach not only n = 18, but also n = 24 and find all dessins [20] with singularity-count ≤ 6.

We want to consider only those dessins which are relevant to our project, i.e; the dessins with

singularity-count 5. The following section explains this procedure for the exponent differences

(e0, e1, e∞) = (0, 12 ,
1
3). The cases (0, 12 ,

1
4) and (0, 12 ,

1
6) are done similarly.
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5.2.4 Choosing Relevant Dessins

The next two algorithms give the count of singularities, and help us discard many irrelevant

dessins. The following algorithm gives the ‘weighted’ singularity-count of a dessin:

Algorithm 5.6: WeightedSingularityCount

Input: Exponent differences (e0, e1, e∞) of Ha,b
c,x and a dessin [g0, g1]

Output: Weighted singularity-count of [g0, g1].

Step 1: gi = g0g1 (gi = g−1∞ , so gi and g∞ have same cycle structure)

Step 2: Produce the list of cycle-lengths of g0, g1, gi. Let the lists be L0, L1, L∞ respectively.

Step 3: Let p ∈ {0, 1,∞}. Given a list Lp = [l1, l2, . . . , ln], li ∈ N and the exponent

difference ep of Ha,b
c,x , suppose d be the denominator of ep (take d = ∞ if p is a logarithmic

singularity). The following formula gives the weight wi assigned to each li:

wi =


1 if d =∞ or li > d or li ≤ d− 2 ;
0 if li = d ;
1
2 if li = d− 1 .

The case li = d corresponds to a regular point, while the case li = d − 1 is counted half to

ensure that the total weighted singularity-count does not decrease when the Insert program

inserts an edge.

The sum Wp :=

n∑
i=1

wi gives the weighted singularity-count above p.

Step 4: Return W0 +W1 +W∞.

Given a dessin [g0, g1] and exponent differences (e0, e1, e∞) of Ha,b
c,x , the following algorithm gives

the singularity-count of the dessin:

Algorithm 5.7: SingularityCount

Input: Exponent differences (e0, e1, e∞) of Ha,b
c,x and a dessin [g0, g1].

Output: (e0, e1, e∞)-singularity-count of [g0, g1].

Step 1: Compute gi := (g0 · g1), gi = g−1∞ .

Step 2: Produce the list of cycle-lengths of g0, g1, gi. Let the lists be L0, L1, L∞ respectively.
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Step 3: Let p ∈ {0, 1,∞}. Given a list Lp = [l1, l2, . . . , ln], li ∈ N and the exponent

difference ep of Ha,b
c,x , let d be the denominator of ep (take d =∞ if p is a logarithmic singularity).

The following formula gives the singularity count of each li:

si =

{
1 if li 6= d ;
0 if li = d .

The sum Sp :=
n∑
i=1

si gives the singularity-count above p, as in Definition 19.

Step 4: Return S0 + S1 + S∞.

Remark 13. Let D be a planar dessin of degree n. Given the exponent differences (e0, e1, e∞) of

Ha,b
c,x , let w be the weighted singularity-count and d be the singularity-count of D. Then;

1. w ≤ d

2. Let D̃ be a planar dessin of degree n+ 1 obtained after inserting an edge in D and w̃ be the

weighted-singularity-count of D̃, then:

w ≤ w̃.

Property #2 follows from the fact that if n+ 1 ∈ {i, j} then the number of vertices increases by

1, and if n+ 1 6∈ {i, j} then the number of faces increases by 1. Using remark 13, we can discard a

dessin as soon as its weighted singularity-count exceeds 5.

Remark 14. Discarding 3-constellations on the basis of conjugation and weighted-singularity-count

is crucial in this procedure as each of them reduces the number of cases by a very large factor. The

growth of 3-constellations is so high that if we do not implement any one of these measures, the

computer runs out of memory long before we reach n = 18.

Now we put all algorithms together to give the main algorithm which computes all dessins with

(0, 12 ,
1
3)-singularity-count d. The other cases (0, 12 ,

1
4) and (0, 12 ,

1
6) are done similarly. We ran this

algorithm for d ≤ 6 and (e0, e1, e∞) = (0, 12 ,
1
k ), k ∈ {3, 4, 6}; the results can be found in [20].
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Algorithm 5.8: Compute All Dessins with a Specific (0, 12 ,
1
3)-singularity-count

Input: d

Output: all planar dessins [ g0, g1 ] with (0, 12 ,
1
3)-singularity-count = d.

Table[1] := { [ (1), (1) ] };

for n from 2 to 6(d− 2) do

Table[n] := { };

for [g̃0, g̃1] in Table[n− 1] do

for i from 1 to n do

g0 := Insert(g̃0, i, n);

for j from 1 to n while {i, j} 6= {n} do

g1 := Insert(g̃1, j, n);

if ComputeGenus(n, [ g0, g1 ]) = 0 and

WeightedSingularityCount( (0, 12 ,
1
3), [ g0, g1 ] ) ≤ d then

[ ĝ0, ĝ1 ] := Sort3Constellation(n, [g0, g1] );

Table[n] := Table[n]
⋃
{ [ ĝ0, ĝ1 ] };

end if;

end do;

end do;

end do;

end do;

ANS := { };

for n from 1 to 6(d− 2) do

for D in Table[n] do

if SingularityCount( (0, 12 ,
1
3), D ) = d then

ANS := ANS
⋃
{D};

end if;

end do;

end do;

Return ANS;
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Implementation of weighted-singularity-count discards many dessins. So the number of elements

of Table[n] grows much slower, and the computation no longer runs out of memory. We computed

all dessins with (0, 12 ,
1
k )-singularity-count d ≤ 6 where k ∈ {3, 4, 6} (degree n ≤ 24). Although we

are interested in d = 5, we ran Algorithm 5.8 for d = 3, 4, 5, 6. The outputs contain the following

number of dessins of degree n = 1, 2, . . . , 6(d− 2):

Table 5.2: Dessin count for d = 3, 4, 5, 6

d n dessin count for (0, 12 ,
1
3), degree = 1, . . . , n

3 ≤ 6 1, 2, 1, 1, 0, 2

4 ≤ 12 0, 1, 3, 4, 3, 6, 4, 6, 4, 4, 0, 6

5 ≤ 18 0, 0, 2, 6, 12, 19, 22, 26, 32, 39, 36, 50, 40, 42, 32, 32, 0, 26

6 ≤ 24 0,0,0,9,23,59,112,176,240,315,332,429,437,470,518,579,536,620,512,444,336,336,0,191

Dessins for d = 6, n = 24, (0, 12 ,
1
3) were previously found by Beukers and Montanus [3].

They used a combination of computer computation and hand computation and found 190 dessins

(we emailed them their missing dessin and they have used it to correct their website). This incident

shows why it is important to use only machine computations to find the dessins, if any human

interaction is needed then the chance of a gap is too high.

After computing the dessins, the next task is to compute the corresponding Belyi maps. If

we have a Belyi map (up to Möbius equivalence) for each dessin, then our table of Belyi maps is

complete. Dessins give the branching pattern of corresponding Belyi maps which give a way to

compute the maps. Small cases are easy to compute, cases up to degree 16 can be computed using

Gröbner basis. There are no dessins for degree 17 and we use the special techniques given in [3] to

compute Belyi maps of degree 18. An example is given in the next section.

5.3 Belyi-1 Maps

Belyi-1 maps have one more branch point t outside {0, 1,∞}, which has only one ramification

point t̃, with multiplicity 2. Such point t̃ is called a simple ramified point. These maps correspond

to 4-constellations [g0, g1, gt, g∞] where gt is a 2-cycle. The point t 6∈ {0, 1,∞} can vary, which

produces these maps as one dimensional families.
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Hence, up to equivalence there is a correspondence:

[g0, g1, gt, g∞]←→ an element ofK(x)

where K is an algebraic extension2 of Q(t).

