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nctional brain activity in humans are difficult to compare across subjects because
of differences in cortical folding and functional foci are often buried within cortical sulci. Unfolding a cortical
surface via flat mapping has become a key method for facilitating the recognition of new structural and
functional relationships. Mathematical and other issues involved in flat mapping are the subject of this paper.
It is mathematically impossible to flatten curved surfaces without metric and area distortion. Nevertheless,
“metric” flattening has flourished based on a variety of computational methods that minimize distortion.
However, it is mathematically possible to flattenwithout any angular distortion — a fact known for 150 years.
Computational methods for this “conformal” flattening have only recently emerged. Conformal maps are
particularly versatile and are backed by a uniquely rich mathematical theory. This paper presents a tutorial
level introduction to the mathematics of conformal mapping and provides both conceptual and practical
arguments for its use. Discrete conformal mapping computed via circle packing is a method that has provided
the first practical realization of the Riemann Mapping Theorem (RMT). Maps can be displayed in three
geometries, manipulated with Möbius transformations to zoom and focus on particular regions of interest,
they respect canonical coordinates useful for intersubject registration and are locally Euclidean. The
versatility and practical advantages of the circle packing approach are shown by producing conformal flat
maps using MRI data of a human cerebral cortex, cerebellum and a specific region of interest (ROI).

© 2008 Elsevier Inc. All rights reserved.
Introduction
The cortex of humans is a highly convoluted surface. The folds
(gyri) and fissures (sulci) of the brain vary in size and position from
person to person, and this variability has made it difficult for medical
researchers to analyze and compare patterns of functional activation
within and between subjects. A number of methods have been
implemented that take advantage of the two-dimensional sheet
topology of the cortical surface; the resulting “flat mappings” of the
cerebral and cerebellar cortex may facilitate the recognition of
structural and functional relationships.

This paper discusses the mathematics, computations, and applica-
tion of a flat mapping approach which uses circle packings to
approximate conformal maps of cortical surfaces. Such maps, termed
“discrete conformal maps”, are analogues of the conformal mappings
of analytic function theory, allowing this rich classical theory to be
exploited. Researchers will find both conceptual and practical
advantages in discrete conformal mapping. The basics of classical
conformal geometry and its discrete analogue are discussed. The
computations and mapping tools of circle packing are illustrated by
producing andmanipulating discrete conformal flat maps of data from
l).

rights reserved.
an MRI volume of the human cerebral cortex, cerebellum and a
specific region of interest (ROI).

Certain technical preliminaries are involved in all flattening efforts.
First is the acquisition of the initial three-dimensional (3D) data;
anatomical and functional data volumes of the cerebrum can be
obtained non-invasively using a variety of neuroimaging modalities,
including magnetic resonance imaging (MRI), functional MRI (fMRI),
and positron emission tomography (PET) (see Toga and Mazziotta,
1996 for a compilation of various methods). Data preprocessing can
include intra- and intersubject registration, inhomogeneity correction,
segmentation, parcellation and visualization. A common approach to
visualizing functional data has been to project a focus of activation on a
cross-section or slice of the brain volume. This approach suffers from a
number of disadvantages due to the highly folded structure of the
cortex. Activated foci that appear close together on a slice or 3D surface
rendering may be quite far apart when visualized on the unfolded
cortical surface. In a given individual, foci are often buried within
cortical sulci and appear in a number of discrete slices, making it
difficult to compare multiple foci simultaneously. Moreover, inter-
subject comparisons of focus location and extent are affected, inter alia,
by individual differences in folding patterns (Rehm et al., 1998).

After data acquisition and preprocessing, all flattening efforts
require that a finite representation of the surface region of interest be
extracted from the 3D brain volume. Historically, that surface was
reconstructed by tracing contours from histological sections. Wire
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frames or sheets were then created from the contours and these were
aligned and stacked to reconstruct the surface (Rosa et al., 1997). In the
last decade, a number of research groups have developed or adapted
computational tools for this purpose (Dale and Sereno, 1993; Mangin
et al., 1995; Drury et al., 1996; Van Essen et al., 1998; Dale et al., 1999;
Fischl et al., 1999; Hurdal et al., 1999; Goebel, 2000; MacDonald et al.,
2000; Wandell et al., 2000; Shattuck and Leahy, 2002; Wood et al.,
2004; Tosun et al., 2006). Whatever the approach, preprocessing
steps, and topological corrections involved (see section on Cortical
surface isolation), the final result must be a representation of the
cortical surface as a polygonal mesh in 3-spacewhich is a topologically
correct sphere or a disc. Only then can flattening begin.

For the purposes of this paper, the polygonal representation of the
surface in 3-space is a given. The goal of flattening is to move data
from that surface to a potentially more useful setting. It is a working
premise, then, that the flat maps should preserve as much “informa-
tion” of value as possible. With that in mind, flattening methods can
be grouped into three broad categories.

Ad-hoc methods

Combinatorially speaking, cortical meshes are just planar graphs,
and it has been known at least since Fary that every planar graph has a
straight-line embedding (i.e., flattening) (Wagner, 1936; Fary, 1948).
There is, in fact, a substantial body of established embedding
techniques with various target criteria, such as convexity or resolu-
tion, often having extremely efficient implementations. These meth-
ods are “ad-hoc” because they can lose information, and despite their
occasional utility, they will not be considered further.

Metric methods

The principal surface structures of scientific interest may seem to
be “metric”, referring to Euclidean lengths and areas. Several metric
algorithms have been implemented, each involving some strategy for
minimizing metric and/or areal distortion between the original
surface and its flattened image. A surface is typically unfolded
through iterative application of functions that adjust the edge
lengths of the polygonal mesh; computations halt when a flat image
with distortion satisfying some fitness criterion has been obtained.
In many methods, auxiliary cuts are introduced in the mesh to
reduce local distortion in the remainder of the image (Schwartz,
1989; Drury et al., 1996; Fischl et al., 1999; Goebel, 2000). Drury
et al., 1996 use longitudinal and torsional forces so that linear and
angular distortions are reduced while unfolding the surface. Fischl
et al., 1999 use the gradient of a function incorporating geodesic
distance and area so that linear and areal distortions are reduced.
Wandell et al., (2000) use a method which begins with a graph
embedding technique followed by an iterative process to reduce
linear distortions. Metric flattening algorithms have been central to
brain flattening efforts.

Conformal methods

A companion to themetric structure on surfaces, but less familiar, is
the “conformal” structure. A conformalflatmap is onewhich preserves
this structure; it preserves the angular measure between intersecting
curves and respects other subtle features. “Discrete”maps can never be
truly conformal. Angle is a local infinitesimal featurewhich can survive
neither discretization of the surface (as with triangulations) nor
numerical flattening of the result. The reader should be aware that all
conformal flattering methods produce “κ-quasiconformal” maps,
where κ is a measure of conformal distortion.

There are two basic approaches to conformal flattening: (i)
numerical methods such as partial differential equation (PDE)
methods for solving the Cauchy–Riemann equations, harmonic energy
minimization for solving the Laplace–Beltrami equation, and differ-
ential geometric methods based on approximation of holomorphic
differentials (Angenent et al., 1999; Levy et al., 2002; Gu et al., 2004; Ju
et al., 2005; Wang et al., 2006; Nie et al., 2007; Wang et al., 2007) and
(ii) the circle packingmethods (Hurdal et al., 1999; Bowers and Hurdal,
2003; Collins and Stephenson, 2003; Hurdal and Stephenson, 2004).
Maps produced via circle packing enjoy the additional advantages of a
comprehensive discrete theory which strongly parallels the well-
known classical (continuous) conformal mapping theory. As contin-
uous conformal maps encode a maximal amount of intrinsic
geometric information for continuous surfaces, discrete conformal
maps encode the maximal available intrinsic geometric information
for discrete surfaces.

