
Hypergeometric Solutions of Second Order Linear
Differential Equations with Five Singularities

Abstract

Let L ∈ C(x)[∂] be a second order, irreducible, linear differential operator with rational function coefficients
and ∂ = d

dx . Suppose L has five regular singularities and at least one of them is logarithmic. The goal in
this paper is to solve such L in terms of 2F1-hypergeometric functions, i.e, to find 2F1-type solution:

y = exp
(∫

r dx
)
·
(
r0S(f) + r1S(f)′

)
6= 0 (1)

such that L(y) = 0, where S(x) = 2F1(a, b; c |x) and f, r, r0, r1 ∈ C(x).

1 Introduction

Differential equations have a huge impact in human society as they occur significantly in every branch of
science. Linear homogeneous differential equations with rational function coefficients (i.e, with singularities)
are very common in mathematics, combinatorics, physics and engineering. Finding closed form solutions
(solutions expressible in terms of well studied special functions, for example; Bessel, Kummer, Liouvillian,
Hypergeometric etc.) of such differential equations is a fascinating area of research in computer algebra
[5, 22, 11, 23, 1, 8, 9].
Although there is no complete algorithm which can find closed form solution of every second order differential
equation, there are algorithms to treat some classes of differential equations. For example, Kovacic’s algorithm
[24] finds Liouvillian solutions and the algorithm in [10] finds solutions of the differential equations with
so-called irregular singularities in terms of Bessel, Kummer functions. The hypergeometric case, which
corresponds to Fuchsian differential equations (equations with only regular singularities), is interesting as it
incorporates a broader area (dessin d’enfants, Belyi and near Belyi maps, constellations, . . . ) of mathematics.
This motivates us to work on hypergeometric solutions of differential equations.
Gauss Hypergeometric Equation (GHE) has 3 regular singularities at {0, 1,∞} and has 2F1(a, b; c |x) as a
solution where the parameters a, b, c are determined by exponent differences (e0, e1, e∞) of GHE at 0, 1,∞
by (e0, e1, e∞) = (1− c, c− a− b, b− a) (up to ±). The corresponding differential operator, also called Gauss
Hypergeometric Differential Operator (GHDO) is denoted as Ha,b

c,x (see Section 2 for details). If we choose

(e0, e1, e∞) = (0, 12 ,
1
3 ) then we have (a, b, c) = ( 1

12 ,
5
12 , 1). Then the differential operator H

1
12

, 5
12

1,x has a basis

of two solutions at x = 0, consisting of an analytic solution: 2F1( 1
12 ,

5
12 ; 1 |x) and a logarithmic solution.

Finding 2F1-type solution of a second order differential operator L corresponds to finding transformations
that send Ha,b

c,x to L:

(i) Change of variables: y(x) 7→ y(f)
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx) · y

The function f in (i) above is called the pullback function. These transformations are denoted as
f−→

C
,
r0,r1−−−→

G

and
r−→

E
respectively. Let S(x) be a special function that satisfies a second order differential operator.

All of these transformations send expressions in terms of S to expressions in terms of S. So any solver
for finding solutions in terms of S, if it is complete, then it must be able to deal with transformations
f−→

C
,
r0,r1−−−→

G
and

r−→
E

. So it must be able to find any solution of the form (1).
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Our task in this project is, given an input differential operator Linp, find

Ha,b
c,x

f−→
C
Ha,b
c,f

r0,r1−−−→
G

r−→
E
Linp.

Once we find such transformations, we compute a 2F1-type solution of Linp as:

S(x)
f−→

C
S(f)

r0,r1−−−→
G

r−→
E

exp(

∫
rdx)

(
r0S(f) + r1S(f)′

)
where S(x) =2 F1(a, b; c |x).

There are algorithms [3] to find the transformations
r0,r1−−−→

G
and

r−→
E

but to apply them we first need Ha,b
c,f

(or equivalently, f and Ha,b
c,x). Thus the crucial part is to compute f . We compute f from the singularities

of Ha,b
c,f . Since we do not yet know Ha,b

c,f , the only singularities of Ha,b
c,f that we know are the singularities of

Linp that can not disappear (turn to regular points) under the transformations
r0,r1−−−→

G
and

r−→
E

.

Definition 1.1. A singularity of a differential operator is called a non-removable singularity if it stays

singular under any combination of transformations
r0,r1−−−→

G
and

r−→
E

.

A singularity p of Linp that can become a regular point under
r0,r1−−−→

G
and/or

r−→
E

need not be a singularity

of Ha,b
c,f . Such (removable) singularities provide no information about f . They include apparent singularities

(singularities p where all solutions are analytic at x = p, such singularities can disappear under
r0,r1−−−→

G
).

More generally, if there exist functions u, y1, y2 with y1, y2 analytic at x = p such that uy1, uy2 is a basis of
local solutions of a second order differential operator L at x = p, then x = p is removable (such p can be sent

to an apparant singularity with
r−→

E
).

1.1 Motivation

Any second order linear differential equation with 3 regular singularities is 2F1-solvable (essentially by def-
inition). In this case we need to find a Möbius transformation from these 3 singularities to {0, 1,∞} and
applying that to 2F1(a, b; c |x) gives a solution. This case is done in [11]. For differential equations with
n > 3 singularities, the main task is to develop a complete table consisting of all rational maps f which
produce n singularities from 0, 1,∞. The case where a differential equation has 4 regular singularities (Heun
equation) is done in [5]. That motivates our focus on the differential equations with 5 regular singularities.
Differential equations with logarithmic singularities are very common. Section 3 in [15] mentions 92 integer
sequences coming from counting paths in a 2D lattice, of which 36 appear to be holonomic (their generating
function satisfies a linear homogeneous differential equation with polynomial coefficients). Of these 36 differ-
ential equations, there are 19 with algebraic solutions. All remaining 17 equations are 2F1-solvable and have
logarithmic singularities.
We examined many integer sequences u(0), u(1), u(2), . . . in [25] whose generating functions y =

∑
n u(n)xn ∈

Z[x] are (a) convergent, and (b) holonomic, i.e; y satisfies a linear differential equation with rational function
coefficients. Such differential equations are also known as globally nilpotent differential equations [19] or CIS
(convergent integer power series)-equations [18]. All such second order differential equations tested so far
turned out to have hypergeometric (2F1 in this case) solutions or algebraic solutions. We are interested in
hypergeometric solutions, the algebraic solutions can be found using [24]. In fact we observed the same for
differential equations of order three from [25], in this case the differential equation reduces to a second order
differential equation with 2F1-type solution. More surprisingly, all differential equations discussed above lie

in the same class, namely Class
(
H

1
12

, 5
12

1,x

)
:

Definition 1.2. The class of a differential operator L, denoted Class(L), is a minimal set of operators with
the following properties:

1. L ∈ Class(L),

2. If L1 can be solved in terms of L2 (this means solutions of L1 are expressible in terms of solutions of L2

using the transformations
f−→

C
,
r0,r1−−−→

G
,
r−→

E
) and Class(L) ∩ {L1, L2} 6= ∅ then {L1, L2} ⊆ Class(L).

Definition 1.3. If transformations in property 2 above involve algebraic functions, the class is denoted as
Classalg(L).
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Remark 1.4. Class(L) ⊆ Classalg(L).

It turns out that f in logarithmic case has degree bound 18 and at most 2 branch points outside {0, 1,∞}
(see Section 3 for more details). For arbitrary a, b, c, the degree bound for such f would be 60 for 4
singularities, and 96 for 5 singularities. If L1 ∈ Classalg(L2), then the monodromy groups of L1 and L2

are commensurable. Kisao Takeuchi classified [10, Section 2, Table (1)] commensurable classes of arithmetic
triangle groups. The first class (Section 4, Diagram (I)) in Takeuchi’s table corresponds to the reciprocals of

exponent differences of the GHDO’s in Class
(
H

1
12

, 5
12

1,x

)
. We show the diagram here:

(∞, 2, 6) (∞, 2, 3) (∞, 2, 4)
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Fig. 1: [10, Section 4, Diagram (I)], which gives the reciprocals of exponent differences of GHDO’s in

Class
(
H

1
12

, 5
12

1,x

)
Each triangle group in Figure 1 corresponds to the denominators of exponent differences of GHDO whereas
∞ corresponds to exponent difference 0 (logarithmic singularity, see Section 2). This diagram includes all
logarithmic cases in Takeuchi’s classification. From the classification [10, Section 2, Table (1)], we observe
the following:
If a differential operator L has (i) logarithmic singularities and (ii) arithmetic monodromy group, then L ∈
Classalg

(
H

1
12

, 5
12

1,x

)
.

(∞, 2, 3) in Figure 1 corresponds to the GHDO with exponent differences (e0, e1, e∞) = (0, 12 ,
1
3 ) (up to ±

and mod Z). This choice of the exponent differences gives (a, b, c) = ( 1
12 ,

5
12 , 1). The correspondence can also

be given as:

3←→ ±1

3
+ Z, 2←→ ±1

2
+ Z and ∞←→ 0 + Z.

The numbers along the lines in Figure 1 represent the degree of the pullback function f in
f−→

C
which produces

one triple of exponent differences from another. For example, a degree 2 pullback produces the exponent
differences (0, 0, 13 ) from (0, 12 ,

1
6 ).

Taking (e0, e1, e∞) = (0, 0, 13 ) gives (a, b, c) = ( 1
3 ,

2
3 , 1), and taking (e0, e1, e∞) = (0, 12 ,

1
6 ) gives (a, b, c) =

( 1
6 ,

1
3 , 1). That means H

1
3
, 2
3

1,x can be solved in terms of solutions of H
1
6
, 1
3

1,x using the pullback f of degree 2

(Moreover if a differential operator L can be solved in terms of solutions of H
1
3
, 2
3

1,x , then L can also be solved

in terms of solutions of H
1
6
, 1
3

1,x ). Such f has the branching pattern [1, 1], [2], [2] above 0, 1,∞ respectively, i.e,
f ramifies of order 2 above 1 and ∞. A quick computation gives f = −4x(x− 1).
Our ultimate goal is to solve all logarithmic cases, yet we want to deal with the differential equations
associated with Figure 1 first because that covers nearly all cases with logarithmic singularities. The other
cases, for example, differential equations solvable in terms of the GHDO with (e0, e1, e∞) = (0, 12 ,

1
5 ), which

have lower degree bound for f and hence smaller table than H
1
12

, 5
12

1,x , can be done in the similar way. Any

choice of exponent differences corresponding to Figure 1 is solvable in terms of solutions of H
1
12

, 5
12

1,x , H
1
8
, 3
8

1,x or

H
1
6
, 1
3

1,x which correspond to (∞, 2, 3), (∞, 2, 4) and (∞, 2, 6) respectively. Hence, treating these 3 cases covers
everything for this project.
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2 Preliminaries and Notations

This section gives a brief summary of the prior results and notations that are necessary for this paper.

2.1 Differential Operators

Definition 2.1. Let K be a field with characteristic zero. A derivation ∂ in K is a map ∂ : K −→ K with
the following properties:

∂(a+ b) = ∂(a) + ∂(b),

∂(ab) = ∂(a)b+ a∂(b)

where a, b ∈ K.

Remark 2.2.

1. A field K equipped with such derivation is called a differential field.

2. CK := {k ∈ K | ∂(k) = 0} is also a field, called the constant field of K.

The associated ring, also called a ring of differential operators, is denoted by K[∂].

Definition 2.3. Given a differential field K with derivation ∂, a differential operator L is an element of
K[∂] given as: L =

∑n
i=0 ai∂

i where ai ∈ K.

Remark 2.4. If an 6= 0 then we say that L has order n and write deg(L) = n.

Note: K[∂] is non commutative in general. For example, ∂x = x∂ + 1 when K = C(x) and ∂ = d
dx .

The solutions y of differential equation L(y) = 0 lie in a universal extension Ω of K, where Ω is a minimal
differential ring in which every operator L ∈ K[∂] has precisely deg(L) linearly independent solutions, more
details can be found in [22].

Definition 2.5. The set of all solutions of a differential operator L is called its solution space. It is denoted
by V (L) and defined as:

V (L) := {y ∈ Ω |L(y) = 0}

2.2 Singularities

Consider a differential operator L =
∑n
i=0 ai∂

i where ai ∈ K. After clearing denominators, we may assume
that the ai’s are polynomials.