Definition 26.

1. A near-dessin of a Belyi-1 map is an equivalence class of 4-constellations [g0, g1, gt, g∞] mod

conjugation where gt is a 2-cycle.

2. Belyi-1 maps (up to Möbius transformation) correspond to 4-constellations [g0, g1, gt, g∞]

(up to conjugation and braid group action).

Example 9. Consider the following one-dimensional family of functions:

f1(x, s) =
4

27

(
sx3 − 2 sx2 + sx− 3

)3
sx3 − 2 sx2 + sx− 4

The branching pattern of f1 above 0, 1,∞ is [3, 3, 3], [1, 2, 2, 2, 2], [1, 1, 1, 6]. Using the Riemann-

Hurwitz formula, we find that there is one more branch point t 6∈ {0, 1,∞} and the ramification

pattern of f1 above t is [1, 1, 1, 1, 1, 1, 1, 2]. So, f1 is a Belyi-1 map. We compute t using its

corresponding ramification point (Note that the derivative of f1 vanishes at ramification points).

For f1, we get t = 1
19683

(4 s−81)3
s−27 . For each fixed t 6∈ {0, 1,∞}, we get 3 distinct values of s which

produce 3 distinct Belyi-1 maps up to Möbius equivalence. These three Belyi-1 maps have the same

branching pattern, but their near-dessins differ. However, analytic continuation of t around 0, 1,∞

permutes these three near-dessins. Such near-dessins lie in the same orbit under the action of braid

group.

Now consider another one-dimensional family of functions:

f2(x, s) =

(
sx3 − 2 sx2 − 9x2 + 18x+ sx− 3

)3
27 (sx3 − 2 sx2 − 9x2 + 18x+ sx− 1)

f2 is also a Belyi-1 map with the same branching pattern as f1. The fourth branch point for f2 is

t = 2
19683

(2 s3+27 s2+486 s−1458)
3

s4(s3+27 s2+243 s−729) . For each fixed t in this case, we get 9 values of s which correspond

to 9 distinct near-dessins, again, in one orbit.

2in all case for d = 5, the field K turned out to be isomorphic to Q(s). We use parametrization in Maple to find
such isomorphism.

43



f1 and f2 are two distinct families of Belyi-1 maps as their monodromy groups are different. For

f1, the monodromy group 〈g0, g1, gt, g∞〉 is a group of order 1296, and for f2 it equals S9. Our combi-

natorial search shows that near-dessins with branching type [3, 3, 3], [1, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 2],

[1, 1, 1, 6] belong to 2 distinct braid orbits. This result implies that {f1(x, s), f2(x, s)} completely

cover this branching pattern. Galois theory further tells us if C(x)/C(f) has subfields. We use

these monodromy groups to find decompositions (if any) of Belyi-1 maps. Our computation shows

that f1 has a decomposition g(h) where each g, h has degree 3 in x. Both f1, f2 are Belyi-1 maps

with (13 ,
1
2 , 0)-singularity-count 5. Our task is to compute all such Belyi-1 maps and to prove com-

pleteness.

The degree bound for Belyi-1 maps in our project is 12 (Table 5.1). We use the following steps

to compute such maps:

1. Compute all possible branching patterns for degree n ≤ 12. Note that the candidate branching

patterns must (i) satisfy Riemann-Hurwitz formula (6), (ii) produce a Belyi-1 map, and

(iii) have singularity-count 5 .

2. Compute all near-dessins (if any) for each branching pattern

3. Group them together by braid orbit

4. Compute a Belyi-1 map for each orbit

For example, near-dessins of degree 10 for the choice (e0, e1, e∞) = (0, 12 ,
1
3) are computed as

follows. Let’s switch the roots and poles of f , so we assume (e0, e1, e∞) = (13 ,
1
2 , 0).

Step 1: Finding the list of candidate branching patterns:

Our program produces the following list of possible branching patterns for Belyi-1 maps of

degree 10:

B10 = {[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 1, 7] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 2, 6] ],

[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 3, 5] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 4, 4] ],

[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 2, 2, 5] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 2, 3, 4] ],

[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 3, 3, 3] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [2, 2, 2, 4] ],

[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [2, 2, 3, 3] ]}.

where branching patterns are above 0, 1 and ∞ respectively. The branching pattern above the

fourth point t outside {0, 1,∞} is [1,1,1,1,1,1,1,1,2].
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Step 2: Computing near-dessins, i.e; equivalence classes of 4-constellations mod conjugation:

1. For g0, we have a 1-cycle and three 3-cycles. As we are computing these permutations up to

equivalence, we can take g0 = (1 2 3) (4 5 6) (7 8 9) (10).

2. g1 has five 2-cycles. Total number of g1 ∈ S10 that are a product of 5 disjoint 2-cycles is

9 · 7 · 5 · 3 · 1 = 945. We loop over all such g1’s.

3. gt has a 2-cycle (and eight 1-cycles). Hence we have
(
10
2

)
= 45 choices for gt. We loop over

all such gt’s.

4. For each of the 945 · 45 = 42525 triples (g0, g1, gt), we check the following two properties:

i. Is the group 〈g0, g1, gt〉 transitive?

ii. Does the product g0g1gt have 4 disjoint cycles? (g0g1gt = g−1∞ and |f−1({∞})| = 4)

After computing 4-constellations we found that only the following branching patterns actually

occur above ∞ (here we omit the branching at 0, 1, t because for degree 10 they all happened

to be the same):

[1, 1, 1, 7], [1, 1, 2, 6], [1, 1, 3, 5], [1, 1, 4, 4], [1, 2, 2, 5], [1, 2, 3, 4], [2, 2, 3, 3].

5. Item 4 produced a list of 4-constellations. Next we compute the near-dessins, i.e. the equiv-

alence classes mod conjugation, similar to Algorithm 5.3 in Section 5.2. We also group

together those near-dessins that fall into the same orbit under the action of braid group. One

Belyi-1 map f(x, s) ∈ K(x), computed below, covers precisely one braid orbit. To check that

the f ’s we computed (see below) are complete, we need to compute their near-dessins, and

then check that every braid orbit occurs among our f ’s. For all such f ’s, we further checked

that the degree of [K : Q(t)] equals the number of near-dessins in that orbit. This means for

a fixed t, each near-dessin corresponds to precisely one value of s.

Remark 15. Out of 9 candidates in B10 from Step 1, only 7 of them allowed a near-dessin, and

hence, a family of Belyi-1 maps. For degree 10, there are no 4-constellations corresponding to the

branching patterns [1, 3, 3, 3] and [2, 2, 2, 4] above infinity, which means there are no Belyi-1 maps

for those patterns. Some branching patterns may produce more than one family of Belyi-1 maps,

see Example 9.

Step 3: Grouping near-dessins by braid orbit:

Applying braid action we find that each branching pattern given in Step 2 above has only one

braid orbit, i.e, for degree 10, we do not have the situation like Example 9.
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Step 4: Computing Belyi-1 maps:

Let’s compute the Belyi-1 map with branching pattern

[ [1, 1, 3, 5], [2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 2], [1, 3, 3, 3] ] above 0, 1, t and ∞ respectively.

Note: to compute the map(s), we only need the branching pattern. But to prove that we found all

of them, we need to compare them with the orbit(s) of the near-dessins.