Since Ptolemy's flat map of the earth (which was actually
conformal), attempts to preserve one or another geometric property
underlay the myriad types of maps developed down the ages. The
mathematical issues were clarified in the mid-nineteenth century:
Gauss proved that it is impossible to flatten curved 3D surfaces
without introducing metric and areal distortion (Polya, 1968).
However, his student Riemann proved that it is possible to preserve
angular, i.e., conformal, information (Riemann, 1876).

The Riemann Mapping Theorem (RMT) of 1851 established
conformal structures as among the richest in mathematics: every
surface with a conformal structure has an essentially unique
conformal flattening. “Conformal map” is nearly synonymous with
“analytic function”, and hence intimately connected with “harmonic
function” and the Laplace operator. The reader may recognize these as
mainstays of science and engineering involved in electrostatics, heat
and fluid flow, diffusion, Brownian motion and conformal field
theories. Conformal structure, less intuitive but much deeper than
metric structure, can provide medical researchers with an important
new tool.

Conformal methods for computing planar regions typical in
physics and engineering applications are now classical; Schwarz–
Christoffel is perhaps the most well known (see DeLillo, 2006;
Crowdy, 2007 for ongoing work), while the Kuhnau/Marshall “zipper”
method (see Marshall and Rohde, 2007) is a newer numerical
approach. Nevertheless, conformal mappings for non-planar domains
remain impossible or notoriously difficult to approximate, and circle
packing provides the first opening. This paper describes the Discrete
version of the RMT (DRMT) and a circle packing algorithm that
computes discrete conformal mappings carrying surfaces to the
standard geometric spaces: the sphere, the plane, and the hyperbolic
plane. The canonical nature of conformal maps, their “shape”
information, unique surface-based coordinate systems with their
automorphisms, and the supporting function theory are the principal
advantages of conformal flattening. These all persist in the circle
packing discrete theory.

The aim of this paper is to elucidate conformal methods and has
two goals: first is to describe the scientific pedigree and importance of
classical conformal mapping and its potential advantages in brain
flattening; second is to describe the mathematics of the circle packing
discrete conformal implementation and some of the difficulties that
are particular to brain flattening. The section on Conformal maps and
surfaces of constant curvature is an overview of conformal geometry
and the section on Computing conformal maps via circle packing
introduces discrete conformal maps and circle packing. The section on
Cortical surface isolation is a brief description of cortical surface
isolation and reconstruction techniques using MRI data. The resulting
triangulations from the section on Cortical flat maps are used to
produce discrete conformal flat maps in each of the three geometries.
The section on Versatility of the circle packing approach illustrates
manipulations of a simple example surface to highlight the versatility
of circle packing. The Discussion section addresses various conformal
flat mapping issues in the context of brain mapping, compares
methods, and summarizes the advantages — extant and potential —
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seen in the circle packing approach. Primers on key topics are
provided in an Appendix.

Conformal maps and surfaces of constant curvature

This section is an overview of surface geometry, conformal
structures and maps, the three target geometries and their auto-
morphisms. Additional details are in the Appendix.

Preliminary considerations in describing a surface S in 3-space
include topology, orientation and smoothness. Each surface of interest
here is a topological sphere or, if it has boundary, a topological disc (i.e.
connected, oriented, genus zero and with, respectively, no boundary
or one boundary component) and can be thought of as a wrinkled
rubber sphere or a wrinkled rubber disc, respectively. Each cortical
surface has an obvious “outward” direction giving it an orientation.
Regarding smoothness, cortical “surfaces” aremerely finite collections
of data points fromwhich triangulated polyhedra are created. Treating
these as piecewise smooth surfaces gives a well-developed language
and full range of fundamental mathematical concepts and theory; in
particular, they inherit from R3 a Riemannian metric.

The Riemannian metric on S determines the three main
structures pertinent to flattening: 1) metric structure, meaning
lengths and areas; 2) curvature structure, related to peaks, valleys,
and folds of S; and 3) conformal structure, reflecting angles between
curves in S. The mathematical notions of length, area, curvature and
angle on S all fit naturally with native intuitions about these
quantities. Note that Gaussian curvature is used because it is intrinsic
to the surface S.

A mapping between surfaces S1 and S2 is a one-to-one function
f : S1YS2 identifying each point p of S1 with a corresponding point
q= f(p) in S2; the function f (alternately, the image f(S1) in S2) is called a
map of S1. The target surfaces for conformal maps are the three
classical geometric surfaces represented by the (Riemann) sphere
S2 = x; y; zð ÞaR3 : x2 + y2 + z2 = 1

� �
, the Euclidean plane R2, and the

hyperbolic plane modeled as the unit disc D = x; yð ÞaR2 : x2 + y2b1
� �

.
These spaces have well-known Riemannian metrics of constant
Gaussian curvature +1, 0, and −1, respectively. The term flat map of S
Table 1
Properties of the three different geometries

Property Description

Geometric model Sphere S2 = x; y; zð Þ : x
�

Euclidean plane R2 or c
Unit disc D = x; yð Þ : x2

�
Points denoted by P=(x,y,z)

P=(x,y) in R2 or z=x+iy
z=x+ iy

Differential element
of arclength

ds =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 + dz2

p
ds =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2

p

ds = 2jdzj
1−jzj2

Metric ρ (distance
between points)

ρ Pj; Pk
� �

= arccos Pj � Pk
�

(radians)
ρ Pj; Pk
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj−xk
� �2 + �

q

ρ zj; zk
� �

= 1
2 log

j1−zjz k j + j
j1−zj zk j−jz

�

Curvature and
geodesics

Curvature +1; geodesic
Curvature 0; geodesics
Curvature −1; geodesic
intersect the boundary

Conformal
automorphisms

/ : zi az + b
cz + d, a; b; c; daC

where z is projected st
(full Möbius group)
/ : ziaz + b, a; baC; a≠
/ : zieiθ z−α

1−α z

� �
, θaR, α

Packing condition
for label R={rv}

∑<v;u;w> arccos cos ru + rð
sin

n

where this sum is over
containing v
∑<v;u;w> arccos rv + ruð Þ2

2 rð

n

∑<v;u;w> arccos cosh rv +ð
sin

n

is generalized to mean a map from S into any one of these spaces of
constant curvature.

Value is often attached to the metric structure S inherits from 3-
space, and a mapping which preserves distance is said to be an iso-
metry. However, a surface with non-constant Gaussian curvature
cannot be mapped isometrically to a surface of constant Gaussian
curvature; that is, every flat mapping of a cortical surface necessarily
introduces metric distortion.

On the other hand, each of the surfaces S also inherits a
complementary but less familiar conformal structure residing in its
angular data, and a mapping f : S1iS2 between surfaces is said to be
conformal if it preserves conformal structure. This has a very
straightforward interpretation in terms of the angle between curves
intersecting at a point (i.e. between their tangent lines at the point),
which is readily computed from the local metric data. Namely, f is
conformal if and only if it preserves the angle (both in its magnitude
and orientation) between every pair of intersecting curves. In other
words, whenever smooth curves γ, σ intersect at p in the domain, the
angle between their images f(γ) and f(σ) at f(p) is the same as that
between γ and σ at p.

