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Abstract. The rent-seeking competitions studied by economists fall within a much broader 
category of conflict interactions that also includes military combats, election campaigns, industrial 
disputes, lawsuits, and sibling rivalries. In the rent-seeking literature, each party's success pi 
(which can be interpreted either as the probability of victory or as the proportion of the prize won) 
has usually been taken to be a function of the ratio of the respective resource commitments. Alter- 
natively, however, pi may instead be a function of the difference between the parties' commit- 
ments to the contest. The Contest Success Function (CSF) for the difference form is a logistic curve 
in which, as is consistent with military experience, increasing returns apply up to an inflection point 
at equal resource commitments. A crucial flaw of the traditional ratio model is that neither one- 
sided submission nor two-sided peace between the parties can ever occur as a Cournot equilibrium. 
In contrast, both of these outcomes are entirely consistent with a model in which success is a func- 
tion of the difference between the parties' resource commitments. 

1. Introduction 

Following the seminal contributions of Gordon Tullock (1967, 1980), a num- 
ber of papers' have explored various aspects of rent-seeking competitions. In 
such contests, each of N players invests effort Ci (i = 1, ..., N) in the hope 
of gaining a prize of value V. Existing analyses have mainly explored the nature 
of equilibrium with varying numbers of contestants, the central issue addressed 
being whether or not under- or over-dissipation of rents will occur. 

The fundamental notion of competitions in which relative success is a func- 
tion of the parties' respective resource commitments applies far beyond the 
rent-seeking context. Military combats, election campaigns, industrial strug- 
gles (strikes and lockouts), legal conflicts (lawsuits), and even rivalries among 
siblings or between spouses within the family all fall under this heading. Owing 
perhaps to failure to perceive these wider implications, the papers in the rent- 
seeking literature generally do not adopt a general-equilibrium approach which 
would make explicit provision for the alternative productive or consumptive 

* In preparing successive drafts of this paper I have benefited from suggestions and comments 
from Michele Boldrin, Avinash Dixit, Arye L. Hillman, David Hirshleifer, Eric S. Maskin, David 
Levine, Eric Rasmusen, John G. Riley, Russell Roberts, and Leo K. Simon. 
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uses of resources employed in rent-seeking competitions. Also, what is very im- 
portant, a general-equilibrium model would typically make the value of the 
prize an endogenous variable rather than an exogenously given parameter. I 
have attempted to provide such a general-equilibrium analysis in Hirshleifer 
(1988). 

This note has a more limited aim, however. My main purpose is to point out 
that Tullock's basic equation for success in rent-seeking competition represents 
only one of two canonical families of possibilities, the second and at least 
equally interesting family having been totally ignored in the existing literature. 
Specifically, in Tullock's formula each party's success is a function of the ra- 
tios of the respective efforts or inputs Ci. As will be shown, a number of sig- 
nificantly different results are obtained when, alternatively, relative success is 
determined by the differences among the inputs. I will also be allowing for pos- 
sibly different prize valuations Vi 1 Vj.2 

2. Contest success functions 

For N= 2 players, in Tullock's basic model the proportionate outcomes pi de- 
pend in a simple way upon the contest inputs or efforts Ci: 

P1/p2 = (C1/C2)m (1) 

Here each pi may be interpreted either as the party's respective probability of 
success in a discrete either-or competition or else as the proportionate share of 
the prize won in a continuous-outcome contest. Since p, + p2 = 1, equation 
(1) is equivalent to: 

Cm\1 
Pi = C(2) 

CM + CM 

For given C2, this may be called the Contest Success Function (CSF) for play- 
er #1; the CSF for the other player is defined correspondingly. (I have implicitly 
been assuming that the two sides' resources have equal effectiveness in the con- 
test. More generally, it would be possible to adjust each side's Ci by an effec- 
tiveness coefficient; this straightforward generalization will be omitted here.) 