Step (i): General structure of f :

To make the computation easier, let’s take the branching pattern as [ [1,3,3,3],[1,1,3,5],[2,2,2,2,2] ]

above 0, 1,∞ respectively. Let’s place the unramified root of f at x = 1, and the roots of (1 − f)

with multiplicity 3, 5 at x = 0, x = ∞ respectively. This fixes our f up to Möbius transformation

and the map has now the following form:

f :=
c (x− 1)

(
x3 + a2 x

2 + a1 x+ a0
)3

(x5 + b4 x4 + b3 x3 + b2 x2 + b1 x+ b0)
2 .

Step (ii): Generating equations:

The numerator of (1 − f) must have the form: x3(Ax2 + Bx + C) where A and C are non zero.

The coefficients of xn for n = 0, .., 2, 6, .., 10 from the numerator of (1 − f) produce the following

equations:

eqns := [ 1 − c, b20 + c a30, 2 b4 − 3 c a2 + c, 2 b1 b0 + 3 c a1 a
2
0 − c a30, 2 b3 + b24 + 3 c a2 − 3 c a1 −

3 c a22, 2 b2 b0 + b21 − 3 c a1 a
2
0 + 3 c a2 a

2
0 + 3 c a21a0, 2 b4 b3 + 2 b2 − 6 c a2 a1 + 3 c a1 + 3 c a22 − 3 c a0 −

c a32, 2 b4 b2 + 2 b1 + b23 − 3 c a22a1 − 6 c a2 a0 + 6 c a2 a1 + 3 c a0 + c a32 − 3 c a21 ].

Step (iii): Elimination and Resultants:

We have 8 equations with 9 unknowns, which produces a one dimensional family. We can recursively

eliminate the unknowns c, b4, b3, b1, b2 and b0 from their corresponding linear equations. Then we

have three unknowns {a0, a1, a2} and two non trivial equations left. The equations are rather big,

but we can compute their resultant with respect to a2 and then factor. This produces a polynomial

relation between a0 and a1, i.e. an algebraic curve which turned out to have genus 0, which means

that C(a0, a1) ∼= C(s) for some s. We can find such isomorphism using Maple’s parametrization

and we obtain a0= −s4 and a1=
1
9s(−16 + 42s+ s3).

Step (iv): The result:

We update f each time when we eliminate an unknown. After re-arranging {0, 1,∞} back to the
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original ramification pattern, we get g as:

g = 1− 1

f
=

64x3(s− 1)8(9x2 + 16x+ 6 s2x− 40 sx+ s4 + 8 s3)

(1− x)(9x3 + 15x2 − 48 sx2 + 6 s2x2 − 16 sx+ 42 s2x+ s4x− 9 s4)3
.

Remark 16. There are some Belyi-1 maps which produce 5+2 singularities, i.e. 5 non remov-

able and 2 removable singularities. We will skip such maps because the corresponding differential

operator will be solved by Belyi-2 maps, see Section 5.4 for more details.

Remark 17. For each Belyi-1 map, we compute the size of its braid orbit. In the case where

[Q(s) : Q(t)] is larger than the orbit size, we compute a subfield Q(t) ⊆ Q(s̃) ⊂ Q(s) such that

f ∈ Q(s̃, x) and then rewrite f in terms of s̃.

Remark 18. Completeness: For (e0, e1, e∞) = (0, 12 ,
1
3), there are 68 Belyi-1 maps f ∈ Q(s)(x).

For each f in our table, we compute 4-constellation [g0, g1, gt, g∞] for some value of s (for example,

with Maple’s monodromy). Then we check if for every braid orbit (see Steps 2 and 3 above) our

table has a Belyi-1 map with a 4-constellation in that orbit.

5.4 Belyi-2 Maps

Our Belyi-2 maps have degree ≤ 6 and appear only for the case (e0, e1, e∞) = (0, 12 ,
1
3). The

branching patterns for these maps are [1, 1, 1, 1], [2, 2], [1, 3] for degree 4 and [1, 1, 1, 1, 2], [2, 2, 2], [3, 3]

for degree 6.

Belyi-2 maps have two branch points outside {0, 1,∞} that are free to move. Hence these maps

are two dimensional families. We compute these maps using the data from Sing(Linp); the singu-

larity structure of input differential operator Linp. Since 5 singularities, up to Möbius equivalence,

have two degrees of freedom, this carries just enough information to extract the parameters in a

2-dimensional family. In this section we will explain the algorithms to compute Belyi-2 maps and

will illustrate the procedures with an example. The implementation and more details can be found

at www.math.fsu.edu/~vkunwar/FiveSings/.

We can write the generic map for the branching pattern [1, 1, 1, 1], [2, 2], [1, 3] as:

f = k1
(x4 + c3x

3 + c2x
2 + c1x+ c0)

(x− a1)(x− a2)3
where 1− f = k2

(x2 + b1x+ b0)
2

(x− a1)(x− a2)3
.

We are in the case (e0, e1, e∞) = (0, 12 ,
1
3). So roots of x−a1 and (x4+c3x

3+c2x
2+c1x+c0) are the

non removable singularities of H
1
12 , 5

12

1,f ; we extract them from Sing(Linp). We find the remaining
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part of f by solving equations.

We developed algorithms to compute such maps. They use the data from Sing(Linp) and return the

Belyi-2 maps f such that Sing(H
1
12 , 5

12

1,f ) = Sing(Linp). Before giving the algorithms, let’s observe,

with an example, what they need to do:

Example 10. Consider the following differential operator:

L = ∂2 +
1

3

(
5x5 − 56x3 + 90x2 − 48x− 18

)
x (x2 + x− 3) (x3 − 4x2 + 3x+ 3)

∂ +
1

144

(16x4 + 99x3 − 370x2 + 414x− 45)

x (x2 + x− 3) (x3 − 4x2 + 3x+ 3)

Singularity structure of L in terms of places(Q) is:

Sing(L) =
{

[∞, 0], [x, 13 ], [x3 − 4x2 + 3x+ 3, 0]
}

Our main task is to compute f = −3 (x3−4x2+3x+3)

x (x−3)3 from Sing(L) such that 1−f =
(x2−3x+3)

2

x (x−3)3 .

Once we find such f then we can show that Sing(H
1
12 , 5

12

1,f ) = Sing(L) and exp(
∫
r dx) 2F1(

1
12 ,

5
12 ; 1 | f)

for some r ∈ Q(x) is a solution of L. Notice that f has the branching pattern [1, 1, 1, 1], [2, 2], [1, 3]

above 0, 1,∞ respectively. It is easy to check that f is a Belyi-2 map and thus L is an example of

a differential operator solvable in terms of Belyi-2 maps. Sing(L) gives the numerator of f and a

part of its denominator. However we need to know the constant factor −3 and the factor (x − 3)

with multiplicity 3. We need algorithms which produce such Belyi-2 maps (if they exist) from given

singularity structure.

In Example 10, the fact that the numerator of (1 − f) is a square will be used to generate

equations. The implementation only considers solutions defined over the base field (i.e, field of

definition). Let C ⊆ C be the base field of Linp (the smallest field C such that Linp ∈ C(x)[∂]).

Note: The equations EQa,EQb1, EQc,EQd,EQns appearing in these algorithms are the results of

the computation performed on the generic case of f and 1− f as explained above.

The following algorithm explains the procedure to compute Belyi-2 maps of degree 4.

Algorithm 5.9: Find Belyi-2 maps of degree 4 with (0, 12 ,
1
3)-singularity-count 5.