The RMT of 1851 asserts that for every simply connected surface S
having a conformal structure there is a conformal map from S onto
precisely one of S2;R2, or D (see Ahlfors, 1966). Every cortical surface
can be mapped conformally onto S2 or D depending onwhether it is a
topological sphere or disc, respectively. The RMTalso asserts that such
mappings are essentially unique, meaning up to Möbius transforma-
tions which are awell-defined class of normalizations discussed in the
Appendix. As for Euclidean maps, if S is a topological disc then it has
an astounding array of conformal maps; for example, one can deduce
from the RMT that S can be mapped conformally onto any region in R2

that is bounded by a simple closed curve.
So the first advantage of conformal flat mapping is the guarantee of

existence and conditions for uniqueness. Additional advantages lie
with the geometries of the classical Ssurfaces in which the maps
reside. These surfaces are conveniently nested: DoR2, and R2 is
routinely identified, under stereographic projection, with S2 punctu-
red at the south (or north) pole (see the Appendix). Moreover, it is
Geometry
2 + y2 + z2 = 1

�
Spherical

omplex plane C Euclidean
+ y2b1

�
Hyperbolic
Spherical

in C Euclidean
Hyperbolic
Spherical
Euclidean

Hyperbolic
�
= arccos xjxk + yjyk + zjzk

� �
Spherical

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj−yk

�2 Euclidean
zj−zk j
j−zk j

�
Hyperbolic

s are great circles Spherical
are straight lines Euclidean
s are circle arcs that
of D orthogonally

Hyperbolic

with ad−bc≠0 and
ereographically

Spherical

0 Euclidean
aD Hyperbolic

wÞ− cos rv + ruð Þ cos rv + rwð Þ
rv + ruð Þ sin rv + rwð Þ

o
= 2π

all faces hv; u;wi
Spherical

+ rv + rwð Þ2− ru + rwð Þ2

v + ruÞ ru + rwð Þ

o
= 2π Euclidean

ruÞ cosh rv + rwð Þ− cosh ru + rwð Þ
h rv + ruð Þ sinh rv + rwð Þ

o
= 2π Hyperbolic
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convenient to identify R2 with the complex plane C, so every point
x; yð ÞaR2 corresponds with a complex number z=x+ iy. This gives us
the advantage of a complex arithmetic which can be used in any of the
three settings. Each target surface T has a rich family of (conformal)
automorphisms, one-to-one conformal maps from T onto itself; these
maps, zi az + bð Þ= cz + dð Þ; a; b; c;daC; ad−bc≠0, form a mathematical
group under composition denoted by Aut(T ). The main geometric
features of each surface follow and are summarized in Table 1. More
details are in the Appendix.

The sphere

S2 has constant Gaussian curvature +1. Circles are intersections of
planes with S2; geodesics are arcs of great circles. The automorphism
group, Aut(S2), is precisely the groupM of all Möbius transformations
of S2 (see Table 1). Though automorphisms map circles to circles, they
do not respect circle centers and geodesics. Any triple of points of S2
can be mapped to any other triple by a unique element of Aut(S2) (see
Fig. 1a).

The plane

The Euclidean plane, identified now as C, has constant Gaussian
curvature zero. Aut (C) consists precisely of the complex linear maps
(rotations, dilations, and/or translations), so each automorphism will
map circles to circles, centers to centers, and geodesics to geodesics.
The complex plane can be mapped to the surface of the sphere using
stereographic projection. This maps both circles and straight lines of C
to circles of S2.

The disc

The hyperbolic plane is a geometric surface of constant Gaussian
curvature −1. Hyperbolic geometry is mathematical gemwhich is just
now finding its way into applications. The most convenient model is
the Poincarè disc. Its point set is the open unit disc in C, namely
Fig. 1. Automorphisms of the sphere S2 and hyperbolic plane D. In (a): spherical map wi
transformation that shifts north and south poles and equatorial point. In (b): the automorph
regions to be brought into focus while relegating other regions to the periphery of the hype
D = z : jzjb1f g, and distances between two points are measured in the
metric ρ defined by ρ z;wð Þ = 1

2 log
j1−zw j + jz−wj
j1−zw j−jz−wj

� �
. The points of the unit

circle, AD, while not in the hyperbolic plane, can be regarded as an
“ideal” boundary, and hyperbolic distances grow as one approaches
that boundary. Thus points z, w which appear to one's “Euclidean”
eyes as being close to one another can, if near AD, be separated by a
huge hyperbolic distance. In fact, any path running from a point ofD to
an ideal boundary point will have infinite hyperbolic length.

Hyperbolic circles correspond with Euclidean circles lying in D
(though hyperbolic centers and radii are distinct from Euclidean
centers and radii). Hyperbolic geodesics correspond with arcs of
Euclidean circles which meet the unit circle AD in right angles. Any
Euclidean circle which is internally tangent to AD, called a horocycle, is
treated as a hyperbolic circle of infinite radius with the point of
tangency as its (ideal) center. Unlike in the other geometries, all
automorphisms of D are isometries, so they preserve hyperbolic
circles, circle centers, and geodesics.

Fig. 1b illustrates this geometry. A shaded disc of hyperbolic radius
0.4 centered at the origin, a triple ofmutually tangent circles (including
a horocycle) and the (hyperbolic) triangle formed by their centers, and
a centered polar-coordinate-style reference grid are shown; subse-
quent figures show these same objects after applying the automorph-
ism / : zi 3z + 1ð Þ= 3 + zð Þ once and twice, respectively. In each image
the shaded disc has the same hyperbolic radius, though Euclidean eyes
see it as getting progressively smaller as it approaches the boundary.
Also the grid remains an orthogonal grid, but with a new “pole”.

Summary

The three classical geometries form a unified and nested hierarchy.
They are nested as sets, DoCoS2; their automorphisms are nested as
subgroups of M, Aut Dð ÞbAut Cð ÞbAut S2

� �
=M; and both the auto-

morphisms and the inclusion maps preserve circles. In particular, any
set ℂwhich is a circle in one space will necessarily be a circle in any of
the other spaces which happens to contain it. Also, all the geometries
are “locally Euclidean”, meaning that at high magnification, the
th equatorial point; Möbius transformation that shifts equatorial point only; Möbius
ism / : zi 3z + 1ð Þ= 3 + zð Þ is applied successively. In practice, such maps allow selected
rbolic map.
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neighborhood of any point looks Euclidean — small circles in the
metric look like Euclidean circles, geodesics look like Euclidean
straight lines, and so forth. In other words, these geometries all look
locally like our familiar Euclidean world. Table 1 summarizes various
properties of these geometric surfaces; see the Appendix for details.

Computing conformal maps via circle packing

Conformal maps are guaranteed to exist by the RMT, but are
impossible to compute precisely — and until recently, have not even
been susceptible of approximation. However, an area of mathematics
known as circle packing, introduced in 1985 (Thurston, 1985) with
recent theoretical developments (Stephenson, 1999, 2002), provides a
useful computational and theoretical framework. See Stephenson,
2005. The mathematical focus in this paper is on practical
approximations of conformal maps via circle packing and their
application to brain data. The resulting “discrete conformal” maps
have a controlled but non-negligible level κ of conformal distortion —

technically they are κ-quasiconformal, as described in the Appendix.
While reducing this distortion is desirable, the discrete conformal
geometry of circle packing has such strong parallels to classical con-
formal geometry in both theory and intuition that to a large degree
the advantages of conformal maps are already present in discrete
versions.

Circle packing methods are quite a departure from standard
numerical methods; circles bring a sort of “spontaneous” geometry to
a given mesh, and this geometry is conformal in nature. A circle
packing is a configuration of circles with a specified pattern of
tangencies, and that “pattern” will be a triangular mesh associated
with a cortical surface S and topologically equivalent to a sphere or
disc. It is important to isolate the combinatorics of this triangulation
from its geometry. The triangulation is described in terms of its
combinatorics K and its geometric realization V, and is denoted S=(K,
V), where K is a (simplicial) complex representing the connectivity of
the vertices, edges, and faces, while V is a set of vertex positions
(points in R3) defining the shape of the mesh.