Definition 2.6.

1. A point p ∈ CK is called a regular (or non-singular) point when an(p) 6= 0. Otherwise it is called a
singular point (or a singularity).

2. The point p = ∞ is called regular if the change of variable x 7→ 1/x produces an operator L1/x with a
regular point at x = 0.

Remark 2.7. Let y be a solution of a differential operator L. Singularities of y are also singularities of L
but the converse is not true, see apparent singularities in Section 2.4.

Definition 2.8. Given p ∈ CK ∪ {∞}, we define the local parameter tp as

tp =

{
x− p if p 6=∞
1
x if p =∞.

Below we discuss the types of singularities.

Definition 2.9. Let L =
∑n
i=0 ai∂

i where ai are polynomials. A singularity p of L is:
(1) regular singularity (p 6=∞) if tip ·

an−i

an
is analytic at x = p for 1 ≤ i ≤ n.

(2) regular singularity (p =∞) if L1/x has a regular singularity at x = 0.
(3) irregular singularity otherwise.
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Definition 2.10. A differential operator is called Fuchsian (or regular singular) if all of its singularities are
regular singularities.

This paper considers only Fuchsian operators of order 2. The non-Fuchsian case (L having at least one
irregular singularity) was treated in [22]. The following classical theorem gives the structure of local solutions
of a second order differential operator at a regular singularity or a non-singular point:

Theorem 2.11. Let L ∈ K[∂] be an operator of order 2 and p ∈ CK . If x = p is a regular singularity or a
non-singular point of L, then there exists the following basis of V (L) in the neighborhood of x = p;

y1 = te1p

∞∑
i=0

ait
i
p, a0 6= 0 and

y2 = te2p

∞∑
i=0

bit
i
p + cy1 log(tp), b0 6= 0 where e1, e2, ai, bi, c ∈ CK

such that:
(i) If e1 = e2 then c 6= 0.
(ii) Conversely, if c 6= 0 then e1 − e2 ∈ Z.

More details can be found in [20, 22].

Remark 2.12. In Theorem 2.11:

1. If c 6= 0 then x = p is called a logarithmic singularity.

2. The constants e1, e2 are called local exponents or exponents of L at x = p.

For a second order differential operator L = ∂2 +a0∂+a1 ∈ K[∂], these exponents e1, e2 of a regular singular
point p can be obtained as the roots of the indicial equation:
1. X(X − 1) + q0X + q1 = 0, where qi = limx 7→p(x− p)i+1ai, i ∈ {0, 1} ( if p ∈ CK ).
2. If p =∞ then take the indicial equation of L1/x at x = 0.

Remark 2.13.

1. Logarithmic singularities are non-removable. They stay logarithmic under the transformations
f−→

C

,
r0,r1−−−→

G
and

r−→
E

.

2. If e1−e2 ∈ Z and x = p is non logarithmic then the point x = p is either a regular point or a removable
singularity.

3. x = p is non-singular ⇐⇒ {e1, e2} = {0, 1} and c = 0.

4. x = p is a non-removable singularity ⇐⇒ c 6= 0 or e1 − e2 6∈ Z.

Proofs and more details can be found in [21].

Definition 2.14. Let e1, e2 be the exponents of L at x = p. The exponent difference of L at x = p is denoted
∆p(L) (or ∆p) and is defined as ∆p(L) = ± (e1 − e2).

Let ∆p1 ,∆p2 be the exponent differences of L at p1, p2 respectively. We say that ∆p1 and ∆p2 match if
∆p1 ≡ ∆p2 mod Z.

Definition 2.15. The singularity structure of L is:

Sing(L) = {(p,∆p(L) mod Z) : p is a non-removable singularity}.

It is often more convenient to express singularities in terms of monic irreducible polynomials.

Definition 2.16. Let F be a field of constants with characteristic 0.

places(F ) := {f ∈ F [x] | f is monic and irreducible}
⋃
{∞}.

The degree of a place p is 1 if p =∞ and deg(p) otherwise.
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Example 2.17. Consider the following differential operator:

L = 2
(
2x2 − 1

) (
8x2 − 1

)
∂2 + 4x

(
24x2 − 7

)
∂ + 24x2 − 3.

We obtain the singularity structure of L as:

Sing(L) =
{( 1√

2
,

1

6

)
,
(
− 1√

2
,

1

6

)
,
( 1

2
√

2
,

1

3

)
,
(
− 1

2
√

2
,

1

3

)}
.

In terms of places(Q) it is written as:

Sing(L) =
{(
x2 − 1

2
,

1

6

)
,
(
x2 − 1

8
,

1

3

)}
.

For the rest of the paper, we will consider K = C(x).

2.3 Gauss Hypergeometric Differential Equation

The Gauss hypergeometric differential equation (GHE) has the following form:

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0. (2)

It has three regular singularities at 0, 1, and ∞. It has exponents {0, 1− c} at x = 0, {0, c− a− b} at x = 1
and {a, b} at x =∞. The corresponding differential operator is denoted by:

Ha,b
c,x = x(1− x)∂2 + (c− (a+ b+ 1)x)∂ − ab. (3)

One of the solutions of the GHE at x = 0 is 2F1(a, b; c |x). Computing a 2F1-type solution of a second order
Linp (inp = input) corresponds to computing transformations from Ha,b

c,x to Linp.

Remark 2.18. The exponent differences of Ha,b
c,x can be obtained from the parameters a, b, c and vice versa:

(e0, e1, e∞) = (1− c, c− a− b, b− a).

Remark 2.19. We assume that Ha,b
c,x has no Liouvillian solutions. For such Ha,b

c,x , the points 0, 1,∞ are never

non-singular or removable singularities. So if Ha,b
c,x has ep ∈ Z (with p ∈ {0, 1,∞}) then p is a logarithmic

singularity.

2.4 Properties of Transformations

For second order operators, we use the notation L1 −→ L2 if L1 can be transformed to L2 with any

combination of the three transformations from Section 1. If L1 −→ L2 then L1
f−→

C

r0,r1−−−→
G

r−→
E
L2. More

details can be found in [1].

Remark 2.20.

1.
r0,r1−−−→

G
and

r−→
E

are equivalence relations.

2. ∆p remains same under
r−→

E
but may change by an integer under

r0,r1−−−→
G

.

So if Ha,b
c,x

f−→
C

Ha,b
c,f

r0,r1−−−→
G

r−→
E
Linp for some input Linp with a, b, c, f unknown, then ∆p(H

a,b
c,f )

can be ( mod Z and up to ±) read from ∆p(Linp),

Sing(Linp) = Sing(Ha,b
c,f ).

Hence a, b, c, f should be reconstructed from Sing(Linp).

3. If one of e0, e1, e∞ is in 1
2 + Z then Ha,b

c,x is determined, up to the equivalence relation
r0,r1−−−→

G

r−→
E

, by
the triple (e0, e1, e∞) up to ± and mod Z.

If {e0, e1, e∞}
⋂

( 1
2 + Z) = ∅ then the triple leaves two separate cases for Ha,b

c,x up to
r0,r1−−−→

G

r−→
E

; we
need to consider (e0, e1, e∞) up to ± and mod Z, and (e0 + 1, e1, e∞) up to ±. See Theorem 8,
Section 5.3 in [23] for details.
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Because of the transformation Ha,b
c,f

r0,r1−−−→
G

r−→
E
Linp in Remark 2.20 only non-removable singularities of Linp

provide usable data for f and Ha,b
c,f .

Definition 2.21. Two operators L1, L2 are called projectively equivalent (notation: L1 ∼p L2) if L1
r0,r1−−−→

G
r−→

E
L2.

Definition 2.22. Let f : P1 → P1 be a rational function of degree n, where the degree of a rational function
is defined as the maximum of the degrees of its numerator and denominator. A point b ∈ P1 is called a
branch point if #(f−1(b)) < n, i.e; f has multiple roots above b. The multiple root (if any) a ∈ P1 is called
a ramification point. Set of all branch points is called the branched set. The branching pattern of a rational
function f above a point q is given as a list of multiplicities of all points p ∈ f−1(q).

Example 2.23. Consider the following function:

f = −1

4

(3x− 1)
2

(x− 3) (x− 1)
3
x2

where 1− f =
1

4

(
−1 + 3x− 6x2 + 2x3

)2
(x− 3) (x− 1)

3
x2

Then branching pattern of f above 0, 1,∞ is [2, 4], [2, 2, 2], [1, 2, 3].

Singularity structure of a differential operator is preserved under the transformations
r0,r1−−−→

G
and

r−→
E

.

However, the change of variables
f−→

C
can change everything. The following lemma gives the effect of

f−→
C

on the singularities and their exponent differences (see [12] for more details):

Lemma 2.24. Let e0, e1, e∞ be the exponent differences of Ha,b
c,x at 0, 1,∞. Let Ha,b

c,f be the operator obtained

from Ha,b
c,x by applying x 7→ f . Let d = ∆p be the exponent difference of Ha,b

c,f at x = p. Then:

1. If p is a root of f with multiplicity m, then d = me0.

2. If p is a root of 1− f with multiplicity m, then d = me1.

3. If p is a pole of f of order m, then d = me∞.

Example 2.25. Let L be the Gauss hypergeometric differential operator with (e0, e1, e∞) = (0, 12 ,
1
4 ), i.e;

L := H
1
8 ,

3
8

1,x :

L := 64x(x− 1)∂2 + 32(3x− 2)∂ + 3

Singularity structure of L is the following:

> Sing(L); {
[x, 0], [∞,−1

4
], [x− 1,

1

2
]

}
Exponent difference is defined up to ±. Let M be the differential operator obtained after applying the change

of variables with f = (1−x)(4x+1)
(x+1)3 , i.e; M := H

1
8 ,

3
8

1,f ;

M := 16(x+ 1)2(x− 1)(4x+ 1)(x+ 7)(2x− 7)∂2 + 16(x+ 1)(x+ 4)(8x3 − 48x2 − 75x+ 35)∂ + 3(2x− 7)3

We find the following singularity structure of M ;

> Sing(M);

{[∞, 0], [x+ 7,
1

2
], [x− 1, 0], [x+ 1,−3

4
], [x+

1

4
, 0]}
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Following diagram illustrates the result:

H
1
8 ,

3
8

1,f :
p ∞ 1 − 1

4 −7 −1

∆p 0 0 0 1
2

3
4

6

f = (1−x)(4x+1)
(x+1)3 1− f = x2(x+7)

(x+1)3

H
1
8 ,

3
8

1,x :
p 0 1 ∞

∆p 0 1
2

1
4

p: singularity, ∆p: exponent difference

Fig. 2: Effect of
f−→

C
on the singularity structure

The branching pattern of f above 0, 1,∞ is [1, 1, 1], [1, 2], [3]. Exponent differences of the base operator H
1
8 ,

3
8

1,x

get multiplied by the corresponding multiplicities of f to produce the exponent differences of the resulting

operator H
1
8 ,

3
8

1,f . The point 0 above 1 becomes a regular point (exponent difference is 2 · 12 = 1) and thus does

not show up in Sing
(
H

1
8 ,

3
8

1,f

)
.

Remark 2.26. Let Ha,b
c,x be the Gauss hypergeometric differential operator. Suppose [a1, . . . , ai],

[b1, . . . , bj ], [c1, . . . , ck] be the branching pattern of f above 0, 1,∞ respectively. Using Lemma 2.24 and Re-

mark 2.13, the singularities of Ha,b
c,f are as follows:

P0 = {x : f(x) = 0 and (e0 ∈ Z or al e0 /∈ Z) for 1 ≤ l ≤ i}
P1 = {x : 1− f(x) = 0 and (e1 ∈ Z or bl e1 /∈ Z) for 1 ≤ l ≤ j}
P∞ = {x : 1

f(x) = 0 and (e∞ ∈ Z or cl e∞ /∈ Z) for 1 ≤ l ≤ k}

where (e0, e1, e∞) are the exponent differences of Ha,b
c,x at (0, 1,∞) respectively. The union of P0, P1 and P∞

are the non-removable singularities of Ha,b
c,f , or Linp by Remark 2.20.