Input: The base field C ⊆ C of input differential operator Linp, variable x and Sing(Linp)

in terms of places(C)

Output: {f ∈ C(x) : f is a Belyi-2 map of degree 4 with the branching pattern

[1, 1, 1, 1], [2, 2], [1, 3] such that Sing(H
1
12 , 5

12

1,f ) = Sing(Linp)}.
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Note: We are in the case (e0, e1, e∞) = (0, 12 ,
1
3) and f has the branching pattern

[1, 1, 1, 1], [2, 2], [1, 3]. That means the roots of f and the pole of f with order 1 can be extracted

from Sing(Linp). Roots of 1−f and the pole of order 3 produce removable singularities, so they

do not appear in Sing(Linp) (see Figure 2.1 and Remark 10). To make the computation easier,

let’s make some changes which we will revert at the end. Let’s take the branching pattern of f

as [1, 3], [1, 1, 1, 1], [2, 2]. Let’s assume the following with this new branching pattern:

1. The root of f with multiplicity 1 is at infinity and

2. The sum of the roots of 1− f is zero

The assumptions 1 and 2 above correspond to non removable singularities, i.e, Sing(Linp). If

Sing(Linp) is not compatible with these assumptions then we will make appropriate adjustments

(transformations) in Sing(Linp), see Step 2 and Step 3 below, which we will revert at the

end. These changes will have the following effects on f : (i) numerator of f has degree 3 in x

and (ii) the coefficient of x3 in the numerator of 1− f vanishes. Then we get a Belyi-2 map,

say F , in the following form:

F =
2 b1 (x− a)3

(x2 + b1 x+ b0)2
(5.3)

such that the numerator of 1−F does not contain any duplicated roots and does not have any

term with degree 3 in x.

Step 1: Candidates := { };

Check the following three conditions in Sing(Linp);

1. Linp must have 5 non removable singularities; Compute the degree deg(a(x)) of a(x) for

each [a(x), b] ∈ Sing(Linp). The sum
∑
deg(a(x)) must be 5.

Note: a(x) = x−∞, which is denoted∞ and replaced by 1 in our implementation, should

also count as degree 1.

2. We need exactly one [a(x), b] ∈ Sing(Linp) where b ∈ {±1
3 ,±

2
3} mod Z and deg(a(x)) = 1.

3. b must be 0 mod Z for the remaining [a(x), b].

If Sing(Linp) does not satisfy these three conditions then stop.

Step 2: Let P =
∏
a(x) where [a(x), b] ∈ Sing(Linp) and ∞ is replaced by 1. If the

singularity with exponent difference b ∈ {±1
3 ,±

2
3} mod Z (second condition in Step 1 above) is
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not at ∞ then find an appropriate Möbius transformation m : x 7→ a1x+a2
a3x+a4

and compose that

with P such that P (m) will have that singularity at ∞.

Step 3: Let P̃ be the numerator of P (m). P̃ should be a degree 4 polynomial in C[x]

whose roots are the singularities of Linp, one of them is at ∞ now. If P̃ has degree 3 then that

means one singularity of Linp with b = 0 was already at ∞, and after applying m that should

go to 0. In such a case, multiply P̃ by x to adjust the singularity at 0, and to get a degree 4

polynomial in C[x]. Let P1 be the degree 4 polynomial; i.e,

P1 =

{
P̃ if P̃ has degree 4

P̃ · x if P̃ has degree 3.

Find a suitable translation τ : x 7→ x− t and compose it with P1 to eliminate the third degree

term. Then make the result monic to obtain P2 = x4 + p2 x
2 + p1 x+ p0.

Note: EQb1, EQa and EQns in the following steps are the results of computations on F

and 1− F .

Step 4: Solve the following equation for b1:

EQb1 := b91 + 24 p2b
7
1 − 168 p1b

6
1 − 78 p22b

5
1 + 1080 p0b

5
1 + 336 p1p2b

4
1 + 80 p32b

3
1 + 1728 p0p2b

3
1 −

636 p21b
3
1 − 168 p1p

2
2b

2
1 − 864 p0p1b

2
1 − 27 p42b1 − 432 p20b1 + 216 p22p0b1 − 120 p2p

2
1b1 − 8 p31.

Step 4.1: For each b1 ∈ C, substitute the value of b1 in the following equation and solve

that for a :

EQa := b1 p2 − p1 − b31 − 6 b21 a− 6 b1 a
2.

Step 4.1.1: For each a ∈ C, substitute the values of b1 and a in the following equations

and solve their gcd for b0:

EQns := {2 b0 b1 − p1 − 6 b1 a
2, b20 − p0 + 2 b1 a

3, 2 b0 − p2 + b21 + 6 b1 a}.

Step 4.1.1a: Substitute the values of a, b1 and b0 in F . Skip those F which do not have

degree 4.

Step 4.1.1b: If F has degree 4, then F1 = 1 − 1
F gives the map with right branching

pattern [1, 1, 1, 1], [2, 2], [1, 3] (we had set the branching pattern as [1, 3], [1, 1, 1, 1], [2, 2] for F ).

Step 4.1.1c: f := F1(τ̃(m̃)), where τ̃ : x 7→ x+ t (inverse of Step 3 ) and m̃ is the inverse

of m (Step 2 ) gives a candidate Belyi-2 map. Candidates := Candidates
⋃
{f};

Step 5: Return Candidates.
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The following algorithm explains the procedure to compute Belyi-2 maps of degree 6.

Algorithm 5.10: Find Belyi-2 maps of degree 6 with (0, 12 ,
1
3)-singularity-count 5.

Input: The base field C ⊆ C of input differential operator Linp, variable x and Sing(Linp)

in terms of places(C)

Output: {f ∈ C(x) : f is a Belyi-2 map of degree 6 with the branching pattern

[1, 1, 1, 1, 2], [2, 2, 2], [3, 3] such that Sing(H
1
12 , 5

12

1,f ) = Sing(Linp)}.

Note: For computational convenience, let’s make the following changes which we will revert

at the end. Set the branching pattern of f as [2, 2, 2], [1, 1, 1, 1, 2], [3, 3]. Then the non removable

singularities come only from numerator of 1− f . Assume the following with the new branching

pattern:

1. The simple ramified point (point with multiplicity 2) at the numerator of 1 − f is at

infinity and

2. The sum of other four roots of 1− f is zero

The assumptions 1 and 2 above correspond to non removable singularities, i.e, Sing(Linp). If

Sing(Linp) is not compatible with these assumptions then we will make appropriate adjustments

(transformations) in Sing(Linp), see Step 2 and Step 2.1 below, which we will revert at the

end. These changes will have the following effects on f : (i) numerator of 1 − f has degree 4

in x and (ii) the coefficient of x3 in the numerator of 1− f vanishes. Then we get a Belyi-2

map, say F , in the following form:

F =

(
x3 + 3 ax2 + bx+ c

)2
(x2 + 2 ax+ d)3

(5.4)

such that the numerator of (1− F ) has degree 4 and no duplicated roots.

Step 1: Candidates := { };

Check the following three conditions in Sing(Linp);

1. Linp must have 5 non removable singularities; Compute the degree deg(a(x)) of a(x) for

each [a(x), b] ∈ Sing(Linp). The sum
∑
deg(a(x)) must be 5.

2. b = 0 mod Z for all [a(x), b] ∈ Sing(Linp) (all singularities in this case are logarithmic).

3. At least one a(x) must have degree 1 (corresponds to simple ramified point above 1).
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If Sing(Linp) does not satisfy these conditions then stop.

Step 2: Let P =
∏
a(x) where [a(x), b] ∈ Sing(Linp). For each a(x) with degree 1 if

a(x) 6= 1 (i.e. a(x) 6= x−∞) then find a Möbius transformation m that moves the singularity

of a(x) to ∞ (equivalently, replace a(x) by 1).

