Some algebra you may need to review

1. Factoring

Example 1.1. Factor $6x^3 - 2x^7$

Example 1.2. Factor $\frac{4}{3}x^{1/3} - 2x^{-2/3}$

Example 1.3. Factor $4(x-3)^3(2x-1)^3 + (x-3)^4 \cdot 3(2x-1)^2 \cdot 2$

2. Quadratic Equation

The solutions for x to the quadratic equation $0 = ax^2 + bx + c$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3. Equations of a Line

Horizontal Line: through (a, b) has equation y = b. A line is horizontal if and only of the slope is 0.

Vertical Line: through (a, b) has equation x = a. A line is vertical if and only of the slope is undefined.

General or Standard Form: Ax + By = C or Ax + By + C = 0 where A, B, and C are real numbers.

Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept

Point-Slope Form: $y - y_1 = m(x - x_1)$ where m is the slope and (x_1, y_1) is a point on the line.

Parallel: If two lines are parallel then their slopes are the same

Perpendicular: If two lines are perpendicular then their slopes are the negative reciprocal of each other.

4. Logarithms

Definition 4.1. The logarithm of x with respect to the base a is defined by

$$y = \log_a x$$
 if and only if $x = a^y$

Theorem 4.1 (Properties).

Algebra 2

(1) Order of operations example:

$$4\log_2 4 \cdot 4/2 + 2 = 4(\log_2(4 \cdot 4/2)) + 2$$
$$= 4(\log_2(8)) + 2$$
$$= 4(3) + 2$$
$$= 14$$

- (2) (a) $\log_a 1 = 0$ (b) $\log_a a = 1$
- (3) Two special logarithms:
 - (a) $\log x = \log_{10} x$
 - (b) $\ln x = \log_e x$
- (4) Since $f(x) = a^x$ and $g(x) = \log_a x$ are one-to-one:
 - (a) $a^u = a^v$ if and only if u = v
 - (b) $\log_a u = \log_a v$ if and only if u = v.
- (5) Since $f(x) = a^x$ and $g(x) = \log_a x$ are inverses of each other: (a) $\log_a a^u = u$
 - (b) $a^{\log_a u} = u$
- (6) Operations:
 - (a) $\log_a(mn) = \log_a m + \log_a n$
 - (b) $\log_a(m/n) = \log_a m \log_a n$
 - (c) $\log_a(m^n) = n \log_a m$
- (7) Change of base formula: If b > 0 and $b \neq 0$, then $\log_a x = \frac{\log_b x}{\log_b a}$. In particular,

$$\log_a x = \frac{\log x}{\log a} = \frac{\ln x}{\ln a}.$$

(8) The domain of $f(x) = \log_a x$ is $\{x|x > 0\}$.

For more detailed review of these topics and more see Chapters 1, 2 and Appendix A in the text. It is expected that you know the topics covered in these chapters and appendix.