Given K, a circle packing P for K in one of the target surfaces T
is a collection {cv} of circles in T , one for each vertex v of K, so that
cv is tangent to cu whenever hv;ui is an edge of K and so that a
triple hcv; cu; cwi of mutually tangent circles is positively oriented in
T whenever hv;u;wi is a positively oriented face of K. Such a circle
packing gives a new triangulation S V lying in T where S V= K;V Vð Þ, i.e.
the same combinatorics but a new set of vertex positions
determined by the centers of the circles. An example is illustrated
in Figs. 2a, b. Starting with the randomly generated planar surface
S = K;Vð Þ in (a), a plane rectangular packing P for K is computed,
inducing a new surface S V= K;V Vð Þ in (b); the circle centers V V give
carr (P), as described in the Appendix. Since S and S V share K, each
vertex of S corresponds to a vertex v of K and hence to a circle cv of
P. Thus the three vertices defining any face of S may be identified
with the three circle centers defining a triangle in S V; extending to
edges and faces yields a mapping f : SYS V. A map defined in this
Fig. 2. (a) A randomly generated planar surface S=(K,V), (b) a circle packing embedding S V=
alternate rectangular “overlap” packing.
way will be called a (discrete) conformal map. Other packings for K
are shown in Figs. 2c, d.

Discrete conformal maps depend on the existence of circle packings
for given (extremely complicated) patterns K. Existence follows from
results of Koebe, Andreev, and Thurston (Koebe, 1936; Andre’ev, 1970;
Thurston, 1997). By treating the abstract complex K as a discrete
conformal structure on S, existence and uniqueness results for circle
packings may be formulated in parallel with classical function theory.
Thus the Discrete Riemann Mapping Theorem (DRMT) asserts that for
every simply connected triangulated surface S there is a discrete conformal
map from S onto precisely one of S2;C, or D. More precisely, if K is a
topological sphere then there exists a circle packing PK for K lying in S2
and PK is unique up to automorphisms of S2, while if K is a topological
disc and finite, then there exists a circle packing PK for K lying in the
hyperbolic plane D for which the circles associated with boundary
vertices of K are horocycles, and PK is then unique up to automorphisms
of D (e.g., Fig. 2c).

The packing PK described in the previous paragraph is called the
maximal packing for K, and as noted is essentially unique. When K is a
topological disc, however, there exists awhole zoo of additional discrete
conformal maps. For instance, if v1;: : :; vn denote the boundary vertices
of K, then the Circle Packing Theorem (CPT) (Beardon and Stephenson,
1990) asserts that given any assignment of positive numbers r1;: : :; rn
there exists a unique (up to isometry) circle packing P in R2 or D such
that for each i, i = 1;: : :;n, the boundary circle cvt of P has the assigned
radius ri. Alternately, one can preassign boundary angle sums instead
(see §13.2, Stephenson (2005)), giving, e.g., circle packings P with
rectangular carriers as in Fig. 2b. These are discrete analogues of the
classical Dirichlet and Neumann boundary value problems. The
flexibility provided by these Euclidean and hyperbolic manipulations
will be demonstrated in later examples.

The practical question of computing the circle packings guaranteed
in theory occupies the remainder of this section, with further details
provided in the Appendix. Briefly, given a circle packing P for
triangulation K, the packing process refers to the methods for
computing (i.e., approximating) the collection R of radii for the circles
(the “packing” label) and the positions of the circles’ centers, the
vertices of carr (P). The key is the extensive system of “flat” local
compatibility conditions the circles must satisfy.

The original packing process of Thurston (Thurston, 1985),
implemented with efficient algorithms in Collins and Stephenson
(2003), remains the most versatile. It concentrates on computing a
packing label R first. The curvature of a piecewise flat surface S is
concentrated at its vertices. In particular, an interior vertex v of S has a
chain of contiguous neighboring vertices that form the triangular
faces surrounding v. The angle sum θ(v) is the sum of the angles at v in
these triangles and the curvature is 2π−θ vð Þ. To “flatten” the surface at
v requires geometric adjustment so that θ vð Þ = 2π (360 degrees). If the
geometry is associated with a label R of putative radii, then θ(v) can be
computed directly from the labels for v and its neighbors; this yields
the “packing conditions” for flatness at v as specified for each of the
geometries in Table 1. R is a packing label if and only if the packing
K;V Vð Þ and the discrete conformal map f : SYS V. (c) The maximal packing PK in D, (d) an
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condition holds at every interior v. (There is (typically) no packing
condition for boundary vertices, which accounts for the extra degrees
of freedom a boundary provides.)

Thurston's method for finding R is elegant and nicely illustrates the
geometrically “spontaneous” nature of the flattening: A failure of the
packing condition for a particular v can be remedied by decreasing rv,
the radius of v, if the angle sum is too small (i.e. less than 2π) or by
increasing rv if the angle sum is too large (i.e. greater than 2π). In
practice, one starts a packing computation by assigning desired radii to
boundary vertices (if any) and arbitrary labels (i.e. putative radii) to
interior vertices. One then repeatedly readjusts the labels of the interior
vertices, one at a time as described above, until the packing conditions
are satisfied for all interior v. The boundary radii (if any) do not change.
There is a comprehensive theory guaranteeing that the iterative scheme
converges to a unique packing label R. Using the values in R as radii, one
easily lays out the circles to get the associated packing P in the target
surface T . The packing in turndetermines the associated conformalmap
from S to T , giving a discrete conformal flat map of S.

A new packing process has recently been developed by Gerald
Orick, (Orick, in preparation). Exploiting geometric connections
between the radii and centers of the circles, it is able to compute
both simultaneously via iterative sparse matrix computations. Though
it currently applies to the maximal packings only, the method is very
fast, for instance, giving a packing for a spherical mesh with 250,000
vertices in just 2–3 min on a laptop.

There is no packing algorithm known to work in the spherical
setting: all spherical packings are computed in C or D and then
stereographically projected to S2. An arbitrary vertex v0 and all edges
containing it are removed (or punctured) from K, leaving a topological
disc K⁎. Its maximal circle packing PK in D is computed and then
projected stereographically to the sphere; all its boundary circles are
tangent to the equator (see Fig. 4f). The equator is introduced as the
circle for v0, resulting in a spherical circle packing for the original
complex K. This circle packing is then normalized by an appropriate
automorphism of S2, after which the choice of v0 is immaterial. The
above described circle packing computations are carried out with a
software package called CirclePack created by Stephenson (1992–
2008). See the section on Software availability.

The unusual nature of circle packing methods requires some
comment. Packing algorithms involve “local” adjustments, each
depending only on a vertex v and its immediate neighbors, but the
theory tells us that the consequences areultimatelyglobal. This is, in fact,
the discrete expression of the rigidity inherent in classical conformal
structures and underlies the utility of the discretemethods. This rigidity,
reflected in various “uniqueness” results, is a core part of the theory and
should not be confused with the simple “determinism” one expects out
of numerical algorithms. For instance, packings of the sphere require
puncturing at some vertex vo, as described above, but the result is then
independent of vo. In contrast, PDEmethods require “pinning” oneof the
poles and so the choice of v0 can influence the final map.