2.5 An Example with Hypergeometric Solution

Consider the following differential operator:

L = (x− 16)(x2 + 18x− 15)∂2 + (x+ 7)(x− 39)∂ − 1

36

(25x3 − 1006x2 − 5523x− 894)

(x2 − 3)

L has the following singularity structure:

> Sing(L); {
[∞,−5

3
], [x2 − 3, 1], [x2 + 18x− 15, 0]

}
L has five regular singularities; the roots of x2 + 18x − 15 and x2 − 3 are logarithmic singularities. Our
algorithm solves L, see www.math.fsu.edu/~vkunwar/FiveSings/ for more details. One of the solutions is:

Sol(L) = h1(x)S(f) + h2(x)S(f)′

where h1(x) = 1
3

(x3−36 x2+69 x−54)(x2−3)
(4 x3−29 x2+42 x−21)5/4 , h2(x) =

(x2−3)(x2+18 x−15)
(4 x3−29 x2+42 x−21)1/4(x+7)

and
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S(f) = 2F1

(
1
12 ,

5
12 ; 1 | 49

(x2+18 x−15)
2
(x2−3)

3

(4 x3−29 x2+42 x−21)3

)
.

The crucial task is to find the parameters of hypergeometric function; i.e, to find the constants a, b, c and the
rational function f . For this project, the parameters a, b, c are computed from the finite choices of exponent
differences corresponding to Figure 1. Hence the major task is to compute f . The remaining part of the
paper will be focused on the theoretical and computational aspects of our method on finding f .

3 Types and Bounds for f

For a rational function f : P1 → P1 of degree n, total amount of ramification is given by:∑
p∈P1

(ep − 1) = 2n− 2 (Riemann-Hurwitz) (4)

where ep is the ramification order of f at p. Let the amount of ramification of f be R01∞ (above {0, 1,∞})
and Rout (above P1 \ {0, 1,∞}). As in [2], using (4), we find the largest bounds for the degree of f and
ramification outside {0, 1,∞} for our project as:

deg(f) ≤ 18 and Rout ≤ 2

when we choose (e0, e1, e∞) = (0, 12 ,
1
3 ). We have to compute all rational functions (up to Möbius transfor-

mation) that can occur as f in the solution (1) of Linp in this project. The bound on ramification outside
{0, 1,∞} further classifies such f ’s as:

1. Belyi maps: Rout = 0

2. Belyi-1 maps: Rout = 1

3. Belyi-2 maps: Rout = 2

Belyi maps are zero-dimensional families. But Belyi-1 (resp. Belyi-2) maps are one (resp two)-dimensional
families as they ramify above 1 (resp. 2) arbitrary points outside {0, 1,∞}. We use the term near Belyi
maps for such maps. We summarize the bounds in the following table:

(e0, e1, e∞) GHDO Rout Type max. degree
0 Belyi 18

(0, 12 ,
1
3 ) H

1
12

, 5
12

1,x 1 Belyi-1 12
2 Belyi-2 6
0 Belyi 12

(0, 12 ,
1
4 ) H

1
8
, 3
8

1,x 1 Belyi-1 8
2 Belyi-2 4
0 Belyi 9

(0, 12 ,
1
6 ) H

1
6
, 1
3

1,x 1 Belyi-1 6
2 Belyi-2 3

Tab. 1: Bounds and types

The data in Figure 1 and Table 1 indicate that the case H
1
12

, 5
12

1,x alone requires more work than the other two

cases H
1
8
, 3
8

1,x and H
1
6
, 1
3

1,x combined together. Additionally, H
1
12

, 5
12

1,x shares some part from both H
1
8
, 3
8

1,x and H
1
6
, 1
3

1,x

in terms of solvability (see Figure 1).

Our solver will be complete if the tables for H
1
12

, 5
12

1,x , H
1
8
, 3
8

1,x and H
1
6
, 1
3

1,x are complete. The major task in this
project is to prove that our tables are complete, i.e; How do we know that our tables contain all such maps up
to Aut(P1)? The next section addresses the completeness for Belyi maps. Near Belyi maps will be discussed
later.



4 Belyi Maps 10

4 Belyi Maps

Definition 4.1. A rational map f : P1 → P1 is called a Belyi map if its branched set lies inside {0, 1,∞}.
That means f is unramified outside {0, 1,∞}.

Definition 4.2. Let f be a Belyi map. The (0, 12 ,
1
3 )-singularity-count of f is the sum of

1. the number of roots of f (not counting with multiplicity)

2. the number of roots of 1− f that do not have multiplicity 2

3. the number of poles of f that do not have multiplicity 3.

The motivation for Definition 4.2 is that this counts the number of singular points (including removable
singularities) after a change of variables x 7→ f applied to the hypergeometric equation with exponent
differences (e0, e1, e∞) = (0, 12 ,

1
3 ). In general, we can define the same for any (e0, e1, e∞). Usually we want

to count only non-removable singularities, then replace ‘do not have multiplicity k’ by ‘whose multiplicity is
not divisible by k’ in the above definition. We usually count only non removable singularities, there are some
Belyi maps which produce removable singularities.

Remark 4.3. Consider (e0, e1, e∞) = (0, 12 ,
1
3 ) and take the branching pattern [1, 2, 3, 4], [2, 2, 2, 4],

[1, 3, 3, 3] above 0, 1,∞ respectively. Such branching pattern produces a Belyi map f with singularity-count
6. But the only singularity above 1 is a removable singularity (its exponent difference is 4 · 12 = 2). So f
produces 5 non-removable singularities and 1 removable singularity, we denote this as 5 + 1 singularities.
Algorithm 5.8 in Section 4.4 will skip this branching pattern (and its dessin) when singularity-count d = 5,
and will find it when d = 6. We omit such 5 + 1 singularities (and their Belyi maps) from our Belyi table for
d = 5 because the corresponding differential operator will be solved by our Belyi-1 solver. Some Belyi-1 maps
g(x, s) (see section 5 for more details) from our table for some s ∈ P1 will cover such f (additional ramified
point in Belyi-1 maps produces a removable singularity). So we don’t compute such Belyi maps. Likewise,
Belyi maps with 4+1 singularities are found in d = 5, but we also skip them.1 They are covered by Belyi-1
maps in d = 4.

The crucial part on finding 2F1-type solution of a differential operator Linp is to compute f and a, b, c such
that:

Ha,b
c,x

f−→
C
Ha,b
c,f

r0,r1−−−→
G

r−→
E
Linp

In particular, we want to have Sing(Ha,b
c,f ) = Sing(Linp). The Gauss hypergeometric differential operator

Ha,b
c,x has singularities at 0, 1 and∞. So the singularity structure Sing(Ha,b

c,f ) depends solely on the branching
pattern of f above 0, 1,∞ and the choice of a, b, c. Belyi maps are very special as their branching occurs only
above 0, 1 and ∞.
The main task is to compute all Belyi maps and near Belyi maps (up to Möbius transformation) whose
singularity-count is 5. The goal in this section is to find all Belyi maps f (up to Möbius transformation)
with (0, 12 ,

1
3 )-singularity-count 5 (Note: the cases < 5 are done previously, see [23, 5] for details). We have

also done the cases (0, 12 ,
1
4 ) and (0, 12 ,

1
6 ) but we explain only (0, 12 ,

1
3 ) here for convenience of writing. We

prove completeness by computing dessins.

Definition 4.4. [14] A sequence [g1, g2, . . . , gk] of permutations in Sn is called a k-constellation if the fol-
lowing properties hold:

1. the group 〈g1, g2, . . . , gk〉 acts transitively on the set of n points;

2. g1g2 · · · gk = 1.

Here k is called length and n is called degree of the constellation. The group 〈g1, g2, . . . , gk〉 is called the
cartographic group or the monodromy group of the constellation [g1, g2, . . . , gk].

Definition 4.5. Any two k-constellations [g1, g2, · · · , gk] and [h1, h2, · · · , hk] are said to be equivalent or con-
jugated (notation; [g1, g2, · · · , gk] ∼ [h1, h2, · · · , hk]) if there exists σ ∈ Sn such that
hi = σgiσ

−1 for all i ∈ {1, 2, · · · , k}.
1 5 out of 416 Belyi maps in [4] produce 4+1 singularities. We don’t include them in our Belyi table.
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We will work with 3, 4 and 5-constellations in this paper. The braid group Bk generated by the braids
σ1, . . . , σk−1 acts on a k-constellation in the following way:

σi : gi 7→ gi+1,
gi+1 7→ g−1i+1gigi+1 and
gj 7→ gj , j 6= i, i+ 1.

i.e, σi : [g1, . . . , gi−1, gi, gi+1, . . . , gk] 7→ [g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, . . . , gk]

Definition 4.6. Any two Belyi maps f and g are said to be Möbius equivalent if there exists a Möbius trans-
formation m such that f = g(m). A Belyi map f up to Möbius equivalence corresponds to a 3-constellation
[g0, g1, g∞] up to equivalence (i.e, conjugation). We use the notation g0, g1, g∞ as these are the monodromy
permutations around 0, 1,∞ respectively.

Definition 4.7. A dessin is a connected and oriented graph whose vertices are bi-colored (say, black and
white) in such a way that any edge joins a black and a white vertex.

Remark 4.8. Given a Belyi map f , the corresponding dessin is the graph of f−1([0, 1]) where

1. f−1({0}) is the set of black vertices,

2. f−1({1}) is the set of white vertices,

3. f−1((0, 1)) are the edges and

4. f−1({∞}) corresponds to the set of faces.

Here are two examples of dessins which correspond to the Belyi maps with ( 1
3 ,

1
2 , 0)-singularity-count 5:
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I. A clean planar dessin of degree 18 II. A planar dessin of degree 9

Fig. 3: Planar dessins

Definition 4.9. A dessin in which each white vertex has valence (total number of edges coming out of the
vertex) 2 is called a clean dessin. It is customary to omit the white vertices of a clean dessin. In such a
case, any curve joining black vertices corresponds to an element of f−1({1}).

In Figure 3, black vertex represents a point in f−1({0}), i.e; a point above 0 and white vertex represents a
point in f−1({1}), i.e; a point above 1. The curves joining any two neighbouring black and white vertices are
called the edges. The corresponding Belyi map projects each edge homeomorphically to (0, 1). The number
of edges of a dessin is called its degree.
There is a correspondence [7] between dessins, Belyi maps up to Möbius equivalence and
3-constellations [g0, g1, g∞] up to conjugation. The ordering around black (resp. white) vertices in the
dessin correspond to the cycles in g0 (resp. g1) and their valences correspond to the length of cycles. Faces
on the dessin correspond to the points above ∞. So they produce the cycles in g∞; labels on the faces build
the cycles.
We placed labels in the dessins above to obtain permutations from the diagram but dessins are the graphs
without any labelling. Labels are also useful as they help us to understand the procedure of inserting edges
into existing dessins (see Figure 5 for details). These ‘labelled dessins’ are
3-constellations. A dessin is basically a ‘3-constellation without labels’, more precisely, an equivalence class



4 Belyi Maps 12

of 3-constellations mod conjugation. Any two conjugated 3-constellations represent the same dessin (with
different labelling). The genus of a dessin can be computed from the Riemann-Hurwitz formula as:

# black vertices + # white vertices + # faces−# edges = 2− 2 · genus

We consider the Belyi maps f : P1 → P1. So our dessins are planar, i.e; their genus is zero. The dessin in
Figure 3.I has 6 black vertices, 9 double edges (i.e, 18 edges plus 9 white vertices) and 5 faces. This is a clean
and planar dessin. Corresponding 3-constellation [g0, g1, g∞] of order 18 can be read from Figure 3.I as:

g0 = (1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15) (16 17 18).

g1 = (1 3) (2 4) (5 7) (6 10) (8 13) (9 15) (11 16) (12 18) (14 17).