The effect of the "mass effect parameter" m upon the shape of player #1's 
Contest Success Function is displayed in Figure 1, in which player #2's resource 
input has been arbitrarily fixed at C2 = 100. Regardless of the level of m, we 
see that p, = p2 = .5 when C1 = C2. If m < 1, diminishing returns to com- 
petitive effort hold throughout. But for m > 1, an initial range of increasing 
returns exists instead. More specifically, taking the second derivative in the 
usual way, the inflection point along the CSF of player #1 is determined by the 
condition: 
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Figure 1. Contest success function: Ratio form 

C1 rm-i\ 1/m 
-= (3a) 

C2 m+ 1 

or, equivalently, 

p, = (m- 1)/2m (3b) 

Since m cannot meaningfully be zero or negative we see that, for given C2, 
there is a point of inflection in the positive range of C1 only if m > 1.3 

While it is often plausible to assume that contest power is a function of the 
ratio of the forces or efforts committed, this is by no means the only possibly 
valid functional relation. Nor are all the implications of the ratio form always 
reasonable. One implication, for example, is that a side investing zero effort 
must lose everything so long as the opponent commits any finite amount of 
resources at all, however small, to the struggle. When, alternatively, the out- 
come is assumed to be a function of the difference between the two sides' ef- 
forts, a player can have some chance or share of success even without commit- 
ting resources to the contest. In struggles between nations, for example, one 
side may surrender rather than resist. While the hope may sometimes be to ap- 
pease the aggressor, it might make sense to surrender to a totally unappeasable 
opponent if the submitting nation does not expect to lose absolutely everything 
by giving up the struggle. And this is reasonable, since in general it will be costly 
for the victor, even in the absence of resistance, to locate and extract all the 
possible spoils. 

There is one other factor to consider, namely, the location of the inflection 
point of the CSF. When it comes to military interactions, "God is on the side 
of the larger battalions." There is an enormous gain when your side's forces 
increase from just a little smaller than the enemy's to just a little larger.4 This 
implies that the range of increasing returns to player #1's commitment C1 ex- 
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tends up to C1 = C2, or equivalently up to p, = p2.5 But, we have seen, when 
the ratio form of the CSF is used, increasing returns, if present at all (that is, 
if m > 1), can only hold up to some C, < C2. 

Postulating that contest success depends upon the difference between the 
resource commitments, the required conditions - that C1 = 0 need not imply 
p, = 0, and that the inflection point occurs at C, = C2 - are met by the logis- 
tic family of curves: 

p1=1\1+exp[k(c2-c1)] 
(4) 

where p2 is defined correspondingly. (As is logically required p, + p2 = 1.) In 
particular, when C, = 0 player #1 still retains a share of success p, = 1/(1 + 
exp I kC2J). Figure 2 shows several CSF curves for varying k, where k is the 
"mass effect parameter" applicable to the logistic function. 

In a military context we might expect the ratio form of the Contest Success 
Function to be applicable when clashes take place under close to "idealized" 
conditions such as: an undifferentiated battlefield, full information, and un- 
flagging weapons effectiveness. In contrast, the difference form tends to apply 
where there are sanctuaries and refuges, where information is imperfect, and 
where the victorious player is subject to fatigue and distraction. Given such 
"imperfections of the combat market," the defeated side need not lose abso- 
lutely everything. (For the sake of concreteness I have been using military 
metaphors and examples, but analogous statements can evidently be made 
about non-military struggles - e.g., lawsuits or political campaigns or rent- 
seeking competitions.) 

The generalization of equation (2) for any number of players N was provided 
in Tullock's initial paper. For the ith contestant, the probability of success 
becomes: 

Pi=cm1\cm1+cm2+...+cmn=cm1\ejcmj 
(5) 

Of course, the pi's sum to unity. 
Employing the difference (logistic) form instead, the corresponding generali- 

zation of equation (4) is: 

exp {IkCi} 
Pi 

= (6) 
Ejexp {kCj) 

It is evident from the form of the last fraction on the right that, as required, 
the sum of these pi's will also be unity.6 
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Figure 2. Contest success function: Difference (logistic) form 

To illustrate, if N= 3 and i = 1, equation (6) becomes: 

1 
p = (6a) 

l+exp(k(C2-C1)J + exp(k(C3-C(1)} 

Both (5) and (6) fall within the more general category of logit functions.7 

3. Symmetrical Nash-Cournot equilibrium 

As has been mentioned, when the ratio form of the CSF applies each side will 

surely always commit some resources to the contest. If peace is defined by the 
condition C1 = C2 = 0, then peace can never occur as a Cournot equilibrium 
under the traditional ratio model! 