Unlike PDE conformal methods, circle packing uses only the
combinatorics of a triangular mesh and not its metric structure. This
seems very strange — perturbing the mesh in R3 does not change its
flattened image. The nature of convergence of discrete maps may allay
concerns. It is known, for instance, that discrete conformal flat maps
converge to their classical counterparts under refinement, and that
tangency packings can be generalized to inversive distance and overlap
packings (as in Fig. 2(d)) to fine-tune approximations. So better absolute
precision, if desired, is available — with a computational cost. A much
deeper phenomenon may be in play, however. Recent circle packing
experiments strongly suggest that conformality is an “emergent”
phenomenon: if one randomly triangulates S with increasingly fine
meshes Kn, the associated discrete conformal flat maps fn : SYT
(consistently normalized) appear to converge to the classical conformal
map f : SYT Put another way, circle packing a mesh may provide your
best guess at its conformal structure — a sort of central limit
phenomenon. This notion fits, for instance, with conformality's roles
in recent work of FieldsMedalistsW.Werner on SLE (Stochastic Löwner
Evolution) (Lawler et al., 2004) and A. Okounkov on random stepped
surfaces (Kenyon and Okounkov, 2007).

The mathematical richness of circle packing is its strongest suit.
Since the discrete model parallels classical conformality, various
intrinsic behaviors (to be discussed later) are present. For example,
when higher resolution MRI scans need to be incorporated into an
existing database, the mathematical integrity of circle packing
methods will pay dividends beyond raw approximation.

Cortical surface isolation

In order to create a flattened map of a surface, one needs a discrete
representation of that surface. For cortical data, the process of
obtaining such a surface is an involved and often tedious procedure,
each step the subject of numerous publications which will not be
discussed in detail here. The result is a piecewise flat polygonal surface
approximating the cortical surface.

All current flattening approaches require the triangulated surface
to be topologically correct, i.e., a topological sphere or disc. The flat
triangular faces of the surface are connected along edges and each
edge is an interior edge (contained in exactly two triangles) or a
boundary edge (contained in exactly one triangle). If there are no
boundary edges, the surface is a topological sphere; if there are
boundary edges, they form a single closed boundary component, that
is, a single closed chain of edges forming the boundary, and the surface
is a topological (closed) disc. Three cortical surfaces were created from
MRI data as follows.

Human cerebral surface

The gray matter/CSF surface representing the left cerebral hemi-
sphere was extracted from a 1×1×1 mm MRI scan of a normal human
adult and parcellated into lobes. The resulting triangulation T (293,840
triangles; 146,922 vertices) is a topological sphere (see Fig. 3a). To create
a flat map of a topological sphere in the Euclidean or hyperbolic plane a
boundary must be introduced into the surface to act as the boundary of
thediscunderflattening. Theboundarywas introduced along the corpus
callosum and ventricle. Both this surface and the uncut surface are used
in the conformal flattening procedure.

Human cerebellar surface

This surface was selected to demonstrate that the circle packing
flattening strategy applies equally well to any cortical surface. A
cerebellum volume was isolated from a high-resolution T1-weighted
MRI volume by stripping away the cerebrum, brainstem and cerebellar
peduncles (Rehm et al., 2000) and then parcellated according to
Schmahmann et al., 1999. A lobar designation or white matter label
wasassigned to each voxel. The cerebellar volumewasheavily smoothed
and an isosurface triangulated mesh of the surface was created using a
marching cubes algorithm (Lorensen and Cline, 1987; Schroeder et al.,
1998). The marching cubes algorithm is known to produce topological
defects which were corrected semi-automatically using in-house soft-
ware (Hurdal, 2008) to produce a topological 2-sphere (56,676 triangles;
28,340 vertices) (see Fig. 3e). A boundary corresponding to the white
matter cut-plane andfilled-in fourth ventriclewas introducedwhere the
cerebellum attached to the brainstem.

ROI: ventral medial prefrontal cortex and orbital frontal cortex

The ventral medial prefrontal cortex (VMPFC) and adjacent orbital
frontal cortex (OFC) are well suited to cortical flat mapping and a local
coordinate system due to their highly curved geometry and compli-
cated folding patterns. These features make morphometric analysis



Fig. 3. Triangulated cortical surfaces and associated conformal maps.
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and visualization difficult; thus cortical flat mapping is an excellent
choice for enhancing and supplementing preliminary investigations of
this region. TheVMPFC is located on themedialwall of the cortex and is
bounded by the corpus callosum and the gyrus rectus. A topologically
correct triangulated white matter surface containing the VMPFC and
OFC regions was created as described in Ratnanather et al., 2001 and is
shown in Fig. 3i. The surface coloring ismean curvature,with gyri (high
curvature) represented with bright/white and sulci (low curvature)
represented with dark/black.

Cortical flat maps

The creation and manipulation of conformal flat maps are
illustrated using the surface triangulations from the section on
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Cortical surface isolation. Recall that after preprocessing, each
complex K is a topologically correct sphere or disc. One must exploit
the connectionwith the original 3D triangulated surface S, each point
in the flat map being associated with a point of S and vice versa.
Fundamental information resides with the surface — landmarks,
standard region demarcations, surface distances, sulci, gyri, surface
curvature, etc. Certain aspects of this information can be transferred
to the flat map, typically using common color coding. A region or
curve can bemarked on theflatmap, but relevant data such as surface
areas and lengths, curvatures, and other metric information, must
always be computed based on the connection to S.

The major computational effort in flattening with circle packings
involves approximation of the packing radii and centers for K. With
the latest routines these computations are quite fast, and in any
case are a one-time task for a given data set; subsequent
manipulations and transformations occur in real-time. The visual
presentation of a circle packing flat map uses either the circles of
the packing or the faces of the geometric triangulation induced by
the packing (see Fig. 2). Color is used to encode additional
information, such as anatomical or functional data. The original
3D surface and flat maps in any of the geometries can be viewed
simultaneously. Points or regions chosen on one can be highlighted
on the other.

Euclidean maps

The surface must be a topological disc to be flattened in R2. When
using this scheme for flattening, each boundary vertex w is assigned a
label equal to the average of half the lengths of the two boundary
edges containing w on the original surface. Because of the boundary
conditions, the resulting flat map will have the Euclidean lengths on
the boundary approximately preserved. CirclePack then computes the
unique packing label R for K having these prescribed labels for the
boundary radii. Circle packings preserve conformal, not metric
structure. Note that minimizing metric distortion on the boundary
edges may help with visual orientation but does not imply that metric
distortion is also small in the interior. In R2 transformations of the
packings involve the Möbius transformations of Aut (C), consisting of
translations, dilations, and/or rotations, giving the user options for
arbitrary real-time renormalizations in CirclePack.

Consider the surfaces described in the section on Cortical surface
isolation. The boundary of the cerebrum consists of the boundary of
the corpus callosum and ventricle and the cerebellar surface acquired
a boundary when the brainstem was removed. A normalization is
required before laying out the circles. For the cerebellum, the center of
the horizontal fissure was placed at the origin with the base of the
primary fissure vertically above the origin. For the VMPFC andOFC, the
boundary corresponds to the boundary of the region. The flat maps for
these surfaces are shown in Figs. 3b, f, j.

Hyperbolic maps

This setting also requires that the surface be a topological disc.
CirclePack computes the so-called maximal packing PK, which is
determined by the simple requirement that the hyperbolic label must
assign ∞ to all boundary circles, so they are horocycles in the final
configuration. The cerebrum is shown in Fig. 3d and the cerebellum,
repacked in D, is in Fig. 3g and they use the same normalizations as
before for the origin and a point directly above the origin (on the
positive y-axis). Note that the enclosing outer circle represents the
boundary of D (the unit circle), not a circle of the packing.