Step 2.1: Let P̃ be the numerator of P (m). P̃ should be a degree 4 polynomial in C[x]

whose roots are the singularities of Linp, one of them is at ∞ now. If P̃ has degree 3 then that

means one singularity of Linp with b = 0 was already at ∞, and after applying m that should

go to 0. In such a case, multiply P̃ by x to adjust the singularity at 0, and to get a degree 4

polynomial in C[x]. Let P1 be the degree 4 polynomial; i.e,

P1 =

{
P̃ if P̃ has degree 4

P̃ · x if P̃ has degree 3.

Apply suitable translation τ : x 7→ x− t to eliminate the third degree term of P1. Then make

P1 monic to obtain P2 = x4 + p2 x
2 + p1 x+ p0.

Step 2.2: Solve the following equation for a:

EQa := 1048576 a12 + 524288 a10p2 + 131072 a9p1 + (−294912 p0 + 73728 p22)a
8 +

49152 a7p1 p2 − 21504 a6p21 + (4608 p22p1 − 18432 p0 p1)a
5 + (−1920 p21p2 − 432 p42 + 3456 p0 p

2
2 −

6912 p20)a
4 − 736 p31a

3 + (72 p21p
2
2 − 288 p0 p

2
1)a

2 + 16 p31ap2 + p41.

Step 2.2.1: For each a ∈ C, substitute the value of a in the following equation and solve

that for d :

EQd := 48 a2d2 − 48 a2(8 a2 + p2)d+ 512 a6 + 160 p2 a
4 − 40 p1 a

3 + 12 a2p22 − 4 p1ap2 − p21.

Step 2.2.1a.: For each d ∈ C substitute the values of a and d in the following equations:

EQns := {6 ad2 − 3 p1 a
2 + 2 p1 b− 3 p1 d− 12 abd− 8 ba3 + 6 ab2,−3 p2 a

2 + 3 d2 + 2 p2 b−

3 p2 d− 24 a2d− 24 a4 + 18 a2b− b2,−3 p0 d+ d3 + 2 p0 b− 36 a2d2 − 48 a4d+ 36 a2db− 16 a6 +

24 a4b− 9 a2b2 − 3 p0 a
2}.

Take the gcd of these equations and solve that for b.

Step 2.2.1a.w: For each b ∈ C substitute the values of a, b and d in the following equation

and solve that for c:

EQc := 12 ad+ 8 a3 − 6 ab− 2 c.
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Step 2.2.1a.x: Substitute the values of a, b, c and d in F . Skip those F which do not have

degree 6.

Step 2.2.1a.y: If F has degree 6, then F1 = 1−F gives the map with the right branching

pattern (we had switched roots of f and 1− f to define F ).

Step 2.2.1a.z: f := F1(τ̃(m̃)), where τ̃ : x 7→ x + t (inverse of Step 2.1 ) and m̃ is the

inverse of m (Step 2 ) gives a candidate Belyi-2 map. Candidates := Candidates ∪ {f}.

Step 3: Return Candidates.

Example 11. Let’s compute the Belyi-2 map of degree 4 for the differential operator considered in

Example 10. Take C = Q ⊂ C. The input to Algorithm 5.9 is the base field C = Q and the

singularity structure:

Sing(L) =
{

[∞, 0], [x, 13 ], [x3 − 4x2 + 3x+ 3, 0]
}

(We replace ∞ by 1 in our implementation).

Step 1: It is easy to check that Sing(L) satisfies all three conditions.

Step 2: P = x
(
x3 − 4x2 + 3x+ 3

)
, m : x 7→ 1

x .

Step 3: P̃ = 3x3 + 3x2−4x+ 1 is a degree 3 polynomial. So P1 = P̃ ·x = 3x4 + 3x3−4x2 +x.

τ : x 7→ x− 1
4 , P2 = x4 − 41

24 x
2 + 9

8 x−
137
768 . Hence [p0, p1, p2] = [−137

768 ,
9
8 ,−

41
24 ].

Step 4: Substituting p0, p1 and p2 in EQb1 ( Algorithm 5.9, Step 4) we get:

EQb1 = b91 − 41 b71 − 189 b61 − 10087
24 b51 − 2583

4 b41 − 292547
432 b31 − 6051

16 b21 − 74269
768 b1 − 729

64 .

The only solution of EQb1 = 0 in C = Q is b1 = −3
2 .

Step 4.1: Substituting the values of b1, p1 and p2 in EQa ( Algorithm 5.9, Step 4.1) we get

EQa = 77
16 −

27
2 a+ 9 a2 which gives a = 7

12 ,
11
12 .

Step 4.1.1: Substituting the values of p0, p1, p2, b1 and a = 7
12 in EQns ( Algorithm 5.9,

Step 4.1.1) we get

EQns =
{
31
16 − 3 b0, 2 b0 − 31

24 , b
2
0 − 961

2304

}
which has the solution b0 = 31

48 . Repeating the same

procedure with a = 11
12 gives EQns =

{
103
16 − 3 b0, 2 b0 − 103

24 , b
2
0 − 4913

2304

}
which has no solution.

Step 4.1.1a: F = 2 b1 (x−a)3
(x2+b1 x+b0)2

.

Substituting a = 7
12 , b1 = −3

2 , b0 = 31
48 we get F = −4 (12x−7)3

(48x2−72x+31)2
.

Step 4.1.1b: F1 = 1− 1
F = 3

4

(4x−1)(192x3+48x2−316x+137)
(12x−7)3 gives the right branching pattern.

Step 4.1.1c: τ̃ : x 7→ x+ 1
4 and m̃ : x 7→ 1

x .

Hence f := F1(τ̃(m̃)) = −3 (x3−4x2+3x+3)

x (x−3)3 is the required Belyi-2 map.
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5.5 Additional Features

Once the table is complete, our algorithm is mainly the ‘table look up’, where we choose candi-

date f ’s from the table. Since the tables are big, it is important that we discard the non-candidate

entries (the entries which do not lead to the solution) as quickly as we can. In this section, we will

discuss some features which help us to detect non-candidates so that we can readily discard them.

These features make our algorithm faster and more efficient. So we add these features along with

the maps in our table. We will also discuss about the decompositions, which give smaller (usually

better) solutions.

5.5.1 Five Point Invariants

Definition 27. Let P5 = {S ⊆ P1(C) ; |S| = 5}. A function I : P5 → C is called a five point

invariant if it is invariant under Möbius transformation.

Since Möbius transformations have three degrees of freedom, and S ∈ P5 has five degrees of

freedom; there are 5− 3 = 2 algebraically independent five point invariants.

Definition 28. Let [p1, p2, p3, p4] be a quadruple of distinct points in the Riemann sphere

P1(C) = C ∪ {∞}. Their cross-ratio is denoted (p1, p2; p3, p4) and defined as:

(p1, p2; p3, p4) =
(p1 − p3) (p2 − p4)
(p2 − p3) (p1 − p4)

Remark 19.

1. If a point pi =∞, then the cross-ratio is computed by removing any factor containing pi.

2. The cross-ratio depends on the ordering of the points p1, . . . , p4, but it is invariant under

Möbius transformation.

Definition 29. The j-invariant of an elliptic curve y2 = x3 + px+ q is defined as:

j = 1728 · 4p3

4p3 + 27q2

Remark 20. Let p1, p2, p3, p4 ∈ P1(C) be any four points.

1. The j-invariant of y2 =
∏

(x− pi) can be obtained by moving (with a Möbius transformation)

one point to ∞, the sum of other 3 points to 0, and then applying definition 29.
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2. Alternatively, the j-invariant can also be computed as j = 256 · (λ
2−λ+1)2

λ2(λ−1)2 where λ is the

cross-ratio of p1, . . . , p4.

3. The j-invariant is invariant under Möbius transformations as well as reordering of the points

p1, . . . , p4.

