5. TORSION ANGLES AND PDB FILES

In the study of space curves, the Frenet frame is used to define torsion and cur-
vature, and these are used to describe the shape of the curve. A long molecule such
as DNA or a protein can be thought of as a curve in space. Rather than being
described by continuous functions, it is described by line segments which represent
covalent bonds between atoms. The concept of curvature and torsion from differen-
tiable curves can be adapted to study the structure of these molecules. Curvature
corresponds to the angle between adjacent bonds, and torsion corresponds to the
torsion angle discussed here.

5.1. Torsion Angles. In the study of molecular structure, torsion angles are fre-
quently used to describe the shape of the molecule. In figure [I} we see four atoms
P1, P2, P3, and ps. Think of the vectors p; as vectors giving the coordinates of

FIGURE 1. Torsion angle ¢ = Tor (p1, p2,P3,P4)- The angle is
measured in the plane perpendicular to b = p3 — ps.

the centers of the atoms. Let

(1) a=p;—p;
b=p3;—-p2
C = P4 — P3-

and let Pa and Pc be the projections of a and ¢ respectively onto the plane per-
pendicular to b. The angle, ¢ from —Pa to Pc, measured counterclockwise around
b, is the torsion angle. Denote this angle as

¢ = Tor (p1, P2, P3, P4) -

It is important to note that this angle is measured not between the two vectors —a
and ¢, but between their projections onto the plane perpendicular to b.
Since the torsion angle depends only on the vectors a, b, c also write

¢=7(ab,c).
In this case the torsion angle is also called the dihedral angle. The angle is usually

measured in degrees and chosen in the interval (—180, 180].
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The dihedral angle can be thought of as the angle between two planes (See
figure . It is the angle counterclockwise from the normal vector a x b of the plane
containing a and b to the normal vector b x ¢ of the plane containing b and c.
Both a x b and b x c are in the plane perpendicular to b

FIGURE 2. The torsion angle ¢ as the angle between planes.

¢ = Tor (pla P2, P3; p4) =T (av b7 C) .
Angles « and 3 are bond angles.

5.2. The arg function. The torsion angle can be defined in terms of the argument
of a vector or complex number. Define 6 to be the argument of a vector (x,y) #
(0,0), written 8 = arg(z,y), if —180° < 6 < 180° and

cosf = x/+/ (22 + y?)
sind = y/+v/ (22 + y?).

We can also write the argument in terms of complex numbers. The angle § =

arg(x,y) if  + iy is written in polar form
T+ iy = re'.

In Maple the command to find the argument of a complex number is argument.
Note that if i, j, k is the standard basis then the argument can be written as a
dihedral angle,

(2) arg(,y) = 7 (—i,k, i + yj)
The angle ¢ of the spherical coordinates of a 3D vector

p = (cos 8, sin 0 cos ¢, sin O sin ¢)
can also be thought of as a dihedral angle,

(3) ¢:T(—i,k, p)'

5.3. The torsion angle formula. We give a formula for computing the dihedral
angle, hence the torsion angle, in terms of the argument.

The Dihedral Angle Formula. For vectors a, b, and c for which the torsion angle
is defined,

4) 7(a,b,c)=
arg (—|bl’a-c+ (a-b)(b-c),|bla- (b xc)).
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Proof. Notice that both sides of (4)) are unchanged if a, b, ¢ are replaced by Aa, Ab,
and Ac for a rotation A. So we can assume b is in the direction of e3. Likewise
the equation unchanged if b is replaced by Ab. So we can assume b = e3.

The equation is unchanged if a is replaced by its projection a — (a-b)b perpen-
dicular to b. So we can assume a is perpendicular to b. As above we can rotate a
dilate so that a = es. Let ¢ = (z,y, 2)". Then is equivalent to

T (e27 €3, (CC, Y, Z)) = arg (7ya I)

which is true because the left hand side is the angle from e; x e3 = e to

€3 X ({E,y,Z) = (—y,x,O).

Here is a Maple worksheet|to compute torsion angles.
5.4. Protein torsion angles.

5.4.1. Protein backbone torsion angles. The atoms along a protein backbone are
Cu-C-N-C,-C-N-C,. .. in a sequence repeating every third atom. If each atom has
a set of coordinates, the torsion angles along the backbone of a protein are named
as follows

e the angle Tor (C,N, C,, C) is the ¢ torsion angle

e the angle Tor (N, C,, C,N) is the 1) torsion angle

e the angle Tor (C,, C,N, C,) is the w torsion angle
Moving along the backbone we get a sequence of ¢, ¥ and w torsion angles that
can be used to describe the structure of the backbone.

