Some algebra you may need to review

1. Factoring

Example 1.1. Factor $6 x^{3}-2 x^{7}$
Example 1.2. Factor $\frac{4}{3} x^{1 / 3}-2 x^{-2 / 3}$
Example 1.3. Factor $4(x-3)^{3}(2 x-1)^{3}+(x-3)^{4} \cdot 3(2 x-1)^{2} \cdot 2$

2. Quadratic Equation

The solutions for x to the quadratic equation $0=a x^{2}+b x+c$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

3. Equations of a Line

Horizontal Line: through (a, b) has equation $y=b$. A line is horizontal if and only of the slope is 0 .
Vertical Line: through (a, b) has equation $x=a$. A line is vertical if and only of the slope is undefined.
General or Standard Form: $A x+B y=C$ or $A x+B y+C=0$ where A, B, and C are real numbers.
Slope-Intercept Form: $y=m x+b$, where m is the slope and b is the y intercept
Point-Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.
Parallel: If two lines are parallel then their slopes are the same
Perpendicular: If two lines are perpendicular then their slopes are the negative reciprocal of each other.

4. Logarithms

Definition 4.1. The logarithm of x with respect to the base a is defined by

$$
y=\log _{a} x \text { if and only if } x=a^{y}
$$

Theorem 4.1 (Properties).
(1) Order of operations example:

$$
\begin{aligned}
4 \log _{2} 4 \cdot 4 / 2+2 & =4\left(\log _{2}(4 \cdot 4 / 2)\right)+2 \\
& =4\left(\log _{2}(8)\right)+2 \\
& =4(3)+2 \\
& =14
\end{aligned}
$$

(2) (a) $\log _{a} 1=0$
(b) $\log _{a} a=1$
(3) Two special logarithms:
(a) $\log x=\log _{10} x$
(b) $\ln x=\log _{e} x$
(4) Since $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are one-to-one:
(a) $a^{u}=a^{v}$ if and only if $u=v$
(b) $\log _{a} u=\log _{a} v$ if and only if $u=v$.
(5) Since $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverses of each other:
(a) $\log _{a} a^{u}=u$
(b) $a^{\log _{a} u}=u$
(6) Operations:
(a) $\log _{a}(m n)=\log _{a} m+\log _{a} n$
(b) $\log _{a}(m / n)=\log _{a} m-\log _{a} n$
(c) $\log _{a}\left(m^{n}\right)=n \log _{a} m$
(7) Change of base formula: If $b>0$ and $b \neq 0$, then $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$. In particular,

$$
\log _{a} x=\frac{\log x}{\log a}=\frac{\ln x}{\ln a}
$$

(8) The domain of $f(x)=\log _{a} x$ is $\{x \mid x>0\}$.

For more detailed review of these topics and more see Chapters 1, 2 and Appendix A in the text. It is expected that you know the topics covered in these chapters and appendix.