Definition 30. Let P5 = {S ⊆ P1(C) ; |S| = 5}. Define I5 : P5 → C as

I5(S) =
∑
T⊆S
|T |=4

j(T ).

Remark 21. I5 is a five point invariant. Another five point invariant is

Ĩ5(S) =
∏
T⊆S
|T |=4

j(T ).

(actually Ĩ5 is a cube of a five point invariant)

Remark 22.

1. I5 and Ĩ5 are algebraically independent.

2. We use I5 for Belyi maps, and both I5 and Ĩ5 for Belyi-1 maps. We do not use these invariants

for Belyi-2 maps.

Algorithm and details to compute I5 and Ĩ5 can be found in www.math.fsu.edu/~vkunwar/

FiveSings/FivePointInvariants/. For a chosen Ha,b
c,x , each f in the table produces Ha,b

c,f with

five non removable singularities. Such f can only lead to a solution of a differential operator Linp

if Sing(Ha,b
c,f ) matches Sing(Linp) up to Möbius equivalence (our tables are complete up to Möbius

equivalence). I5 is a function on a set of five points which is invariant under Möbius transformation.

It assigns a specific number to each set of five points. If there is a Möbius transformation between

any two such sets, then they must have same I5.

With each Belyi map f in the table, we attach the I5 of non removable singularities of Ha,b
c,f and

the minimal polynomial of I5. We compute the I5 of the non removable singularities of Linp and

its minimal polynomial. We compare the minimal polynomial of I5 from Linp with the minimal

polynomials attached to each Belyi map in the table. We discard those entries on the table whose

minimal polynomials do not match the minimal polynomial from Linp. This way, a large portion
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of the Belyi table is skipped. In case of Belyi-1 maps f(x, s) the values of I5 and Ĩ5 are elements of

Q(s). We compare I5 and Ĩ5 of Belyi-1 maps and Sing(Linp). This gives two polynomial equations

for s. We compute their gcd to find an equation for s. If the gcd is 1 then we can discard f(x, s),

otherwise we solve the gcd to find the value(s) of s. We do not use invariants for Belyi-2 maps

because we have algorithms to compute such maps explicitly.

5.5.2 Exponent Differences

A necessary condition for f in the table to be a candidate is that the sorted lists of exponent

differences (counted with multiplicity) in Sing(Linp) and Sing(Ha,b
c,f ) match mod Z. This property

is used to discard non-candidate Belyi-1 maps instantly before comparing the five point invariants.

We attach the list of exponent differences of Ha,b
c,f to each Belyi-1 map f(x, s). We consider only

those Belyi-1 maps whose list of exponent differences matches with the list from Linp mod Z.

5.5.3 Decompositions

Our group theoretic computations show that many f ’s in our tables are decomposable (see

Figure 1.1). Solutions in terms of decompositions (if they exist) involve smaller degree pullbacks

f . Such solutions are smaller and more preferable. For instance, if a map f of degree 12 from the

table of H
1
12 , 5

12

1,x has a decomposition: f = g(h) where g = −4x(x− 1) is a degree 2 pull-back which

produces the exponent differences (0, 0, 13) from (0, 12 ,
1
3) and h is a degree 6 rational function, then

a differential operator which is solvable in terms of 2F1(
1
12 ,

5
12 ; 1 | f) is also solvable in terms of

2F1(
1
3 ,

2
3 ; 1 |h) ((e0, e1, e∞) = (0, 0, 13) ⇔ (a, b, c) = (13 ,

2
3 , 1)). The later solution is smaller and

more preferable (see the example in Section 5.6.1 for details). Our algorithms use all necessary3

pull-backs in Figure 1.1. The following algorithm computes such decompositions:

Algorithm 5.11: ComputeDecompositions

Given any two rational functions f, g. Compute h such that f = g(h) where the connecting

map g produces exponent differences (ẽ0, ẽ1, ẽ∞) from (e0, e1, e∞).

Input: f, (e0, e1, e∞), g, (ẽ0, ẽ1, ẽ∞), and C : the field of constants in f .

Output: {[h, (ẽ0, ẽ1, ẽ∞)] | f = g(h)}.

3Not all pullbacks in Figure 1.1 are necessary. For example, degree 4 pullback from (0, 1
2
, 1
3
) to (0, 0, 1

3
) is not

needed. We use degree 2 pullback which produces exponent differences (0, 0, 1
3
) from (0, 1

2
, 1
6
) to cover that case.
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Step 1: Compute the factors of the numerator of difference of f and g (evaluated at x = t)

over the field C (Type evala(Factors(numer(f-eval(g,x=t)),C))[2] in Maple). This gives

a list of lists [i, n] where i is a factor with multiplicity n.

Step 2: Ans := { }.

For each element [i, n] in Step 1, if i is linear in t then solve i for t. Denote the solution as sln.

Ans := Ans
⋃
{[sln, (ẽ0, ẽ1, ẽ∞)]}.

Step 3: Return Ans (if Ans := { }, i.e, f is non decomposable then return {[f, (e0, e1, e∞)]}).

5.6 Main Algorithm

Once we have complete tables for all cases; H
1
12 , 5

12

1,x , H
1
8 , 38

1,x and H
1
6 , 13

1,x , the final task is to build

the solver program. Let C ⊆ C be the base field, i.e. the field of constants of input differential

operator Linp. We give the algorithms to solve Linp in terms of 2F1-hypergeometric functions

with the choice (e0, e1, e∞) ∈ {(0, 12 ,
1
k ), k ∈ {3, 4, 6}}. The algorithms not only find solutions in

terms of 2F1(a, b; c | f) but also compute a decomposition f = g(h) if that exists and leads to a

smaller solution in terms of 2F1(ã, b̃; c̃ |h) (see Figure 1.1 and Example 5.6.1 for more details). The

following algorithm computes candidate Belyi and near Belyi maps:

Algorithm 5.12: ComputeCandidates 02k

Compute candidate Belyi and near Belyi maps f such that Sing
(
H

k−2
4k

, k+2
4k

1,f

)
= Sing(Linp),

where k ∈ {3, 4, 6}

Note: This program uses the tables Belyi k20 and Belyi one k20 which are the tables

for Belyi and Belyi-1 maps for (e0, e1, e∞) = ( 1k ,
1
2 , 0), k ∈ {3, 4, 6}. These tables use ( 1k ,

1
2 , 0).

But we use (0, 12 ,
1
k ), so the maps f from these tables are replaced by 1

f . When k = 3, this

program also uses Algorithm 5.9 and Algorithm 5.10 to compute Belyi-2 maps.

Input: A second order linear differential operator Linp ∈ C(x)[∂], variable x, Tables of

Belyi and Belyi-1 maps, exponent differences (0, 12 ,
1
k ) and the base field C ⊆ C

(For example, if k = 3 then the tables in the input are Belyi 320 and Belyi one 320)

Output: {[f, (0, 12 ,
1
k )] | f is a Belyi or near Belyi map s.t.Sing

(
H

k−2
4k

, k+2
4k

1,f

)
= Sing(Linp)}
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Step 1: Compute the singularity structure of Linp, i.e. Sing(Linp). If Linp does not have

5 non removable regular singularities or none of the exponent differences is zero mod Z then

stop (Linp must have at least one logarithmic singularity).

Step 2: Compute five point invariants of Sing(Linp), denote them as I5(Linp) and Ĩ5(Linp).

Let MinPolyI5(Linp) be the minimal polynomial of I5(Linp) over Q. Let E be the list of

exponent differences (counted with multiplicity) of Sing(Linp).

Step 3: Now we compute candidate Belyi and Belyi-1 maps: Let Candidates := { }.