We often omit g∞ because g∞ = (g0 · g1)−1.
Each planar dessin determines a Belyi map f : P1 → P1 up to Möbius equivalence. The dessin in Figure 3.I
corresponds to the following degree 18 Belyi map (up to Möbius equivalence) with ( 1

3 ,
1
2 , 0)-singularity-count

5:

f =
4

27

(
x6 − 4x5 + 5x2 + 4x+ 4

)3
(x− 4) (5x2 + 4x+ 4)

2
x5

. (5)

Swapping 0 and ∞ results in replacing f by 1
f , 2F1( 1

12 ,
5
12 ; 1 | 1f ) satisfies a differential operator

L ∈ Class
(
H

1
12

, 5
12

1,x

)
which has five non removable singularities (with at least one logarithmic singular-

ity). The main task is to tabulate all such f ’s.
Now we explain the procedure to compute all dessins of degree ≤ 18 (equivalently, all 3-constellations
[g0, g1, g∞] of degree ≤ 18 up to conjugacy) that are relevant to our project, i.e, that are planar and have
singularity-count 5.

4.1 Computing 3-constellations

We begin with the 3-constellation of degree 1. We can draw it as the ‘labelled dessin’ (Recall that a dessin
means the equivalence class of 3-constellations mod conjugacy). Then we compute 3-constellations of higher
degree recursively, i.e; given a ‘labelled dessin’ of degree n− 1, insert one more edge to get a ‘labelled dessin’
of degree n for n = 2, 3, . . .. Inserting an edge means the following modifications on g0, g1: (i) inserting a new
number n into an existing cycle, or
(ii) introducing a new 1-cycle with that number n. Lets draw the ‘labelled dessin’ of degree 1:

• ◦
1

Fig. 4: ‘Labelled dessin’ of degree 1

The corresponding permutations are: g0 = (1), g1 = (1). Now we want to insert an edge to produce
‘labelled dessins’ of degree 2. The asterisks indicate the possible places to insert edge # 2:

g0 = (1 ∗)(∗), g1 = (1 ∗)(∗)

This procedure gives the following 4 candidates:
(i) g0 = (1 2), g1 = (1 2) (ii) g0 = (1 2), g1 = (1)(2) (iii) g0 = (1)(2), g1 = (1 2)
(iv) g0 = (1)(2), g1 = (1)(2)
Candidate (iv) is not acceptable as that gives a disconnected graph which is not a dessin. Given a ‘labelled
dessin’ D of degree n−1, there are n2 choices to insert the new edge (labelled ‘n’) into g0, g1. After discarding
the one choice yielding a disconnected graph, we get n2 − 1 ‘labelled dessins’ of degree n from D.
Now we explain with an example, how the algorithm Insert(gi, j, n), i ∈ {0, 1}, 1 ≤ j ≤ n inserts an edge n
at jth position in gi:
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Example 4.10. Let g0 = (1 2)(4 5)(6 8) ∈ S8 be given. We want to insert edge # 9 at 6th position in g0; i.e,
we want to compute Insert(g0, 6, 9).
Step 1: Rewrite g0 in complete form (including 1-cycles) so that all edges 1 – 8 appear:

g0 = (3)(7)(1 2)(4 5)(6 8)

Step 2: Placeholders (asterisks) indicate all possible positions in g0 where we can insert 9:

g0 = (3 ∗)(7 ∗)(1 ∗ 2 ∗)(4 ∗ 5 ∗)(6 ∗ 8 ∗)(∗)

Note that there are 9 possibilities in total.
Step 3: Locate 6th placeholder and insert 9 there:

Insert(g0, 6, 9) := (3)(7)(1 2)(4 5 9)(6 8) = (1 2)(4 5 9)(6 8)

The following algorithm computes 3-constellations of degree ≤ n.
Note: we will not write g∞ in algorithms unless required. Given g0 and g1, we can compute g∞ = (g0 ·g1)−1.
So a 3-constellation will be denoted as [g0, g1].

Algorithm 4.1: Compute all 3-constellations of degree ≤ n
Input: n
Output: A table with all 3-constellations of degrees 1, 2, . . . , n.
Step 1: Table[1] := {[(1), (1)]} (the 3-constellation in Figure 4).
Step 2: Table[n] := { [ Insert(g0, i, n), Insert(g1, j, n) ] | [ g0, g1 ] ∈ Table[n− 1],

1 ≤ i, j ≤ n, {i, j} 6= {n} }

The following diagram illustrates the procedure of computing 3-constellations:

Table[1]: • ◦
1

g0 = (1)

g1 = (1)

�
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���� ?

PPPPPPPPPPq

Table[2]: ◦ • ◦2
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Table[3]: • ◦ • ◦
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Fig. 5: Computing 3-constellations

Let Tn denote the number of 3-constellations of degree n; i.e, the number of elements of Table[n]. Then we
have the following recurrence relation:

T1 = 1, Tn = (n2 − 1) · Tn−1 which gives

Tn =
(n− 1)!(n+ 1)!

2
= 1, 3, 24, 360, 8640, 302400, 14515200, 914457600, 73156608000, . . .
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This sequence has a huge growth. An efficient C-implementation of Algorithm 4.1 could compute 3-
constellations up to n = 8, but Maple will run out of memory at that point. To prevent computational
explosion, we implement some special measures in Algorithm 4.1 that are compatible with our project. We
will discuss in brief about these features in the next sections, details can be found in [9].

4.2 Computing Dessins

Algorithm 4.1 has a huge growth because it returns the same dessin many times. Our target n = 18 is
unreachable unless we identify conjugated 3-constellations and discard all but one of them (not discarding
conjugated 3-constellations means computing the same dessin many times). Table[2] in Figure 5 has three
non-conjugated 3-constellations. So these are three distinct dessins. Table[3] has twenty-four 3-constellations.
After discarding 17 conjugates we get only 7 distinct dessins on that level.
Let g = (m1,m2, . . .)(n1, n2, . . .) . . . ∈ Sn. Suppose σ ∈ Sn.
Denote gσ := (σ(m1), σ(m2), . . .)(σ(n1), σ(n2), . . .) . . . = σgσ−1

Given D = [g0, g1, g∞] denote Dσ = [gσ0 , g
σ
1 , g

σ
∞].

Definition 4.11. If D1, D2 are 3-constellations of degree n, they represent the same dessin if and only if
∃σ ∈ Sn such that D1 = Dσ

2 .

Conjugation is a reordering of the numbers in g0, g1, g∞. We represent the reordering with a permutation
π ∈ Sn. We represent π as a list [π(1), π(2), . . . , π(n) ] with π( i ) ∈ {1, 2, . . . , n}.
The permutation π ∈ Sn is computed as follows:
Step 1: Choose a base point b ∈ {1, 2, . . . , n}. Take π := [ b ].
Step 2: Let l be the last element of π, compute gk0 (l), k = 1, 2, . . . and append them to the list π until
gk0 (l) ∈ π. If π has n elements, then stop.
Step 3: Consider g1(c) for each c ∈ π and append the first g1(c) that is not in π to the list π. Then return
to Step 2.
Let π = [ a1, a2, . . . , an ] be the ordering obtained from [g0, g1] with the base point b. Then [gσ0 , g

σ
1 ] with base

point σ(b) will return the permutation σπ = [σ(a1), σ(a2), . . . , σ(an) ]. Moreover

(σπ)−1gσi (σπ) = π−1σ−1σgiσ
−1σπ = π−1giπ, i ∈ {0, 1}

That means conjugating gi by π is the same as conjugating gσi by σπ. The remaining issue is how to match
the base points. Any two conjugated 3-constellations will produce the same set of 3-constellations if we
repeat this procedure over all b ∈ {1, 2, . . . , n} and compute the conjugation for each. We sort this set with
the help of suitable ordering (for example, the lexicographic ordering) and use the first element which will
be unique for this dessin.

4.3 Discarding Non-planar Dessins

Given a rational Belyi map f : X −→ P1 of degree n, the genus of X is given by the following formula [7]:

2g(X)− 2 = n− n0 − n1 − n∞

where ni = number of distinct elements in f−1({i}), which is the number of cycles in gi. We discard all
3-constellations which are non-planar,i.e; those with positive genus. For example; the last 3-constellation of
Table[3] in Figure 5 is non-planar (that has genus 1).
Finally we want to consider only those dessins which are relevant to our project, i.e; the dessins with
singularity-count 5. The following section explains this procedure for the exponent differences (e0, e1, e∞) =
(0, 12 ,

1
3 ). The cases (0, 12 ,

1
4 ) and (0, 12 ,

1
6 ) are done similarly.

4.4 Choosing Relevant Dessins

Implementation of the following measure helps us discard many irrelevant dessins. The following algorithm
gives the ‘weighted’ singularity-count of a dessin:
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Definition 4.12. Let p ∈ {0, 1,∞}. Given a list Lp = [l1, l2, . . . , ln], li ∈ N (branching pattern above p) and
the exponent difference ep of Ha,b

c,x , suppose d be the denominator of ep (take d = ∞ if p is a logarithmic
singularity). The following formula gives the weight wi assigned to each li:

wi =

 1 if d =∞ or li > d or li ≤ d− 2 ;
0 if li = d ;
1
2 if li = d− 1 .

The case li = d corresponds to a regular point, while the case li = d − 1 is counted half to ensure that the
total weighted singularity-count does not decrease when the Insert program inserts an edge.

The sum Wp :=

n∑
i=1

wi gives the weighted singularity-count above p.

Weighted-singularity-count of a 3-constellation is similar to actual singularity count with a small modification
that some of the points here count as half-singularities, which ensures that the total weighted count does not
decrease no matter how many edges we attach to a 3-constellation.

Remark 4.13. Let D be a planar dessin of degree n. Given the exponent differences (e0, e1, e∞) of Ha,b
c,x , let

w be the weighted singularity-count and d be the singularity-count of D. Then;

1. w ≤ d

2. Let D̃ be a planar dessin of degree n+ 1 obtained after inserting an edge in D and w̃ be the weighted-
singularity-count of D̃, then:

w ≤ w̃.

Property #2 follows from the fact that if n + 1 ∈ {i, j} then the number of vertices increases by 1, and if
n + 1 6∈ {i, j} then the number of faces increases by 1. Using remark 4.13, we can discard a dessin as soon
as its weighted singularity-count exceeds 5.

Remark 4.14. These special features of discarding 3-constellations on the basis of conjugation, genus and
weighted-singularity-count are crucial in this procedure as each of them reduces the number of cases by a very
large factor. The growth of 3-constellations is so high that if we do not implement any one of these measures,
the computer runs out of memory long before we reach n = 18.

Now we put all algorithms together to give the main algorithm which computes all dessins with (0, 12 ,
1
3 )-

singularity-count d. The other cases (0, 12 ,
1
4 ) and (0, 12 ,

1
6 ) are done similarly. We ran this algorithm for d ≤ 6

and (e0, e1, e∞) = (0, 12 ,
1
k ), k ∈ {3, 4, 6}; the results can be found in [4].

Algorithm 4.2: Compute All Dessins with a Specific (0, 12 ,
1
3 )-singularity-count

Input: d
Output: all planar dessins [ g0, g1 ] with (0, 12 ,

1
3 )-singularity-count = d.

