If a, b, y, M, and N are positive real numbers, $a \neq 1, b \neq 1$, and p and x are real numbers, then

 $\log_b 1 = 0 \qquad (\ln 1 = 0)$ 1. 2. $\log_b b = 1$ (ln *e* = 1) 3. $\log_b b^x = x$ (ln $e^x = x$) 4. $b^{\log_b x} = x, x > 0$ $(e^{\ln x} = x, x > 0)$ 5. $\log_h MN = \log_h M + \log_h N$ $(\ln MN = \ln M + \ln N)$ 6. $\log_b \frac{M}{N} = \log_b M - \log_b N \left(\ln \frac{M}{N} = \ln M - \ln N \right)$ 7. $\log_b M^p = p \log_b M (\ln M^p = p \ln M)$ $\log_{h} M = \log_{h} N$ if and only if M = N8. $(\ln M = \ln N \quad if and only if \quad M = N)$ 9. $\log_{10} M = \log M$ 10. $\log_{e} M = \ln M$ 11. $\log_b M = \frac{\log_a M}{\log_a b} = \frac{\ln M}{\ln b} = \frac{\log M}{\log b}$ 12. $y = b^x$ is equivalent to $x = \log_b y$ $(y = e^x$ is equivalent to $x = \ln y$)

Domain: $(-\infty, \infty)$ Range: $(0, \infty)$ y-intercept = (0, 1)Horizontal Asymptote: y = 0 $\lim_{x \to \infty} e^x = \infty$ $\lim_{x \to -\infty} e^x = 0$

Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ x-intercept = (1, 0)Vertical Asymptote: x = 0 $\lim_{x \to \infty} \ln x = \infty$ $\lim_{x \to 0^+} \ln x = -\infty$