If a, b, y, M, and N are positive real numbers, $a \neq 1, b \neq 1$, and p and x are real numbers, then

1. $\log _{b} 1=0$
$(\ln 1=0)$
2. $\log _{b} b=1 \quad(\ln e=1)$
3. $\log _{b} b^{x}=x \quad\left(\ln e^{x}=x\right)$
4. $b^{\log _{b} x}=x, x>0 \quad\left(e^{\ln x}=x, \quad x>0\right)$
5. $\log _{b} M N=\log _{b} M+\log _{b} N$

$$
(\ln M N=\ln M+\ln N)
$$

6. $\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N \quad\left(\ln \frac{M}{N}=\ln M-\ln N\right)$
7. $\log _{b} M^{p}=p \log _{b} M \quad\left(\ln M^{p}=p \ln M\right)$
8. $\log _{b} M=\log _{b} N$ if and only if $M=N$

$$
(\ln M=\ln N \quad \text { if and only if } \quad M=N)
$$

9. $\log _{10} M=\log M$
10. $\log _{e} M=\ln M$
11. $\log _{b} M=\frac{\log _{a} M}{\log _{a} b}=\frac{\ln M}{\ln b}=\frac{\log M}{\log b}$
12. $y=b^{x}$ is equivalent to $x=\log _{b} y$
$\left(y=e^{x} \quad\right.$ is equivalent to $\left.\quad x=\ln y\right)$

$$
y=f(x)=e^{x}
$$

Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
y-intercept $=(0,1)$
Horizontal Asymptote: $\mathrm{y}=0$
$\lim e^{x}=\infty$
$x \rightarrow \infty$
$\lim _{x \rightarrow-\infty} e^{x}=0$

$$
y=f(x)=\log _{e} x=\ln x
$$

Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
x -intercept $=(1,0)$
Vertical Asymptote: $\mathrm{x}=0$
$\lim \ln x=\infty$
$x \rightarrow \infty$
$\lim \ln x=-\infty$
$x \rightarrow 0^{+}$