Table[1] := { [ (1), (1) ] };
for n from 2 to 6(d− 2) do

Table[n] := { };
for [g̃0, g̃1] in Table[n− 1] do

for i from 1 to n do
g0 := Insert(g̃0, i, n);

for j from 1 to n while {i, j} 6= {n} do
g1 := Insert(g̃1, j, n);
g∞ := (g0 · g1)−1;
‘if [g0, g1, g∞] is non-planar (genus > 0) or has weighted-singularity-count > d
then discard it’

[ ĝ0, ĝ1 ] := dessin of [g0, g1]
(Recall that it is same for conjugated 3-constellations);



5 Belyi-1 Maps 16

Table[n] := Table[n]
⋃
{ [ ĝ0, ĝ1 ] };

end do;
end do;

end do;
end do;
ANS := { };

for n from 1 to 6(d− 2) do
for D in Table[n] do

if ( (0, 12 ,
1
3 )-singularity-count of D = d then

ANS := ANS
⋃
{D};

end if;
end do;

end do;
Return ANS;

Implementation of these special features discards many dessins. So the number of elements of Table[n]
grows much slower, and the computation no longer runs out of memory. We computed all dessins with
(0, 12 ,

1
k )-singularity-count d ≤ 6 where k ∈ {3, 4, 6} (degree n ≤ 24). Although we are interested in d = 5,

we ran Algorithm 4.2 for d = 3, 4, 5, 6. The outputs contain the following number of dessins of degree
n = 1, 2, . . . , 6(d− 2):

d n dessin count for (0, 12 ,
1
3 ), degree = 1, . . . , n

3 ≤ 6 1, 2, 1, 1, 0, 2
4 ≤ 12 0, 1, 3, 4, 3, 6, 4, 6, 4, 4, 0, 6
5 ≤ 18 0, 0, 2, 6, 12, 19, 22, 26, 32, 39, 36, 50, 40, 42, 32, 32, 0, 26
6 ≤ 24 0,0,0,9,23,59,112,176,240,315,332,429,437,470,518,579,536,620,512,444,336,336,0,191

Tab. 2: Dessin count for d = 3, 4, 5, 6

Dessins for d = 6, n = 24, (0, 12 ,
1
3 ) were previously found by Beukers and Montanus [7]. They used a combina-

tion of computer computation and hand computation and found 190 dessins
(we emailed them their missing dessin and they have used it to correct their website). This incident shows
why it is important to use only machine computations to find the dessins, if any human interaction is needed
then the chance of a gap is too high.
After computing the dessins, the next task is to compute the corresponding Belyi maps. If we have a Belyi
map (up to Möbius equivalence) for each dessin, then our table of Belyi maps is complete. Dessins give the
branching pattern of corresponding Belyi maps which give a way to compute the maps. Small cases are easy
to compute, cases up to degree 16 can be computed using Gröbner basis. There are no dessins for degree 17
and we use the special techniques given in [7] to compute Belyi maps of degree 18. An example is given in
the next section.

5 Belyi-1 Maps

Belyi-1 maps have one more branch point t outside {0, 1,∞}, which has only one ramification point t̃, with
multiplicity 2. Such point t̃ is called a simple ramified point. These maps correspond to 4-constellations
[g0, g1, gt, g∞] where gt is a 2-cycle. The point t 6∈ {0, 1,∞} can vary, which produces these maps as one
dimensional families.
Hence, up to equivalence there is a correspondence:

[g0, g1, gt, g∞]←→ an element ofK(x)

where K is an algebraic extension2 of Q(t).

2 in all case for d = 5, the field K turned out to be isomorphic to Q(s). We use parametrization in Maple to find such
isomorphism.
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Definition 5.1.

1. A near-dessin of a Belyi-1 map is an equivalence class of 4-constellations [g0, g1, gt, g∞] mod conjugation
where gt is a 2-cycle.

2. Belyi-1 maps (up to Möbius transformation) correspond to 4-constellations [g0, g1, gt, g∞]
(up to conjugation and braid group action).

Example 5.2. Consider the following one-dimensional family of functions:

f1(x, s) =
4

27

(
sx3 − 2 sx2 + sx− 3

)3
sx3 − 2 sx2 + sx− 4

The branching pattern of f1 above 0, 1,∞ is [3, 3, 3], [1, 2, 2, 2, 2], [1, 1, 1, 6]. Using the Riemann-Hurwitz for-
mula, we find that there is one more branch point t 6∈ {0, 1,∞} and the ramification pattern of f1 above t is
[1, 1, 1, 1, 1, 1, 1, 2]. So, f1 is a Belyi-1 map. We compute t using its corresponding ramification point (Note

that the derivative of f1 vanishes at ramification points). For f1, we get t = 1
19683

(4 s−81)3
s−27 . For each fixed

t 6∈ {0, 1,∞}, we get 3 distinct values of s which produce 3 distinct Belyi-1 maps up to Möbius equivalence.
These three Belyi-1 maps have the same branching pattern, but their near-dessins differ. However, analytic
continuation of t around 0, 1,∞ permutes these three near-dessins. Such near-dessins lie in the same orbit
under the action of braid group.
Now consider another one-dimensional family of functions:

f2(x, s) =

(
sx3 − 2 sx2 − 9x2 + 18x+ sx− 3

)3
27 (sx3 − 2 sx2 − 9x2 + 18x+ sx− 1)

f2 is also a Belyi-1 map with the same branching pattern as f1. The fourth branch point for f2 is

t = 2
19683

(2 s3+27 s2+486 s−1458)
3

s4(s3+27 s2+243 s−729) . For each fixed t in this case, we get 9 values of s which correspond to

9 distinct near-dessins, again, in one orbit.

f1 and f2 are two distinct families of Belyi-1 maps as their monodromy groups are different. For f1, the
monodromy group 〈g0, g1, gt, g∞〉 is a group of order 1296, and for f2 it equals S9. Our combinatorial search
shows that near-dessins with branching type [3, 3, 3], [1, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 2], [1, 1, 1, 6] belong to 2 dis-
tinct braid orbits. This result implies that {f1(x, s), f2(x, s)} completely cover this branching pattern. Galois
theory further tells us if C(x)/C(f) has subfields. We use these monodromy groups to find decompositions (if
any) of Belyi-1 maps. Our computation shows that f1 has a decomposition g(h) where each g, h has degree 3
in x. Both f1, f2 are Belyi-1 maps with ( 1

3 ,
1
2 , 0)-singularity-count 5. Our task is to compute all such Belyi-1

maps and to prove completeness.

The degree bound for Belyi-1 maps in our project is 12 (Table 1). We use the following steps to compute
such maps:

1. Compute all possible branching patterns for degree n ≤ 12. Note that the candidate branching patterns
must (i) satisfy Riemann-Hurwitz formula (6), (ii) produce a Belyi-1 map, and (iii) have singularity-
count 5 .

2. Compute all near-dessins (if any) for each branching pattern

3. Group them together by braid orbit

4. Compute a Belyi-1 map for each orbit

For example, near-dessins of degree 10 for the choice (e0, e1, e∞) = (0, 12 ,
1
3 ) are computed as follows. Let’s

switch the roots and poles of f , so we assume (e0, e1, e∞) = ( 1
3 ,

1
2 , 0).

Step 1: Finding the list of candidate branching patterns:
Our program produces the following list of possible branching patterns for Belyi-1 maps of degree 10:
B10 = {[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 1, 7] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 2, 6] ],

[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 3, 5] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 1, 4, 4] ],
[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 2, 2, 5] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 2, 3, 4] ],
[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [1, 3, 3, 3] ], [ [1, 3, 3, 3], [2, 2, 2, 2, 2], [2, 2, 2, 4] ],
[ [1, 3, 3, 3], [2, 2, 2, 2, 2], [2, 2, 3, 3] ]}.

where branching patterns are above 0, 1 and ∞ respectively. The branching pattern above the fourth point
t outside {0, 1,∞} is [1,1,1,1,1,1,1,1,2].
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Step 2: Computing near-dessins, i.e; equivalence classes of 4-constellations mod conjugation:

1. For g0, we have a 1-cycle and three 3-cycles. As we are computing these permutations up to equivalence,
we can take g0 = (1 2 3) (4 5 6) (7 8 9) (10).

2. g1 has five 2-cycles. Total number of g1 ∈ S10 that are a product of 5 disjoint 2-cycles is 9·7·5·3·1 = 945.
We loop over all such g1’s.

3. gt has a 2-cycle (and eight 1-cycles). Hence we have
(
10
2

)
= 45 choices for gt. We loop over all such gt’s.

4. For each of the 945 · 45 = 42525 triples (g0, g1, gt), we check the following two properties:

i. Is the group 〈g0, g1, gt〉 transitive?

ii. Does the product g0g1gt have 4 disjoint cycles? (g0g1gt = g−1∞ and |f−1({∞})| = 4)

After computing 4-constellations we found that only the following branching patterns actually occur
above∞ (here we omit the branching at 0, 1, t because for degree 10 they all happened to be the same):

[1, 1, 1, 7], [1, 1, 2, 6], [1, 1, 3, 5], [1, 1, 4, 4], [1, 2, 2, 5], [1, 2, 3, 4], [2, 2, 3, 3].

5. Item 4 produced a list of 4-constellations. Next we compute the near-dessins, i.e. the equivalence classes
mod conjugation, similar to the procedure in Section 4. We also group together those near-dessins that
fall into the same orbit under the action of braid group. One Belyi-1 map f(x, s) ∈ K(x), computed
below, covers precisely one braid orbit. To check that the f ’s we computed (see below) are complete,
we need to compute their near-dessins, and then check that every braid orbit occurs among our f ’s.
For all such f ’s, we further checked that the degree of [K : Q(t)] equals the number of near-dessins in
that orbit. This means for a fixed t, each near-dessin corresponds to precisely one value of s.

Remark 5.3. Out of 9 candidates in B10 from Step 1, only 7 of them allowed a near-dessin, and hence, a
family of Belyi-1 maps. For degree 10, there are no 4-constellations corresponding to the branching patterns
[1, 3, 3, 3] and [2, 2, 2, 4] above infinity, which means there are no Belyi-1 maps for those patterns. Some
branching patterns may produce more than one family of Belyi-1 maps, see Example 5.2.

Step 3: Grouping near-dessins by braid orbit:
Applying braid action we find that each branching pattern given in Step 2 above has only one braid orbit,
i.e, for degree 10, we do not have the situation like Example 5.2.
Step 4: Computing Belyi-1 maps:
Let’s compute the Belyi-1 map with branching pattern
[ [1, 1, 3, 5], [2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 2], [1, 3, 3, 3] ] above 0, 1, t and ∞ respectively.
Note: to compute the map(s), we only need the branching pattern. But to prove that we found all of
them, we need to compare them with the orbit(s) of the near-dessins.
Step (i): General structure of f :
To make the computation easier, let’s take the branching pattern as [ [1,3,3,3],[1,1,3,5],[2,2,2,2,2] ] above
0, 1,∞ respectively. Let’s place the unramified root of f at x = 1, and the roots of (1− f) with multiplicity
3, 5 at x = 0, x = ∞ respectively. This fixes our f up to Möbius transformation and the map has now the
following form:

f :=
c (x− 1)

(
x3 + a2 x

2 + a1 x+ a0
)3

(x5 + b4 x4 + b3 x3 + b2 x2 + b1 x+ b0)
2 .

Step (ii): Generating equations:
The numerator of (1−f) must have the form: x3(Ax2+Bx+C) where A and C are non zero. The coefficients
of xn for n = 0, .., 2, 6, .., 10 from the numerator of (1− f) produce the following equations:
eqns := [ 1 − c, b20 + c a30, 2 b4 − 3 c a2 + c, 2 b1 b0 + 3 c a1 a

2
0 − c a30, 2 b3 + b24 + 3 c a2 − 3 c a1 − 3 c a22, 2 b2 b0 +

b21 − 3 c a1 a
2
0 + 3 c a2 a

2
0 + 3 c a21a0, 2 b4 b3 + 2 b2 − 6 c a2 a1 + 3 c a1 + 3 c a22 − 3 c a0 − c a32, 2 b4 b2 + 2 b1 + b23 −

3 c a22a1 − 6 c a2 a0 + 6 c a2 a1 + 3 c a0 + c a32 − 3 c a21 ].
Step (iii): Elimination and Resultants:
We have 8 equations with 9 unknowns, which produces a one dimensional family. We can recursively eliminate
the unknowns c, b4, b3, b1, b2 and b0 from their corresponding linear equations. Then we have three unknowns
{a0, a1, a2} and two non trivial equations left. The equations are rather big, but we can compute their
resultant with respect to a2 and then factor. This produces a polynomial relation between a0 and a1, i.e. an
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algebraic curve which turned out to have genus 0, which means that C(a0, a1) ∼= C(s) for some s. We can
find such isomorphism using Maple’s parametrization and we obtain a0= −s4 and a1= 1

9s(−16+42s+s3).
Step (iv): The result:
We update f each time when we eliminate an unknown. After re-arranging {0, 1,∞} back to the original
ramification pattern, we get g as:

g = 1− 1

f
=

64x3(s− 1)8(9x2 + 16x+ 6 s2x− 40 sx+ s4 + 8 s3)

(1− x)(9x3 + 15x2 − 48 sx2 + 6 s2x2 − 16 sx+ 42 s2x+ s4x− 9 s4)3
.

Remark 5.4. There are some Belyi-1 maps which produce 5+2 singularities, i.e. 5 non removable and 2
removable singularities. We will skip such maps because the corresponding differential operator will be solved
by Belyi-2 maps, see Section 6 for more details.