Step 3.1: Compute candidate Belyi maps: For each entry i = [F, a, g] in Belyi k20 (where

F is a Belyi map, a is its I5 and g is the minimal polynomial of a) check if g = MinPolyI5(Linp).

If they are equal then Candidates := Candidates
⋃
{F}.

Step 3.2: Compute candidate Belyi-1 maps: For each entry [f1(x, s), e] in the table

Belyi one k20 (where f1(x, s) is a family of Belyi-1 maps and e is the list of exponent dif-

ferences (counted with multiplicity)) check if e ≡ E mod Z. If they match then compute the

singularity structure that f1(x, s) produces from (e0, e1, e∞) = ( 1k ,
1
2 , 0) and its five point invari-

ants (these are functions in s). Equate I5 and Ĩ5 of Linp and f1. This produces two equations

in C[s]. Take their gcd and solve for s. For each s (if any), let F1 = f1 evaluated at such s.

Then Candidates := Candidates
⋃
{F1}.

Step 4: Compute final candidates, i.e. f such that Sing
(
H

k−2
4k

, k+2
4k

1,f

)
= Sing(Linp):

Let FinalCandidates := { }. This loop runs through all entries in Candidates.

For each map f̃ in Candidates compute the singularity structure which the pull-

back f̃ produces from (e0, e1, e∞) = ( 1k ,
1
2 , 0). Then compute Möbius transformations

from these singularities to the singularities of Linp. For each Möbius transformation m,

FinalCandidates := FinalCandidates
⋃
{[ 1
f̃(m)

, (0, 12 ,
1
k )]}.

Step 5: Compute Belyi-2 maps: If k = 3 then run algorithm Algorithm 5.9 and

Algorithm 5.10 with the input C, x and Sing(Linp) in terms of places(C). For each Belyi-2

map f2 in the output, append [f2, (0,
1
2 ,

1
3)] in FinalCandidates.

Step 6: Return FinalCandidates.
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For k ∈ {3, 4, 6}, the following algorithm solves a second order linear differential operator Linp

with 5 regular singularities in terms of 2F1(
k−2
4k ,

k+2
4k ; 1 | f) or a decomposition, where f ∈ C(x) \C:

Algorithm 5.13: Solver5 02k

Input: A second order linear differential operator Linp ∈ C(x)[∂], variable x, k ∈ {3, 4, 6}

and the base field C ⊆ C.

Output: y = exp
( ∫

r dx
)
·
(
r0S(f) + r1S(f)′

)
6= 0 such that Linp(y) = 0, where

S(f) = 2F1(
k−2
4k ,

k+2
4k ; 1 | f) or a decomposition, and f ∈ C(x) \ C.

Step 1: Run Algorithm 5.12 with Linp, x, the tables Belyi k20, Belyi one k20, expo-

nent differences (0, 12 ,
1
k ) and the base field C as inputs. The output is FinalCandidates, i.e, the

set of lists [f, (0, 12 ,
1
k )] such that Sing

(
H

k−2
4k

, k+2
4k

1,f

)
= Sing(Linp).

Step 2: Compute the decompositions of FinalCandidates: RefinedCandidates := { }.

This loop runs through the entries in FinalCandidates. For each element [f, (0, 12 ,
1
k )] in

FinalCandidates compute all possible decompositions of f (Figure 1.1 and Algorithm 5.11).

Include the outputs in RefinedCandidates.

Step 3: This loop runs through RefinedCandidates.

For each element [F, (e0, e1, e∞)] in RefinedCandidates ((e0, e1, e∞) must be the reciprocals of

one of the triples in Figure 1.1), take the base GHDO Ha,b
c,x with exponent differences (e0, e1, e∞).

For instance if (e0, e1, e∞) = (0, 12 ,
1
3) then take:

H
1
12 , 5

12

1,x := x(1−x)∂2 +(c− (a+b+1)x)∂−ab with a = 1
12 , b = 5

12 and c = 1 (these correspond

to (e0, e1, e∞) = (0, 12 ,
1
3)). Apply change of variables x 7→ F on Ha,b

c,x , which produces Ha,b
c,F

such that Sing(Ha,b
c,F ) = Sing(Linp).

Step 3.1: For each Ha,b
c,F in Step 3, compute the projective equivalence [19] between Ha,b

c,F

and Linp. The output could be zero (meaning they are not equivalent) in which case we take

the next Ha,b
c,F , or we get a non zero map G of the form:

G = exp(
∫
rdx)(r0 + r1∂), where r, r0, r1 ∈ C(x).

Step 3.2: S(F ) = 2F1(a, b; c |F ) is a solution of Ha,b
c,F . Apply the operator G ob-

tained in Step 3.1 to S(F ). That gives a solution of Linp. Repeat this procedure for all

RefinedCandidates to obtain a list of solutions of Linp.

Step 4: From the list of solutions of Linp, choose the best solution with the shortest length.
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Now we give the main algorithm:

Algorithm 5.14: Solver5

Solve a second order linear differential operator with five regular singularities in terms of

2F1(
k−2
4k ,

k+2
4k ; 1 | f) or a decomposition, where f ∈ C(x) and k ∈ {3, 4, 6}.

Input: A second order linear differential operator Linp ∈ C(x)[∂] with five regular singu-

larities where at least one singularity is logarithmic, variable x, and the base field C ⊂ C.

Output: y = exp
( ∫

r dx
)
·
(
r0S(f) + r1S(f)′

)
6= 0 such that Linp(y) = 0, where

S(f) = 2F1(
k−2
4k ,

k+2
4k ; 1 | f), k ∈ {3, 4, 6} or a decomposition, and f ∈ C(x) \ C.

Let’s first run Algorithm 5.13 with k = 6. This case has the smallest degree bound:

Step 1: Call Algorithm 5.13 with Linp, x, k = 6 and C.

If Step 1 can’t solve Linp then we run Algorithm 5.13 with k = 4:

Step 2: Call Algorithm 5.13 with Linp, x, k = 4 and C.

If Step 2 can’t solve Linp then we finally run Algorithm 5.13 with k = 3:

Step 3: Call Algorithm 5.13 with Linp, x, k = 3 and C.

5.6.1 An Example

Consider the following differential operator:

L := ∂2 +

(
8x4 − x2 + 2x− 3

)
x (x+ 1) (4x+ 3) (x2 − 2x+ 3)

∂ − 4x2

(x2 − 2x+ 3)2 (x+ 1)2 (4x+ 3)

Following is the procedure to solve this operator using our algorithm in Maple:

Step 1: Read the program Solver5 from http://www.math.fsu.edu/~vkunwar/FiveSings/.

Step 2: L has the following singularity structure:

> Sing(L); {
[x, 4/3], [x+ 1, 0], [x+ 3/4, 1/3], [x2 − 2x+ 3, 0]

}
L has five regular singularities (exponent differences are constant) and three of them are loga-

rithmic (exponent differences are 0). So L is a differential operator we want to solve. It is easy to

see that L can’t be solved with the choice k = 4.
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Let’s compute five point invariants I5 and Ĩ5 of L, and minimal polynomial of I5(L):

> I5(L);

−259058528/59049

> I5tilde(L);

−11874715/472392

> MinPoly_I5(L);

x+ 259058528/59049

E is the sorted list of exponent differences of L:

> E;

[0, 0, 0, 1/3, 4/3]

Step 3: First we try to solve L with the choice (e0, e1, e∞) = (0, 12 ,
1
6), i.e; using Solver5 02k

with k = 6;

> Solver5_02k(L, x, 6, { });

{ }

Solver5 02k with k = 6 does not solve L. It finds some RefinedCandidates, but fails at projective

equivalence.