There are two main features to highlight regarding hyperbolic flat
maps. First, the final packings all lie in a common setting (i.e. they are
all disc-shaped), regardless of data set sizes, normalizations, bound-
ary, any ad hoc surface cuts, and so forth. This simplifies one of the
primary registration difficulties encountered with flat mappings and
presents the mapping in a standard setting consistent with gathering
meaningful statistics. Second is the rich group of rigid hyperbolic
motions or Möbius transformations, Aut(D). The map center is of
visual importance in D because there the map appears most
Euclidean, with little hyperbolic distortion. CirclePack provides real-
time interaction to bring any interior circle to the origin, allowing the
map focus to be changed (see Figs. 3d, g). In Fig. 3g, the transformed
coordinate grid shows the effects, with the grid lines still intersecting
each other orthogonally. In other words, the view is akin to that in a
lightmicroscope: the area of interest is brought to the center andwhat
appears to Euclidean eyes as distortion is pushed to the periphery.
Recall, however, that the automorphisms are actually isometries, rigid
motions in the hyperbolic sense, so these changes in focal point have
absolutely no effect on any intrinsic hyperbolic structures needed for
computations and statistics.

Spherical maps

A topological sphere S cannot be mapped into C or D without
introducing cuts; however, there is an essentially unique conformal
map to the sphere S2 which is approximated with discrete conformal
maps. Since there is no packing algorithm intrinsic to spherical
geometry, all spherical packings are computed in C or D and then
stereographically projected to S2, as described in the section on
Computing conformal maps via circle packing.

Consider the data from the section on Cortical surface isolation
which is a topological sphere. The automorphism group of S2 allows
one to choose three points for normalization, typically points for the
poles N and S and a point to be placed at E on the equator. Figs. 3c,
h display spherical packings for the cerebrum and cerebellum
respectively. Fig. 3h, left, displays the spherical packing for the
cerebellum with the precentral fissure mapped to N, the center of
the horizontal fissure mapped to S and the base of the primary
fissure mapped to E. The middle figure rotates the sphere to display
the location of the brain stem which was the boundary used for the
other flat maps and the right figure illustrates the application of an
automorphism.

Comparisons and coordinate systems

The normalizations required for displaying circle packings provide
a means for imposing canonical coordinate systems on these flat
maps. In the case of the Euclidean and hyperbolic maps, two points,
such as anatomical landmarks are required, while for spherical maps it
is three points (two poles and an equatorial point). The normalizations
discussed in the previous sections form the basis for the coordinate
grids on the flat maps in Figs. 3g, h.

It is instructive to compare the three flat maps associated with the
cerebellar data by focusing in the images from Figs. 3f–h on the region
near a common point, the base of the horizontal fissure. The boundary
where the brain stemwas removed has drastically different shapes in
the three settings, but despite that one can see that the local structures
in the interior are nearly identical in the three maps. The similarities
would be evenmore striking if one focused in on a smaller region. This
interior integrity despite the mapping modality is one of the key
consequences of the conformal nature of the maps.

Versatility of the circle packing approach

Circle packings provide enormous flexibility and versatility for
computing flat maps. To demonstrate in an accessible way, let S be
the small, triangulated surface in 3-space pictured in Fig. 4a, which
is a simply connected patch from Fig. 3a. The complex K (211
triangles; 122 vertices including 31 boundary vertices/edges) is a
topological disc, so it has a variety of packings, as illustrated by
Fig. 4. Fig. 4b displays the maximal packing PK in D guaranteed by
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the DRMT. Figs. 4c, d are two Euclidean packings of K, each with its
induced triangulation for reference. In 4(c) the radii of the boundary
circles were set in advance so that the lengths of boundary edges
would track their lengths in S. Fig. 4d illustrates an alternate type of
boundary condition; here the carrier was required to form a
rectangle with four preselected boundary circles as its corners.
Projecting Figs. 4c, b to the sphere gives the circle packings of Figs.
4e, f, respectively; Fig. 4e shows just the induced triangulation (now
spherical) and Fig. 4f suggests the geometry of stereographic
projection.

Properties of a surface which are preserved under conformal maps
are termed conformal invariants and reflect something about the
“shape” of S. (Under a κ-quasiconformal map such as provided by
circle packing, an “invariant” will typically be distorted by at most a
constant related to κ.) The versatility of circle packing is such that by
imposing boundary conditions on the flat maps one can exploit these
novel and non-intuitive measures of shape. One such conformal
invariant is extremal length, described below.

(1) Extremal Length of Quadrilaterals: The extremal length of the
rectangle Q=[0,L]×[0,W] of length L and width W is EL(Q)=L/W
(the aspect ratio of the rectangle). Rectangles Q and R are
conformally equivalent (with “ends” identified) if and only if
EL(Q)=EL(R). A quadrilateral subregion Q of a surface with
designated boundary arcs as its ends can be mapped
conformally onto a unique (up to similarity) rectangle Q,
hence one defines EL(Q)=EL(Q). Extremal length large or
small means roughly that the quadrilateral is long or wide,
respectively, relative to the designated ends.

(2) Extremal Length of Annuli: The extremal length of the round
annulus A={(x,y):rbx2+y2bR} is EL(A)= log(R/r)/2π. Annuli A
and B are conformally equivalent if and only if EL(A)=EL(B).
Every annular subregion A of a (Riemann) surface can be
mapped conformally onto a unique (up to similarity) round
annulus A, hence one defines EL(A)=EL(A). Extremal length
large or small means roughly that the annulus is fat or thin,
respectively.

As an example of (1), four corner vertices of S from Fig. 4a were
designated as corners and S was mapped to a rectangle (see Fig. 4d).
Similar conformal invariants are available for annular surface regions,
for relative positions of cuts, and so forth, and there exist well known
extremal situations and comparison results in the mathematical
literature. These conformal invariants can be thought of as a form of
conformal “size” and “shape”. For example, they could represent
intrinsic surface information that can be exploited when comparing
population groups or disease.

Discussion: conformal mapping and brain mapping

The goal in cortical flat-mapping is to move geometric information
from the cortex to a potentiallymore useful or complementary setting.
Certain natural advantages of 2D presentations mentioned earlier
accrue to all flat maps, as do standard visualization tools such as color
coding, zooming, and 3D/2D display interactions. Conformal flattening
methods distinguish themselves in practical terms (such as speed and
versatility), scientific terms, information integrity, intuitive content
and theoretical richness.

Non-conformal methods have been central to brain mapping. They
tend to be fast, put one in the familiar geometries of the plane and
sphere, and carry the intuitive content of lengths/areas which connect
to relevant quantities, such as neuronal density and activation extent.
Why consider conformal methods? The conformal methods of circle
packing include all the above and additionally give notions of
conformal structure and provide the world of hyperbolic geometry.

A short answer would suffice in math or physics: existence and
uniqueness. It is impossible to preserve metric structure during
flattening, whereas there's an extensive (and physically relevant)
theory about maps which preserve conformal structure. In a
neuroscience setting, however, more needs to be said. Because
isometric flat maps do not exist, non-conformal flattening is
inherently non-deterministic, with user-specified tuning parameters
and stopping criteria and in some cases ad-hoc surface cuts. Metric
intuition can be misleading as distortion is minimized only locally —

global distance measurements must be done by reference to the
original surface.