Remark 5.5. For each Belyi-1 map, we compute the size of its braid orbit. In the case where [Q(s) : Q(t)] is
larger than the orbit size, we compute a subfield Q(t) ⊆ Q(s̃) ⊂ Q(s) such that f ∈ Q(s̃, x) and then rewrite
f in terms of s̃.

Remark 5.6. Completeness: For (e0, e1, e∞) = (0, 12 ,
1
3 ), there are 68 Belyi-1 maps f ∈ Q(s)(x). For

each f in our table, we compute 4-constellation [g0, g1, gt, g∞] for some value of s (for example, with Maple’s
monodromy). Then we check if for every braid orbit (see Steps 2 and 3 above) our table has a Belyi-1 map
with a 4-constellation in that orbit.

6 Belyi-2 Maps

Our Belyi-2 maps have degree ≤ 6 and appear only for the case (e0, e1, e∞) = (0, 12 ,
1
3 ). The branching

patterns for these maps are [1, 1, 1, 1], [2, 2], [1, 3] for degree 4 and [1, 1, 1, 1, 2], [2, 2, 2], [3, 3] for degree 6.
Belyi-2 maps have two branch points outside {0, 1,∞} that are free to move. Hence these maps are two
dimensional families. We compute these maps using the data from Sing(Linp); the singularity structure of
input differential operator Linp. Since 5 singularities, up to Möbius equivalence, have two degrees of freedom,
this carries just enough information to extract the parameters in a 2-dimensional family. In this section we
will explain the algorithm to compute Belyi-2 maps of degree four and will illustrate the procedure with
an example. Degree six case can be done similarly. The implementation and more details can be found at
www.math.fsu.edu/~vkunwar/FiveSings/.
We can write the generic map for the branching pattern [1, 1, 1, 1], [2, 2], [1, 3] as:

f = k1
(x4 + c3x

3 + c2x
2 + c1x+ c0)

(x− a1)(x− a2)3
where 1− f = k2

(x2 + b1x+ b0)2

(x− a1)(x− a2)3
.

We are in the case (e0, e1, e∞) = (0, 12 ,
1
3 ). So roots of x− a1 and (x4 + c3x

3 + c2x
2 + c1x+ c0) are the non

removable singularities of H
1
12

, 5
12

1,f ; we extract them from Sing(Linp). We find the remaining part of f by
solving equations.
We developed algorithms to compute such maps. They use the data from Sing(Linp) and return the Belyi-2

maps f such that Sing(H
1
12

, 5
12

1,f ) = Sing(Linp). Before giving the algorithm, let’s observe, with an example,
what it need to do:

Example 6.1. Consider the following differential operator:

L = ∂2 +
1

3

(
5x5 − 56x3 + 90x2 − 48x− 18

)
x (x2 + x− 3) (x3 − 4x2 + 3x+ 3)

∂ +
1

144

(16x4 + 99x3 − 370x2 + 414x− 45)

x (x2 + x− 3) (x3 − 4x2 + 3x+ 3)

Singularity structure of L in terms of places(Q) is:
Sing(L) =

{
[∞, 0], [x, 13 ], [x3 − 4x2 + 3x+ 3, 0]

}
Our main task is to compute f = −3 (x3−4 x2+3 x+3)

x (x−3)3 from Sing(L) such that 1 − f =
(x2−3 x+3)

2

x (x−3)3 . Once

we find such f then we can show that Sing(H
1
12

, 5
12

1,f ) = Sing(L) and exp(
∫
r dx) 2F1( 1

12 ,
5
12 ; 1 | f) for some

r ∈ Q(x) is a solution of L. Notice that f has the branching pattern [1, 1, 1, 1], [2, 2], [1, 3] above 0, 1,∞
respectively. It is easy to check that f is a Belyi-2 map and thus L is an example of a differential operator
solvable in terms of Belyi-2 maps. Sing(L) gives the numerator of f and a part of its denominator. However
we need to know the constant factor −3 and the factor (x− 3) with multiplicity 3. We need algorithms which
produce such Belyi-2 maps (if they exist) from given singularity structure.
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In Example 6.1, the fact that the numerator of (1 − f) is a square will be used to generate equations. The
implementation only considers solutions defined over the base field (i.e, field of definition). Let C ⊆ C be
the base field of Linp (the smallest field C such that Linp ∈ C(x)[∂]).
Note: The equations EQa,EQb1, EQc,EQd,EQns appearing in these algorithms are the results of the com-
putation performed on the generic case of f and 1− f as explained above.
The following algorithm explains the procedure to compute Belyi-2 maps of degree 4.

Algorithm 6.1: Find Belyi-2 maps of degree 4 with (0, 12 ,
1
3 )-singularity-count 5.

Input: The base field C ⊆ C of input differential operator Linp, variable x and Sing(Linp) in terms of
places(C)
Output: {f ∈ C(x) : f is a Belyi-2 map of degree 4 with the branching pattern [1, 1, 1, 1], [2, 2], [1, 3]

such that Sing(H
1
12

, 5
12

1,f ) = Sing(Linp)}.
Note: We are in the case (e0, e1, e∞) = (0, 12 ,

1
3 ) and f has the branching pattern [1, 1, 1, 1], [2, 2], [1, 3].

That means the roots of f and the pole of f with order 1 can be extracted from Sing(Linp). Roots
of 1 − f and the pole of order 3 produce removable singularities, so they do not appear in Sing(Linp)
(see Figure 2 and Remark 2.26). To make the computation easier, let’s make some changes which we
will revert at the end. Let’s take the branching pattern of f as [1, 3], [1, 1, 1, 1], [2, 2]. Let’s assume the
following with this new branching pattern:

1. The root of f with multiplicity 1 is at infinity and

2. The sum of the roots of 1− f is zero

The assumptions 1 and 2 above correspond to non removable singularities, i.e, Sing(Linp). If Sing(Linp)
is not compatible with these assumptions then we will make appropriate adjustments (transformations)
in Sing(Linp), see Step 2 and Step 3 below, which we will revert at the end. These changes will have
the following effects on f : (i) numerator of f has degree 3 in x and (ii) the coefficient of x3 in the
numerator of 1− f vanishes. Then we get a Belyi-2 map, say F , in the following form:

F =
2 b1 (x− a)3

(x2 + b1 x+ b0)2
(6)

such that the numerator of 1 − F does not contain any duplicated roots and does not have any term
with degree 3 in x.
Step 1: Candidates := { };
Check the following three conditions in Sing(Linp);

1. Linp must have 5 non removable singularities; Compute the degree deg(a(x)) of a(x) for each
[a(x), b] ∈ Sing(Linp). The sum

∑
deg(a(x)) must be 5.

Note: a(x) = x −∞, which is denoted ∞ and replaced by 1 in our implementation, should also
count as degree 1.

2. We need exactly one [a(x), b] ∈ Sing(Linp) where b ∈ {± 1
3 ,±

2
3} mod Z and deg(a(x)) = 1.

3. b must be 0 mod Z for the remaining [a(x), b].

If Sing(Linp) does not satisfy these three conditions then stop.
Step 2: Let P =

∏
a(x) where [a(x), b] ∈ Sing(Linp) and ∞ is replaced by 1. If the singularity with

exponent difference b ∈ {±1
3 ,±

2
3} mod Z (second condition in Step 1 above) is not at ∞ then find an

appropriate Möbius transformation m : x 7→ a1x+a2
a3x+a4

and compose that with P such that P (m) will have
that singularity at ∞.
Step 3: Let P̃ be the numerator of P (m). P̃ should be a degree 4 polynomial in C[x] whose roots are
the singularities of Linp, one of them is at ∞ now. If P̃ has degree 3 then that means one singularity of
Linp with b = 0 was already at ∞, and after applying m that should go to 0. In such a case, multiply

P̃ by x to adjust the singularity at 0, and to get a degree 4 polynomial in C[x]. Let P1 be the degree 4
polynomial; i.e,

P1 =

{
P̃ if P̃ has degree 4

P̃ · x if P̃ has degree 3.
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Find a suitable translation τ : x 7→ x − t and compose it with P1 to eliminate the third degree term.
Then make the result monic to obtain P2 = x4 + p2 x

2 + p1 x+ p0.
Note: EQb1, EQa and EQns in the following steps are the results of computations on F and 1− F .
Step 4: Solve the following equation for b1:
EQb1 := b91 + 24 p2b

7
1 − 168 p1b

6
1 − 78 p22b

5
1 + 1080 p0b

5
1 + 336 p1p2b

4
1 + 80 p32b

3
1 + 1728 p0p2b

3
1 − 636 p21b

3
1 −

168 p1p
2
2b

2
1 − 864 p0p1b

2
1 − 27 p42b1 − 432 p20b1 + 216 p22p0b1 − 120 p2p

2
1b1 − 8 p31.

Step 4.1: For each b1 ∈ C, substitute the value of b1 in the following equation and solve that for a :
EQa := b1 p2 − p1 − b31 − 6 b21 a− 6 b1 a

2.
Step 4.1.1: For each a ∈ C, substitute the values of b1 and a in the following equations and solve their
gcd for b0:
EQns := {2 b0 b1 − p1 − 6 b1 a

2, b20 − p0 + 2 b1 a
3, 2 b0 − p2 + b21 + 6 b1 a}.

Step 4.1.1a: Substitute the values of a, b1 and b0 in F . Skip those F which do not have degree 4.
Step 4.1.1b: If F has degree 4, then F1 = 1 − 1

F gives the map with right branching pattern
[1, 1, 1, 1], [2, 2], [1, 3] (we had set the branching pattern as [1, 3], [1, 1, 1, 1], [2, 2] for F ).
Step 4.1.1c: f := F1(τ̃(m̃)), where τ̃ : x 7→ x+ t (inverse of Step 3 ) and m̃ is the inverse of m (Step 2 )
gives a candidate Belyi-2 map. Candidates := Candidates

⋃
{f};

Step 5: Return Candidates.

Example 6.2. Let’s compute the Belyi-2 map of degree 4 for the differential operator considered in Ex-
ample 6.1. Take C = Q ⊂ C. The input to Algorithm 6.1 is the base field C = Q and the singularity
structure:
Sing(L) =

{
[∞, 0], [x, 13 ], [x3 − 4x2 + 3x+ 3, 0]

}
(We replace ∞ by 1 in our implementation).

Step 1: It is easy to check that Sing(L) satisfies all three conditions.
Step 2: P = x

(
x3 − 4x2 + 3x+ 3

)
, m : x 7→ 1

x .

Step 3: P̃ = 3x3 + 3x2 − 4x+ 1 is a degree 3 polynomial. So P1 = P̃ · x = 3x4 + 3x3 − 4x2 + x.
τ : x 7→ x− 1

4 , P2 = x4 − 41
24 x

2 + 9
8 x−

137
768 . Hence [p0, p1, p2] = [− 137

768 ,
9
8 ,−

41
24 ].

Step 4: Substituting p0, p1 and p2 in EQb1 ( Algorithm 5.9, Step 4) we get:
EQb1 = b91 − 41 b71 − 189 b61 − 10087

24 b51 − 2583
4 b41 − 292547

432 b31 − 6051
16 b21 − 74269

768 b1 − 729
64 .

The only solution of EQb1 = 0 in C = Q is b1 = − 3
2 .

Step 4.1: Substituting the values of b1, p1 and p2 in EQa ( Algorithm 5.9, Step 4.1) we get
EQa = 77

16 −
27
2 a+ 9 a2 which gives a = 7

12 ,
11
12 .

Step 4.1.1: Substituting the values of p0, p1, p2, b1 and a = 7
12 in EQns ( Algorithm 5.9,

Step 4.1.1) we get
EQns =

{
31
16 − 3 b0, 2 b0 − 31

24 , b
2
0 − 961

2304

}
which has the solution b0 = 31

48 . Repeating the same procedure with

a = 11
12 gives EQns =

{
103
16 − 3 b0, 2 b0 − 103

24 , b
2
0 − 4913

2304

}
which has no solution.

Step 4.1.1a: F = 2 b1 (x−a)3
(x2+b1 x+b0)2

.