Step 4: Now we try to solve L with the choice (e0, e1, e∞) = (0, 12 ,
1
4), i.e; using Solver5 02k

with k = 4;

> Solver5_02k(L, x, 4, { });

{ }

Solver5 02k with k = 4 does not solve L. It does not find any Candidates.

Step 5: We finally try to solve L with the choice (e0, e1, e∞) = (0, 12 ,
1
3), i.e; using Solver5 02k

with k = 3;

> Solver5_02k(L, x, 3, { });{ (x+ 1)1/3(x2 − 2x+ 3)1/6

x2/3
2F1

(
1/6, 1/2; 1 | x

4 + 4x+ 3

x4

)}
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The details of this procedure are the following:

Step 5.1: Run Algorithm 5.12 with L, x, Belyi 320, Belyi one 320, (13 ,
1
2 , 0) and { }:

1. The program first searches the entries on the table Belyi 320 to find Belyi maps whose

minimal polynomial of five point invariant I5 matches with that of L. Here are such Belyi

maps:

F1 =
{

4 (4x−3)(x2+2x+3)(x−1)2

x8
, 4 (4x+3)x4

(x+1)4(x2−2x+3)2
,
128 (2x−3)(x4−36x+54)

3

(x−2)2(x2+4x+12)x12
,
128 (2x+3)(x4−4x−6)

3

(x+2)6(x2−4x+12)3x4

}
2. The program then searches the table Belyi one 320 for those Belyi-1 maps whose sorted list

of exponent differences match with E. It compares five point invariants I5 and Ĩ5 of matching

entries to obtain two polynomials and solves their gcd for ‘s’(parameter of Belyi-1 families).

The procedure finds the following map:

F2 =
{
−(x−1)4(x+1)3(x−7)

16 (3x2+2x+1)2

}
Note that this is also a Belyi map, we can check that from its branching above 0, 1,∞.

Candidate Belyi-1 map f(x, s) from the table reduced to this Belyi map because the fourth

branch point t happened to be in {0, 1,∞} for this particular value of s.

3. Let F := F1
⋃
F2. For each map g in F , we compute Möbius transformations from the singu-

larities of H
1
12
, 5
12

1,g to Sing(L). We compose g with these Möbius transformations. Reciprocals

of the results (we use (0, 12 ,
1
k )) give the following maps:

Fs =

{
(x+1)4(x2−2x+3)

2

4 (4x+3)x4
, −x8
4 (x2−2x+3)(4x+3)(x+1)2

,
64(x+1)6(x2−2x+3)

3
x4

(4x+3)(8x4−4x−3)3 ,
−64(x+1)2(x2−2x+3)x12

(4x+3)(8x4+36x+27)3

}
(Two maps in F are Möbius equivalent)

4. The program calls Algorithm 5.9 and Algorithm 5.10 to find Belyi-2 maps. There are no

such maps.

Hence, Algorithm 5.12 returns the following:

FinalCandidates := {[ (x+1)4(x2−2x+3)
2

4 (4x+3)x4
, (0, 12 ,

1
3)], [ −x8

4 (x2−2x+3)(4x+3)(x+1)2
, (0, 12 ,

1
3)],

[
64(x+1)6(x2−2x+3)

3
x4

(4x+3)(8x4−4x−3)3 , (0, 12 ,
1
3)], [

−64(x+1)2(x2−2x+3)x12

(4x+3)(8x4+36x+27)3
, (0, 12 ,

1
3)]}

Step 5.2: Run Algorithm 5.13 with L, x, 3 and C:

We compute decompositions of FinalCandidates. For (0, 12 ,
1
3) it is enough to consider the only

decomposition f = g(h) where g = x2

4 (x−1) produces exponent differences (0, 13 ,
1
3) from (0, 12 ,

1
3).

RefinedCandidates := { }.

The first entry i =
(x+1)4(x2−2x+3)

2

4 (4x+3)x4
has the decomposition i = g(h) where

h ∈ {x4+4x+3
4x+3 , x

4+4x+3
x4

}.
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Second entry i = −x8
4 (x2−2x+3)(4x+3)(x+1)2

has the decomposition i = g(h) with

h ∈ { x4

x4+4x+3
,− x4

4x+3}.

The other two maps don’t have any decompositions. This procedure gives the following Refined-

Candidates:

RefinedCandidates := {[ (x
4+4x+3)
x4

, (0, 13 ,
1
3)], [

(x4+4x+3)
4x+3 , (0, 13 ,

1
3)], [ x4

x4+4x+3
, (0, 13 ,

1
3)],

[ −x
4

4x+3 , (0,
1
3 ,

1
3)], [

64(x+1)6(x2−2x+3)
3
x4

(4x+3)(8x4−4x−3)3 , (0, 12 ,
1
3)], [

−64(x+1)2(x2−2x+3)x12

(4x+3)(8x4+36x+27)3
, (0, 12 ,

1
3)]}

Step 5.2a: Now we apply projective equivalence [19]:

For the candidate f = x4+4x+3
x4

we take GHDO with (e0, e1, e∞) = (0, 13 ,
1
3) and apply change of

variable x 7→ f . That produces the following operator:

L1 := ∂2 +
(−x2−15+8x4−14x)

x(x+1)(4x+3)(x2−2x+3)
∂ + 12

(x2−2x+3)(4x+3)x2

> equiv(L1, L);

(x+ 1)1/3 (x2 − 2x+ 3)1/6

x2/3

2F1

(
1
6 ,

1
2 ; 1 | x4+4x+3

x4

)
is a solution of L1. Hence

(x+1)1/3 (x2−2x+3)1/6

x2/3
· 2F1

(
1
6 ,

1
2 ; 1 | x4+4x+3

x4

)
is a solution of L.

Repeating the procedure with candidate f = x4+4x+3
4x+3 and (e0, e1, e∞) = (0, 13 ,

1
3) produces the

following operator:

L2 := ∂2 +
(12x4−x2+2x−3)

x(x+1)(4x+3)(x2−2x+3)
∂ + 12x2

(x2−2x+3)(4x+3)2

> equiv(L2, L);

(x+ 1)1/3
(
x2 − 2x+ 3

4x+ 3

)1/6

2F1

(
1
6 ,

1
2 ; 1 | x4+4x+3

4x+3

)
is a solution of L2. Hence

(x+ 1)1/3
(
x2−2x+3
4x+3

)1/6
· 2F1

(
1
6 ,

1
2 ; 1 | x4+4x+3

4x+3

)
is a solution of L.

Repeating the procedure with candidate f = x4

x4+4x+3
and (e0, e1, e∞) = (0, 13 ,

1
3) produces the

following operator:

L3 := ∂2 +
(8x4−x2+18x+9)

x(x+1)(4x+3)(x2−2x+3)
∂ − 12x2

(x2−2x+3)2(x+1)2(4x+3)

> equiv(L3, L);

0

This choice does not solve L.

Other candidates do not solve L; they stop at projective equivalence, returning 0.
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Step 7: Of these two solutions{
(x+1)

1
3 (x2−2x+3)

1
6

x
2
3

2F1

(
1
6 ,

1
2 ; 1 | x4+4x+3

x4

)
, (x+ 1)

1
3

(
x2−2x+3
4x+3

) 1
6

2F1

(
1
6 ,

1
2 ; 1 | x4+4x+3

4x+3

)}
, our pro-

gram returns the following (best) solution:

> Solver5(L, x, { });{(x+ 1)1/3(x2 − 2x+ 3)1/6

x2/3
· 2F1

(
1/6, 1/2; 1 | x

4 + 4x+ 3

x4

)}
which is the solution obtained in Step 5.
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