The three geometries used in conformal mapping have readily
apparent similarities: all are locally Euclidean, have standard
coordinate systems which are interrelated, and transitive subgroups
of Möbius transformations for normalization, zooming and focusing.
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Of course, each has its strengths. The primary advantage of a spherical
map is that it requires no cuts; but of course half the image is always
out of sight. Euclidean and hyperbolic maps always require a
boundary, but the conformal approach does not require extraneous
cuts. As with the maps of other researchers (Drury et al., 1996; Fischl
et al., 1999), the shapes of circle packing Euclidean maps are largely
determined by the length and number of edges in the chosen
boundary and will vary from map to map. Hyperbolic maps, on the
other hand, are always in the same disc, which may be a considerable
advantage in registering images, making comparisons, and gathering
statistics. Although hyperbolic maps may seem distorted vis-a-vis the
Euclidean metric, Möbius transformations preserve the hyperbolic
geometry while allowing the map focus to be changed interactively,
relegating distortion to the map periphery. Conformal methods allow
registration of only two landmarks in the Euclidean and hyperbolic
cases and three in the spherical case. However, the canonical
coordinate systems provide the reference grids necessary should
one choose to warp images in order to align fissures, lobes, or other
anatomical features.

Increasingly, conformal maps are being used in neuroscientific
studies and have been shown to be just as useful, if not more so, than
metric methods. Conformal brain mapping has been used in studies of
the hippocampus (Gutman et al., 2007), Alzheimer's disease and
schizophrenia (Thompson et al., 2004), the cerebellum (Hurdal et al.,
2003), and in cortical shape matching (Gu and Vemuri, 2004; Wang et
al., 2005; Lui et al., 2008) and alignment (Lui et al., 2007b). Conformal
parameterizations have also been used to detect sulcal and gyral
landmarks (Lui et al., 2007a). Other studies on hemispheric asym-
metry (Csernansky et al., 2004), the planum temporale (Ratnanather
et al., 2003), and the medial prefrontal cortex (Hurdal et al., 2003)
have utilized discrete conformal maps from circle packings. Addition-
ally, the retinotopic mapping of the visual cortex is modeled as a
conformal map (Fischer, 1973; Tusa et al., 1978; Schwartz, 1980, 1994;
Murray, 1989; Qui et al., 2006).

Conformal maps are associated with several classical PDE's,
particularly Cauchy–Riemann, Laplace, Beltrami, and Laplace–Bel-
trami. Although the PDE methods share some of the conformal
advantages of circle packing, they cannot handle triangulations with
boundary unless the boundary is fixed a priori— only full spheres with
one or two punctures. The authors also attach the adjective
“conformal” to their maps but their maps are in fact only κ-
quasiconformal. While circle packing yields bounds on κ, to our
knowledge no such bounds are available in the PDE approach.

The rich theoretical framework associated with circle packing
brings distinct advantages over both the metric and PDE methods.
Discrete conformal maps are defined which both approximate
conformal maps and enjoy a parallel discrete theory. In particular,
they exist and are unique by the DRMT and related theorems, are
computable, and can bemanipulated in practice in the sameways that
conformal maps can be manipulated in theory — the same canonical
coordinate systems, the same Möbius transformations, the same
normalizations. They also preserve the subtle conformal shape
information which could well play a role in cortical studies. The
comprehensive nature of the theory, taken along with the versatility
and practical advantages of the resulting maps, should allow circle
packing methods to keep up indefinitely with the advances and
demands one can expect in the neuroscience of brain flattening.

Software availability

The software, CirclePack, used for all computations, manipulations,
and visualizations of circle packings in this paper, is available for
computing packings for topologically correct surfaces (Stephenson,
1992–2008). CirclePack provides a graphical interface for displaying,
manipulating, and analyzing circle packings in any of the three
geometries and is written in Java for platform independence; it links
to standalone C++ libraries (including Orick's algorithm (Orick, in
preparation)) for more intensive computations. The software TopoCV
is also available (Hurdal, 2008) for checking and correcting surfaces
with topological errors before using CirclePack.
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Appendix

Background and additional details on the mathematics of surfaces,
the classical geometric spaces, conformal maps, and circle packings
follows.

Primer on the classical geometries

The classical geometric spaces of constant curvature, S2, C, and D,
are the most homogeneous and serve as “flat” target geometries.
Their principal features are listed in Table 1. Each enjoys a Rieman-
nian geometry; this is associated with a metric ρ based on a
differential element of arclength ds which gives lengths of curves and
areas of regions as described earlier. A geodesic, or “straight line”,
segment is a shortest curve between two points, p and q, and the
distance ρ(p,q) is its length. The Gaussian curvature for each space
can be computed directly from the metric in Table 1; in each case it is
constant. Angles are computed using a general version of the Law of
Cosines.

Homogeneity of these spaces is reflected in their rich families of
automorphisms, one-to-one conformal self-maps, all groups of
Möbius transformations as indicated in Table 1. Moreover, the three
geometries form a unified and nested hierarchy, DoCoS2. The last
inclusion is via stereographic projection, so every point z of C is
identified with the point p of S2 where the line from z to the south
pole of S2 pierces S2. See Fig. 4f. Stereographic projection preserves
circles, angles, and orientation and respects automorphisms. Note
that most texts describing stereographic projection puncture S2 at
the north pole. If the south pole is used, the resulting stereographic
map is more intuitive for the untrained user.

The sphere
The distance between points is the angle (in radians) between the

lines of sight of the points from the origin. It is easily deduced that a
“circle” in S2 is the intersection of a Euclidean plane in R3 with S2 and
that geodesics are arcs of great circles. In particular, this is a non-
Euclidean geometry: any two straight lines intersect. Normalizing
spherical maps relies on the fact that for any two triples {p1,p2,p3} and
{q1,q2,q3} of points of S2 there exists a unique Möbius transformation
/aAut S2

� �
with / pj

� �
= qj; j = 1;2;3.

The plane
The identification of C under stereographic projection with S2

(minus the south pole) is conformal and maps circles of C to circles of
S2, though it does not respect centers. Straight lines in C are generally
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treated as circles “going through infinity” because they correspond
under stereographic projection to circles in S2 containing the south
pole.

The disc
The richness of hyperbolic geometry is explained in part by the fact

that automorphisms preserve hyperbolic distance. Thus images of
circles are circles, images of geodesics are geodesics. Direct computa-
tion with ds = 2jdzj= 1−jzj2Þ

�
shows that for zaD, the Poincarè distance

to the origin is ρ 0; zð Þ = 1=2ð Þ log 1 + zð Þ= 1 − zð Þð Þ. So circles centered at
the origin and geodesics through the origin are just Euclidean circles
and Euclidean straight lines, respectively. Other circles and geodesics
are images of these so, for instance, geodesics are always arcs of
Euclidean circles which are orthogonal to the unit circle. Hyperbolic
geometry is a second type of non-Euclidean geometry: given a line L
and a point q not on L, there are infinitely many lines through q
parallel to L.

Primer on surfaces

The surfaces S of this paper are polyhedral topological spheres or
discs defined by triangular meshes. Typical topological problems —

edges occurring more than twice, disconnected pieces, etc. — are
detected and repaired by examining the surface complex K. So-
called handles are more difficult, but can be detected using
topological invariants; a surface's Euler characteristic χ(S) is defined
by χ(S)=v−e+ t, where v, e, t are the numbers of vertices, edges,
and triangles, respectively, in K (Armstrong, 1983, Massey, 1967).
The number m(S) of boundary components can be computed from
K. The genus g(S), the number of handles, satisfies χ(S)=2−2g(S)
−m(S). Thus, assuming S is topologically correct, has at most one
boundary component, and is simply connected (so g(S)=0) then S is
a topological sphere if and only if χ(S)=2 and a topological disc if
and only if χ=1.

Since such surfaces lie in 3-space and are piecewise flat, they
inherit a Riemannian metric from R3. Although they lack the
homogeneity characteristic of the classical geometries, their metrics
endow them with the three main structures pertinent to flattening:
metric structure, curvature structure, and conformal structure.