Substituting a = 7
12 , b1 = − 3

2 , b0 = 31
48 we get F = −4 (12 x−7)3

(48 x2−72 x+31)2
.

Step 4.1.1b: F1 = 1− 1
F = 3

4

(4 x−1)(192 x3+48 x2−316 x+137)
(12 x−7)3 gives the right branching pattern.

Step 4.1.1c: τ̃ : x 7→ x+ 1
4 and m̃ : x 7→ 1

x .

Hence f := F1(τ̃(m̃)) = −3 (x3−4 x2+3 x+3)

x (x−3)3 is the required Belyi-2 map.

7 Additional Features

Once the table is complete, our algorithm is mainly the ‘table look up’, where we choose candidate f ’s from
the table. Since the tables are big, it is important that we discard the non-candidate entries (the entries
which do not lead to the solution) as quickly as we can. In this section, we will discuss some features which
help us to detect non-candidates so that we can readily discard them. These features make our algorithm
faster and more efficient. So we add these features along with the maps in our table. We will also discuss
about the decompositions, which give smaller (usually better) solutions.
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7.1 Five Point Invariants

Definition 7.1. Let P5 = {S ⊆ P1(C) ; |S| = 5}. A function I : P5 → C is called a five point invariant if
it is invariant under Möbius transformation.

Since Möbius transformations have three degrees of freedom, and S ∈ P5 has five degrees of freedom; there
are 5− 3 = 2 algebraically independent five point invariants.

Definition 7.2. Let [p1, p2, p3, p4] be a quadruple of distinct points in the Riemann sphere
P1(C) = C ∪ {∞}. Their cross-ratio is denoted (p1, p2; p3, p4) and defined as:

(p1, p2; p3, p4) =
(p1 − p3) (p2 − p4)

(p2 − p3) (p1 − p4)
Remark 7.3.

1. If a point pi =∞, then the cross-ratio is computed by removing any factor containing pi.

2. The cross-ratio depends on the ordering of the points p1, . . . , p4, but it is invariant under Möbius
transformation.

Definition 7.4. The j-invariant of an elliptic curve y2 = x3 + px+ q is defined as:

j = 1728 · 4p3

4p3 + 27q2

Remark 7.5. Let p1, p2, p3, p4 ∈ P1(C) be any four points.

1. The j-invariant of y2 =
∏

(x− pi) can be obtained by moving (with a Möbius transformation) one point
to ∞, the sum of other 3 points to 0, and then applying definition 7.4.

2. Alternatively, the j-invariant can also be computed as j = 256 · (λ
2−λ+1)2

λ2(λ−1)2 where λ is the cross-ratio

of p1, . . . , p4.

3. The j-invariant is invariant under Möbius transformations as well as reordering of the points p1, . . . , p4.

Definition 7.6. Let P5 = {S ⊆ P1(C) ; |S| = 5}. Define I5 : P5 → C as

I5(S) =
∑
T⊆S
|T |=4

j(T ).

Remark 7.7. I5 is a five point invariant. Another five point invariant is

Ĩ5(S) =
∏
T⊆S
|T |=4

j(T ).

(actually Ĩ5 is a cube of a five point invariant)

Remark 7.8.

1. I5 and Ĩ5 are algebraically independent.

2. We use I5 for Belyi maps, and both I5 and Ĩ5 for Belyi-1 maps. We do not use these invariants for
Belyi-2 maps.

Algorithm and details to compute I5 and Ĩ5 can be found in www.math.fsu.edu/~vkunwar/FiveSings/

FivePointInvariants/. For a chosen Ha,b
c,x , each f in the table produces Ha,b

c,f with five non removable

singularities. Such f can only lead to a solution of a differential operator Linp if Sing(Ha,b
c,f ) matches

Sing(Linp) up to Möbius equivalence (our tables are complete up to Möbius equivalence). I5 is a function
on a set of five points which is invariant under Möbius transformation. It assigns a specific number to each
set of five points. If there is a Möbius transformation between any two such sets, then they must have same
I5.
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With each Belyi map f in the table, we attach the I5 of non removable singularities of Ha,b
c,f and the minimal

polynomial of I5. We compute the I5 of the non removable singularities of Linp and its minimal polynomial.
We compare the minimal polynomial of I5 from Linp with the minimal polynomials attached to each Belyi
map in the table. We discard those entries on the table whose minimal polynomials do not match the minimal
polynomial from Linp. This way, a large portion of the Belyi table is skipped. In case of Belyi-1 maps f(x, s)

the values of I5 and Ĩ5 are elements of Q(s). We compare I5 and Ĩ5 of Belyi-1 maps and Sing(Linp). This
gives two polynomial equations for s. We compute their gcd to find an equation for s. If the gcd is 1 then we
can discard f(x, s), otherwise we solve the gcd to find the value(s) of s. We do not use invariants for Belyi-2
maps because we have algorithms to compute such maps explicitly.

7.2 Exponent Differences

A necessary condition for f in the table to be a candidate is that the sorted lists of exponent differences
(counted with multiplicity) in Sing(Linp) and Sing(Ha,b

c,f ) match mod Z. This property is used to discard
non-candidate Belyi-1 maps instantly before comparing the five point invariants. We attach the list of
exponent differences of Ha,b

c,f to each Belyi-1 map f(x, s). We consider only those Belyi-1 maps whose list of
exponent differences matches with the list from Linp mod Z.

7.3 Decompositions

Our group theoretic computations show that many f ’s in our tables are decomposable (see Figure 1). Solu-
tions in terms of decompositions (if they exist) involve smaller degree pullbacks f . Such solutions are smaller

and more preferable. For instance, if a map f of degree 12 from the table of H
1
12

, 5
12

1,x has a decomposition:

f = g(h) where g = −4x(x − 1) is a degree 2 pull-back which produces the exponent differences (0, 0, 13 )
from (0, 12 ,

1
3 ) and h is a degree 6 rational function, then a differential operator which is solvable in terms of

2F1( 1
12 ,

5
12 ; 1 | f) is also solvable in terms of 2F1( 1

3 ,
2
3 ; 1 |h) ((e0, e1, e∞) = (0, 0, 13 ) ⇔ (a, b, c) = (1

3 ,
2
3 , 1)).

The later solution is smaller and more preferable (see the example in Section 8.1 for details). Our algorithms
use all necessary3 pull-backs in Figure 1 and find the decompositions (if any).

8 Main Algorithm

Once we have complete tables for all cases; H
1
12

, 5
12

1,x , H
1
8
, 3
8

1,x and H
1
6
, 1
3

1,x , the final task is to build the solver
program. Let C ⊆ C be the base field, i.e. the field of constants of input differential operator Linp. We
give the algorithms to solve Linp in terms of 2F1-hypergeometric functions with the choice (e0, e1, e∞) ∈
{(0, 12 ,

1
k ), k ∈ {3, 4, 6}}. The algorithms not only find solutions in terms of 2F1(a, b; c | f) but also compute a

decomposition f = g(h) if that exists and leads to a smaller solution in terms of 2F1(ã, b̃; c̃ |h) (see Figure 1
and Example 8.1 for more details). The following algorithm computes candidate Belyi and near Belyi maps:

Algorithm 8.1: ComputeCandidates 02k

Compute candidate Belyi and near Belyi maps f such that Sing
(
H

k−2
4k , k+2

4k

1,f

)
= Sing(Linp), where

k ∈ {3, 4, 6}
Note: This program uses the tables Belyi k20 and Belyi one k20 which are the tables for Belyi and
Belyi-1 maps for (e0, e1, e∞) = ( 1

k ,
1
2 , 0), k ∈ {3, 4, 6}. These tables use ( 1

k ,
1
2 , 0). But we use (0, 12 ,

1
k ),

so the maps f from these tables are replaced by 1
f . When k = 3, this program also uses algorithms (see

Algorithm 6.1) to compute Belyi-2 maps.
Input: A second order linear differential operator Linp ∈ C(x)[∂], variable x, Tables of Belyi and Belyi-1
maps, exponent differences (0, 12 ,

1
k ) and the base field C ⊆ C

(For example, if k = 3 then the tables in the input are Belyi 320 and Belyi one 320)

Output: {[f, (0, 12 ,
1
k )] | f is a Belyi or near Belyi map s.t.Sing

(
H

k−2
4k , k+2

4k

1,f

)
= Sing(Linp)}

3 Not all pullbacks in Figure 1 are necessary. For example, degree 4 pullback from (0, 1
2
, 1
3

) to (0, 0, 1
3

) is not needed. We use

degree 2 pullback which produces exponent differences (0, 0, 1
3

) from (0, 1
2
, 1
6

) to cover that case.
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Step 1: Compute the singularity structure of Linp, i.e. Sing(Linp). If Linp does not have 5 non
removable regular singularities or none of the exponent differences is zero mod Z then stop (Linp must
have at least one logarithmic singularity).
Step 2: Compute five point invariants of Sing(Linp), denote them as I5(Linp) and Ĩ5(Linp). Let
MinPolyI5(Linp) be the minimal polynomial of I5(Linp) over Q. Let E be the list of exponent differences
(counted with multiplicity) of Sing(Linp).
Step 3: Now we compute candidate Belyi and Belyi-1 maps: Let Candidates := { }.
Step 3.1: Compute candidate Belyi maps: For each entry i = [F, a, g] in Belyi k20 (where F is a Belyi
map, a is its I5 and g is the minimal polynomial of a) check if g = MinPolyI5(Linp). If they are equal
then Candidates := Candidates

⋃
{F}.

Step 3.2: Compute candidate Belyi-1 maps: For each entry [f1(x, s), e] in the table Belyi one k20

(where f1(x, s) is a family of Belyi-1 maps and e is the list of exponent differences (counted with mul-
tiplicity)) check if e ≡ E mod Z. If they match then compute the singularity structure that f1(x, s)
produces from (e0, e1, e∞) = ( 1

k ,
1
2 , 0) and its five point invariants (these are functions in s). Equate I5

and Ĩ5 of Linp and f1. This produces two equations in C[s]. Take their gcd and solve for s. For each s
(if any), let F1 = f1 evaluated at such s. Then Candidates := Candidates

⋃
{F1}.

Step 4: Compute final candidates, i.e. f such that Sing
(
H

k−2
4k , k+2

4k

1,f

)
= Sing(Linp):

Let FinalCandidates := { }. This loop runs through all entries in Candidates.
For each map f̃ in Candidates compute the singularity structure which the pullback
f̃ produces from (e0, e1, e∞) = ( 1

k ,
1
2 , 0). Then compute Möbius transformations from

these singularities to the singularities of Linp. For each Möbius transformation m,
FinalCandidates := FinalCandidates

⋃
{[ 1
f̃(m)

, (0, 12 ,
1
k )]}.

Step 5: Compute Belyi-2 maps: If k = 3 then run algorithm Algorithm 6.1 and another algorithm
with the input C, x and Sing(Linp) in terms of places(C). For each Belyi-2 map f2 in the output, append
[f2, (0,

1
2 ,

1
3 )] in FinalCandidates.

Step 6: Return FinalCandidates.

For k ∈ {3, 4, 6}, the following algorithm solves a second order linear differential operator Linp with 5 regular
singularities in terms of 2F1(k−24k ,

k+2
4k ; 1 | f) or a decomposition, where f ∈ C(x) \ C:

Algorithm 8.2: Solver5 02k
Input: A second order linear differential operator Linp ∈ C(x)[∂], variable x, k ∈ {3, 4, 6} and the base
field C ⊆ C.

Output: y = exp
( ∫

r dx
)
·
(
r0S(f) + r1S(f)′

)
6= 0 such that Linp(y) = 0, where

S(f) = 2F1(k−24k ,
k+2
4k ; 1 | f) or a decomposition, and f ∈ C(x) \ C.

Step 1: Run Algorithm 8.1 with Linp, x, the tables Belyi k20, Belyi one k20, exponent differences
(0, 12 ,

1
k ) and the base field C as inputs. The output is FinalCandidates, i.e, the set of lists [f, (0, 12 ,

1
k )]

such that Sing
(
H

k−2
4k

, k+2
4k

1,f

)
= Sing(Linp).