5.4.2. Protein sidechain torsion angles. We can also get torsion angles by moving
along a side chain. The greek letter subscripts for the atoms along the side chain
are indicated in figure For example, the sequence of atoms C,, Cg, C,, Cs of
Lysine determine the xo torsion angle. The atoms C,, Cg, C,, S of Methionine
determine the xo torsion angle.

For the x; angle, the first atom used for the torsion angle is the N on the
backbone. For example,

e for Leucine, the angle Tor (N, C,, Cg, C) is the x1 torsion angle
e for Threonine, the angle Tor (N, C,, Cg, O) is the x1, torsion angle (when
there are two X1 angles, another subscript is added).

5.5. Protein Data Bank files. Structures of all known proteins are stored online
at the Protein Data Bank. The files there are called pdb files. The structural
information contained in the file is a list of three coordinates, (z,y,z), for the
centers of every atom in the molecule (although hydrogen atoms are sometimes
left out because they are small and their positions can be determined from the
positions of the other atoms). For example, a file identified as 1EOP contains the
coordinates for a protein called bacteriorhodopsin. Here is part of the file which
can be downloaded from the RCSB Protein Data Bank:

ATOM 1557 CB ILE A 205 -14.646 17.302 50.448 1.00 21.52 C
ATOM 15568 CG1 ILE A 205 -13.2563 16.800 50.104 1.00 19.39 C
ATOM 15569 CG2 ILE A 205 -15.422 17.496 49.149 1.00 22.80 C
ATOM 1560 CD1 ILE A 205 -13.299 15.453 49.472 1.00 18.37 C
ATOM 1561 N PHE A 206 -12.336 19.006 52.127 1.00 22.92 N
ATOM 1562 CA PHE A 206 -11.262 18.905 53.109 1.00 23.61 C


http://www.math.fsu.edu/~quine/MB_11/torsion.mw
http://www.rcsb.org/pdb/home/home.do
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Figure 1. Flexibility of amino acid side-chains. The
Figure shows the chi angle values required to fix the
positions of side-chain atoms in each residue type.

FIicURE 3. Naming convention for torsion angles along the
sidechains of a protein

ATOM 1563 C PHE A 206 -11.438 19.982 54.171 1.00 26.34 C

The z,y and z coordinates are contained in columns 7, 8, and 9 respectively.
Other important information is
e column 2, the number of the atom in the list
e column 3, the position of the atom in the protein using the naming conven-
tion in table . Note that, for example, CB is written instead of Cg.
e column 4, the three letter code for the amino acid

e column 5, the number of the amino acid in the list of amino acids along the
protein.

5.6. Ramachandran diagram. The ¢, pairs of torsion angles for each amino
acid along the backbone of a protein can be plotted as points in a rectangle, and
this plot is called a Ramachandran plot. The w torsion angle in generally con-
sidered to be 180° since the peptide bond is planar, and so it is not plotted. The
Ramachandran plot gives information about the secondary structure of the protein.
(See figure )

A regular protein backbone structure is one where all of the w torsion angles are
180 degrees and all of the ¢, pairs at alpha carbons have the same value. The
diagram below indicates the types of structures we get for different pairs. A regular
alpha helix, for example, corresponds to (¢,1) = (—60°,—50°). The level curves
indicate the number of residues per turn, the number of amino acids for each 180
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FIGURE 4. The Ramachandran plot giving the number of residues
per turn of the helix.

degree turn about the axis of the helix, for the corresponding regular structure. All
of the structures can be thought of as helices with various numbers of residues per
turn.

5.7. Torsion angles on the diamond packing. The diamond packing is a set of
points in space where the centers of carbons of a diamond crystal lie. The diamond
packing is obtained from the face centered cubic lattice (the set of points with
integer coordinates adding up to an even number) by adding to it points of the face
centered cubic lattice moved over by the vector (1/2,1/2,1/2). So

Diamond packing = fec U {fcc + (1/2,1/2,1/2)}.
By moving on a path through the diamond packing you can get torsion angles of
180, 60, and —60 only (or undefined if two consecutive vectors are parallel). Since

the -60 degree torsion angles are close to the ones for alpha helices, attempts have
been made to model proteins by putting atoms in a protein on points in a diamond

packing.

5.8. Appendix, properties of cross product. Here are some useful formulas
involving the cross product and the dot product


http://www.math.fsu.edu/~quine/MB_11/diamond_lattice.mw

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)
ax(bxc)=(a-c)b—(a-b)c
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