Metric structure
The Riemannian metric ρ on S is defined by a differential element

of arclength ds within each face. Integrating ds along a path gives its
length, and the distance ρ(p,q) is the length of the shortest path lying
in S and connecting p to q. Double integration of ds over a region XoS
gives its area.

Curvature structure
The curvature of S has to do with its shape in space. Gaussian

curvature is used as it depends only on distances within S itself, not on
how S lies in R3. A rounded region, say a hilltop, represents positive
curvature; a plain or valley floor is flat, zero curvature; while a saddle
point, such as a mountain pass, has negative curvature. Since these
surfaces are piecewise flat, all the non-zero curvatures reside at the
vertices. If v is a vertex and θ(v) is the sum of the angles at v in all the
triangles meeting at v, then curvature at v is defined to be 2π−θ(v).
Positive, zero, and negative curvature have their familiar geometric
interpretations. For example, a cone point composed of 5 equilateral
triangle faces has a total angle sum of 5π/3, giving positive curvature
π/3. Six faces of equilateral triangles demonstrates zero curvature
(flat); and a saddle point composed with 8 equilateral faces
demonstrates negative curvature −2π/3.

Conformal structure
A mapping is conformal if it preserves angles and angle direction

between curves. On piecewise flat surfaces there is a slight subtlety
about the meaning of angle for curves that meet at a vertex v; namely,
one needs a “market share” or proportional interpretation. Suppose γ
and σ are curves that intersect at v. As before, let θ(v) denote the sum
of the angles of all the triangles meeting at v. Sweeping the tangent
vector to γ counterclockwise about v within the surface until it is
tangent to σ will accumulate some turning angle β through these
faces. The angle between γ and σ is not β, but rather is the ratio
α=2πβ/θ(v) which measures β's market share or proportion of θ(v).
This is really quite natural: if β represents, say, a quarter of the total
angle at v, β=(1/4)θ(v), then under a conformal flattening one would
expect the images of γ and σ to meet in the angle α=2π(1/4)=π/2,
that is, in a right angle.

These interpretations of curvature and angle in the piecewise flat
setting are entirely standard. They are local, intrinsic to S, converge to
the usual meanings when piecewise flat surfaces approximate smooth
surfaces, and they have exactly the intuitive content one expects.

Primer on surface maps

A mapping f from one surface, S1, to another, S2, is a one-to-one
function f : S1iS2. That is, every point x1 of S1 corresponds with a
unique point x2=f(x1) in S2, and if x and y are distinct points of S1 then
f(x) and f(y) are distinct points of S2. Thus f effectively identifies S1
with the subset f(S1) in S2 so that locations, curves, or regions of S1 are
identified with corresponding locations, curves, or regions in S2.

Assuming S1 and S2 have conformal structures, f is conformal if it
preserves angles and angle direction between curves. Paraphrasing an
equivalent and more intuitive condition: f is conformal if for each
point p of S1, the images of tiny circles centered at p are tiny
(approximate) circles centered at f(p) in S2. This latter condition can
be loosened to define the more general class of quasiconformalmaps: f
is κ-quasiconformal if for each point p of S1, the images of tiny circles
centered at p are tiny (approximate) ellipses centered at f(p) in S2 and
having eccentricity bounded by κ.

There are innumerable equivalent (and precise) definitions of quasi-
conformal; it is a highly developed field in PDE's and in studies of
conformalmapping (see Lehto andVirtanen,1973). The parameter κ, κ≥1,
is onemeasure of conformaldistortion ofκ-quasiconformalmaps; indeed,
f is conformal if and only if it is 1-quasiconformal. Piecewise affine maps
are, in practice, never conformal, always quasiconformal. However, κ
indicates “worst-case” local distortion; in practice, evenwhen κ is large a
κ-quasiconformal map fwill convey significant conformal information.

Primer on circle packing

As defined earlier, a circle packing is a configuration of circles with
a specified pattern of tangencies. Here is some standard terminology.

Complex
K denotes a complex (technically, an abstract simplicial 2-complex)

associated with a triangulation of a topological surface. This is
basically a “list” of the vertices v, edges hv;ui, and oriented faces
hv;u;wi of the triangulation, and represents a “pattern”.

Packing
P denotes a circle packing for K in one of the target geometries T .

More specifically, P is a collection {cv} of circles, one for each vertex v
of K, so that cv is tangent to cu whenever hv;ui is an edge of K and so
that the triple hcv; cu; cwi of mutually tangent circles is positively
oriented in T whenever hv;u;wi is a positively oriented face of K.

Maximal packing
The essentially unique extremal packing PK for K: if K triangulates

a sphere, this is a packing of the Riemann sphere S2, while if K
triangulates a disc, this is a hyperbolic packing whose boundary circles
are horocycles (internally tangent to the unit circle), e.g., Fig. 2c.
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Packing label
R is the collection {rv} of radii, one for each vertex v of K, so that rv

is the radius (in the metric of T ) for circle cv.

Angle sum
Given putative radii for a vertex v and its immediate neighbors,

θ(v) is the sum of angles at v in the faces these form, each computed
by the appropriate Law of Cosines. When v is interior, the radii form a
flat packing at v if and only if θ(v)=2π.

Carrier
Carr (P) denotes the concrete geometric triangulation in T formed

by connecting the centers of tangent circles of P with geodesic
segments; this provides a mesh in T which is combinatorially
equivalent to K.

Starting with a given topologically correct complex K: 1) The
complex K is the triangular mesh of some reconstructed cortical
surface S. 2) The packing P is a circle packing for K guaranteed by the
DRMT and the CPT (Beardon and Stephenson, 1990). 3) The packing
label R is computed (approximately), giving the circle radii, and the
circles are laid out to give P. 4) Carr (P) is used (as described below) to
define the desired flat map f : SYT . Some of the technical issues
involved are:

A) Computational effort lies mainly in approximating a packing
label R with iterative methods (see the section on Computing
conformal maps via circle packing); laying out P is then
straightforward. For maximal packings, linearized methods of
Orick compute circle radii and centers simultaneously and are
much faster (Orick, in preparation).

B) There is (as yet) no packing algorithm intrinsic to spherical
geometry. One uses the puncture trick described in the section
on Computing conformal maps via circle packing so the
computations are actually done in D. Other triangulated
surfaces can also be packed in S2, as illustrated in Fig. 4e, but
all are projected from C or D.

C) If P is a circle packing for K in target space T , then each vertex p
of S corresponds to a vertex vaK , hence to a circle cvaP, and
hence to its circle center zv in T . Define f(p)=zv, then extend f to
edges, and finally to faces. The result is a simplicial map
f : Sicarr Pð ÞoT . This is the “flat”map on S induced by P and is
called a discrete conformal map. Of course, a different packing P
or considering P in a different geometry T can heavily effect the
properties of f. On the other hand, details, such as how f was
extended to edges and faces, are largely immaterial in practice.

D) The quasiconformal dilatation κ for discrete conformal maps is
well controlled. A priori upper bounds are derived from the key
Ring Lemma of (Rodin and Sullivan, 1987) and from lower
bounds for the angles in the triangularmesh. In practice, precise
bounds for κ are not a high priority; intrinsic advantages of the
discrete theory outweighmere approximation of classicalmaps.
In any case, mesh refinements, parallel computation, and
introduction of overlap and inversive distance packings (con-
formally invariant properties, see Bowers and Hurdal, 2003 for
details) will further reduce quasiconformal distortion. An
overlap packing is illustrated in Fig. 2d.
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