Step 2: Compute the decompositions of FinalCandidates: RefinedCandidates := { }. This loop runs
through the entries in FinalCandidates. For each element [f, (0, 12 ,

1
k )] in FinalCandidates compute all

possible decompositions of f (Figure 1 and Section 7.3). Include the outputs in RefinedCandidates.
Step 3: This loop runs through RefinedCandidates.
For each element [F, (e0, e1, e∞)] in RefinedCandidates ((e0, e1, e∞) must be the reciprocals of one of the
triples in Figure 1), take the base GHDO Ha,b

c,x with exponent differences (e0, e1, e∞). For instance if

(e0, e1, e∞) = (0, 12 ,
1
3 ) then take:

H
1
12

, 5
12

1,x := x(1 − x)∂2 + (c − (a + b + 1)x)∂ − ab with a = 1
12 , b = 5

12 and c = 1 (these correspond

to (e0, e1, e∞) = (0, 12 ,
1
3 )). Apply change of variables x 7→ F on Ha,b

c,x , which produces Ha,b
c,F such that

Sing(Ha,b
c,F ) = Sing(Linp).

Step 3.1: For each Ha,b
c,F in Step 3, compute the projective equivalence [3] between Ha,b

c,F and Linp. The

output could be zero (meaning they are not equivalent) in which case we take the next Ha,b
c,F , or we get
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a non zero map G of the form:
G = exp(

∫
rdx)(r0 + r1∂), where r, r0, r1 ∈ C(x).

Step 3.2: S(F ) = 2F1(a, b; c |F ) is a solution of Ha,b
c,F . Apply the operator G obtained in Step 3.1 to

S(F ). That gives a solution of Linp. Repeat this procedure for all RefinedCandidates to obtain a list
of solutions of Linp.
Step 4: From the list of solutions of Linp, choose the best solution with the shortest length.

Now we give the main algorithm:

Algorithm 8.3: Solver5
Solve a second order linear differential operator with five regular singularities in terms of

2F1(k−24k ,
k+2
4k ; 1 | f) or a decomposition, where f ∈ C(x) and k ∈ {3, 4, 6}.

Input: A second order linear differential operator Linp ∈ C(x)[∂] with five regular singularities where
at least one singularity is logarithmic, variable x, and the base field C ⊂ C.

Output: y = exp
( ∫

r dx
)
·
(
r0S(f) + r1S(f)′

)
6= 0 such that Linp(y) = 0, where

S(f) = 2F1(k−24k ,
k+2
4k ; 1 | f), k ∈ {3, 4, 6} or a decomposition, and f ∈ C(x) \ C.

Let’s first run Algorithm 8.2 with k = 6. This case has the smallest degree bound:
Step 1: Call Algorithm 8.2 with Linp, x, k = 6 and C.
If Step 1 can’t solve Linp then we run Algorithm 8.2 with k = 4:
Step 2: Call Algorithm 8.2 with Linp, x, k = 4 and C.
If Step 2 can’t solve Linp then we finally run Algorithm 8.2 with k = 3:
Step 3: Call Algorithm 8.2 with Linp, x, k = 3 and C.

8.1 An Example

Consider the following differential operator:

L := ∂2 +

(
8x4 − x2 + 2x− 3

)
x (x+ 1) (4x+ 3) (x2 − 2x+ 3)

∂ − 4x2

(x2 − 2x+ 3)
2

(x+ 1)
2

(4x+ 3)

Following is the procedure to solve this operator using our algorithm in Maple:
Step 1: Read the program Solver5 from http://www.math.fsu.edu/~vkunwar/FiveSings/.
Step 2: L has the following singularity structure:

> Sing(L); {
[x, 4/3], [x+ 1, 0], [x+ 3/4, 1/3], [x2 − 2x+ 3, 0]

}
L has five regular singularities (exponent differences are constant) and three of them are logarithmic (exponent
differences are 0). So L is a differential operator we want to solve. It is easy to see that L can’t be solved
with the choice k = 4.
Let’s compute five point invariants I5 and Ĩ5 of L, and minimal polynomial of I5(L):

> I5(L);

−259058528/59049

> I5tilde(L);

−11874715/472392

> MinPoly_I5(L);

x+ 259058528/59049

E is the sorted list of exponent differences of L:

> E;

[0, 0, 0, 1/3, 4/3]
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Step 3: First we try to solve L with the choice (e0, e1, e∞) = (0, 12 ,
1
6 ), i.e; using Solver5 02k with k = 6;

> Solver5_02k(L, x, 6, { });
{ }

Solver5 02k with k = 6 does not solve L. It finds some RefinedCandidates, but fails at projective equivalence.

Step 4: Now we try to solve L with the choice (e0, e1, e∞) = (0, 12 ,
1
4 ), i.e; using Solver5 02k with k = 4;

> Solver5_02k(L, x, 4, { });
{ }

Solver5 02k with k = 4 does not solve L. It does not find any Candidates.

Step 5: We finally try to solve L with the choice (e0, e1, e∞) = (0, 12 ,
1
3 ), i.e; using Solver5 02k with

k = 3;

> Solver5_02k(L, x, 3, { });{ (x+ 1)1/3(x2 − 2x+ 3)1/6

x2/3
2F1

(
1/6, 1/2; 1 | x

4 + 4x+ 3

x4

)}
The details of this procedure are the following:
Step 5.1: Run Algorithm 8.1 with L, x, Belyi 320, Belyi one 320, ( 1

3 ,
1
2 , 0) and { }:

1. The program first searches the entries on the table Belyi 320 to find Belyi maps whose minimal
polynomial of five point invariant I5 matches with that of L. Here are such Belyi maps:

F1 =
{

4 (4 x−3)(x2+2 x+3)(x−1)2

x8 , 4 (4 x+3)x4

(x+1)4(x2−2 x+3)2
,
128 (2 x−3)(x4−36 x+54)

3

(x−2)2(x2+4 x+12)x12 ,
128 (2 x+3)(x4−4 x−6)

3

(x+2)6(x2−4 x+12)3x4

}
2. The program then searches the table Belyi one 320 for those Belyi-1 maps whose sorted list of exponent

differences match with E. It compares five point invariants I5 and Ĩ5 of matching entries to obtain
two polynomials and solves their gcd for ‘s’(parameter of Belyi-1 families). The procedure finds the
following map:

F2 =
{
−(x−1)4(x+1)3(x−7)

16 (3 x2+2 x+1)2

}
Note that this is also a Belyi map, we can check that from its branching above 0, 1,∞. Candidate Belyi-
1 map f(x, s) from the table reduced to this Belyi map because the fourth branch point t happened to
be in {0, 1,∞} for this particular value of s.

3. Let F := F1

⋃
F2. For each map g in F , we compute Möbius transformations from the singularities of

H
1
12 ,

5
12

1,g to Sing(L). We compose g with these Möbius transformations. Reciprocals of the results (we

use (0, 12 ,
1
k )) give the following maps:

Fs =

{
(x+1)4(x2−2 x+3)

2

4 (4 x+3)x4 , −x8

4 (x2−2 x+3)(4 x+3)(x+1)2
,
64(x+1)6(x2−2 x+3)

3
x4

(4 x+3)(8 x4−4 x−3)3 ,
−64(x+1)2(x2−2 x+3)x12

(4 x+3)(8 x4+36 x+27)3

}
(Two maps in F are Möbius equivalent)

4. The program calls the algorithms to find Belyi-2 maps. There are no such maps.

Hence, Algorithm 8.1 returns the following:

FinalCandidates := {[ (x+1)4(x2−2 x+3)
2

4 (4 x+3)x4 , (0, 12 ,
1
3 )], [ −x8

4 (x2−2 x+3)(4 x+3)(x+1)2
, (0, 12 ,

1
3 )],

[
64(x+1)6(x2−2 x+3)

3
x4

(4 x+3)(8 x4−4 x−3)3 , (0, 12 ,
1
3 )], [

−64(x+1)2(x2−2 x+3)x12

(4 x+3)(8 x4+36 x+27)3
, (0, 12 ,

1
3 )]}

Step 5.2: Run Algorithm 8.2 with L, x, 3 and C:
We compute decompositions of FinalCandidates. For (0, 12 ,

1
3 ) it is enough to consider the only decomposition

f = g(h) where g = x2

4 (x−1) produces exponent differences (0, 13 ,
1
3 ) from (0, 12 ,

1
3 ). RefinedCandidates := { }.

The first entry i =
(x+1)4(x2−2 x+3)

2

4 (4 x+3)x4 has the decomposition i = g(h) where

h ∈ {x
4+4x+3
4x+3 , x

4+4x+3
x4 }.
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Second entry i = −x8

4 (x2−2 x+3)(4 x+3)(x+1)2
has the decomposition i = g(h) with

h ∈ { x4

x4+4x+3 ,−
x4

4x+3}.
The other two maps don’t have any decompositions. This procedure gives the following RefinedCandidates:

RefinedCandidates := {[ (x
4+4 x+3)
x4 , (0, 13 ,

1
3 )], [

(x4+4 x+3)
4 x+3 , (0, 13 ,

1
3 )], [ x4

x4+4 x+3 , (0,
1
3 ,

1
3 )],

[ −x
4

4x+3 , (0,
1
3 ,

1
3 )], [

64(x+1)6(x2−2 x+3)
3
x4

(4 x+3)(8 x4−4 x−3)3 , (0, 12 ,
1
3 )], [

−64(x+1)2(x2−2 x+3)x12

(4 x+3)(8 x4+36 x+27)3
, (0, 12 ,

1
3 )]}

Step 5.2a: Now we apply projective equivalence [3]:

For the candidate f = x4+4x+3
x4 we take GHDO with (e0, e1, e∞) = (0, 13 ,

1
3 ) and apply change of variable

x 7→ f . That produces the following operator:

L1 := ∂2 +
(−x2−15+8 x4−14 x)

x(x+1)(4 x+3)(x2−2 x+3)∂ + 12
(x2−2 x+3)(4 x+3)x2

> equiv(L1, L);

(x+ 1)1/3 (x2 − 2x+ 3)1/6

x2/3

2F1

(
1
6 ,

1
2 ; 1 | x

4+4x+3
x4

)
is a solution of L1. Hence

(x+1)1/3 (x2−2 x+3)1/6

x2/3 · 2F1

(
1
6 ,

1
2 ; 1 | x

4+4x+3
x4

)
is a solution of L.

Repeating the procedure with candidate f = x4+4x+3
4 x+3 and (e0, e1, e∞) = (0, 13 ,

1
3 ) produces the following

operator:

L2 := ∂2 +
(12 x4−x2+2 x−3)

x(x+1)(4 x+3)(x2−2 x+3)∂ + 12 x2

(x2−2 x+3)(4 x+3)2

> equiv(L2, L);

(x+ 1)1/3
(
x2 − 2x+ 3

4x+ 3

)1/6

2F1

(
1
6 ,

1
2 ; 1 | x

4+4x+3
4x+3

)
is a solution of L2. Hence

(x+ 1)1/3
(
x2−2x+3

4x+3

)1/6
· 2F1

(
1
6 ,

1
2 ; 1 | x

4+4x+3
4x+3

)
is a solution of L.

Repeating the procedure with candidate f = x4

x4+4x+3 and (e0, e1, e∞) = (0, 13 ,
1
3 ) produces the following

operator:

L3 := ∂2 +
(8 x4−x2+18 x+9)

x(x+1)(4 x+3)(x2−2 x+3)∂ −
12 x2

(x2−2 x+3)2(x+1)2(4 x+3)

> equiv(L3, L);

0

This choice does not solve L.
Other candidates do not solve L; they stop at projective equivalence, returning 0.
Step 7: Of these two solutions{

(x+1)
1
3 (x2−2 x+3)

1
6

x
2
3

2F1

(
1
6 ,

1
2 ; 1 | x

4+4x+3
x4

)
, (x+ 1)

1
3

(
x2−2x+3

4x+3

) 1
6

2F1

(
1
6 ,

1
2 ; 1 | x

4+4x+3
4x+3

)}
, our program re-

turns the following (best) solution:

> Solver5(L, x, { });{ (x+ 1)1/3(x2 − 2x+ 3)1/6

x2/3
· 2F1

(
1/6, 1/2; 1 | x

4 + 4x+ 3

x4

)}
which is the solution obtained in Step 5.
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