The demonstration is simple. Side #1 will be seeking to maximize its 

"profit": 

Y1 = Vp, - C, (7) 

where V is the given value of the prize and p, is determined as in equation (2). 
A similar equation holds of course for player #2. Suppose momentarily it were 
the case that C1 = C2 = 0, the parties sharing the prize equally without fight- 
ing. Then, assuming only that V > 0, under the Cournot assumption either 
player would be motivated to defect, since even the smallest finite commitment 
of resources makes the defector's relative success jump from 50% to 100%. In 
effect, the marginal profitability of i's contest contribution is infinite when Ci 
= 0. 

In contrast, when the logistic Contest Success Function applies, two-sided 



106 

peace may easily hold as a stable Cournot solution. Since the player who 
defects from C, = C2 = 0 does not get the benefit of a discrete jump from 
50% to 100% success, there is a finite marginal gain to be balanced against the 
marginal cost of contest effort.8 

Numerical Example 1 

Player #1 seeks to maximize his profit as in equation (7), with p, defined by 
the logistic CSF equation (4) above. If C2 = 0, then finding the derivative 
in the usual way leads to: 

k exp - kC1, 1 

(1 + exp( - kC1 j)2 V 

For C1 = 0 to be a solution, we must have V = 4/k. By symmetry, an analo- 
gous equation will hold for player #2. So if, for example, k = .04 and V = 
100, then (as claimed) Cl = C2 = 0 will indeed be a Cournot equilibrium. In 
this equilibrium p, = p2 = .5 so that the parties each have profit of 50. 

4. Asymmetrical equilibrium 

What about the possibility of one-sided submission rather than two-sided 
peace? This means that player #1 (say) chooses C, > 0 while player #2 sets C2 
= 0. For such an outcome, some kind of asymmetry must be introduced - in 
the parties' valuations of the prize, in the effectiveness of their respective con- 
test efforts, or possibly in the costs of such efforts. But regardless of any such 
asymmetries, under the ratio model one-sided submission as a Cournot 
equilibrium can no more occur than could two-sided peace! 

We need look only at asymmetries due to inequalities in valuations of the 
prize. Specifically, suppose V1 > V2, suggesting that there might be a Cournot 
equilibrium with C1 > 0 while C2 = 0. Using the profit equation (7) for player 
#1, and equation (2) for the Contest Success Function in ratio form, the first- 
order condition is: 

aY, VMCM-' (Cm2) = - 1 (8) 
ac, (CM + CM)2 

Evidently, whenever C2 = 0 the marginal profit of contest effort to player #1 
is always negative. So under the ratio form of the CSF, it will never be possible 
to have an asymmetrical contest outcome with one party having zero and the 
other having positive commitment of resources. 
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For the difference form (logistic CSF), however, the asymmetrical outcomes 
are quite different. First of all, taking the partial derivatives of the respective 
Contest Success Functions leads to: 

aY, kexp (k(C1 + C2)J aY2 = = (9) 
ac, (exp(kC, I + exp (kC2))2 -C2 

This possibly surprising proposition states that at any pair of C,, C2 choices, 
the partial derivatives (the "marginal products" of the respective contest ef- 
forts) are always the same for both sides. It follows immediately that, if the 
valuations V, and V2 are unequal, it is impossible to simultaneously satisfy (as 
the respective first-order conditions for a profit maximum would require): 

_Y, aY2 
= 

1/V1 
and = 1/V2 (10) 

aC1 aC2 

Thus, when the difference form of the CSF applies, there cannot be an interior 
asymmetrical Nash-Cournot solution. (Whereas, we have just seen, using the 
ratio form there cannot be a corner asymmetrical solution.) 

This impossibility theorem for the difference form is somewhat too strong, 
since it is an artifact of the assumption implicit in equation (7) that the Margi- 
nal Cost of contest effort is constant. If the Marginal Cost of contest effort 
is rising, equations (10) might be satisfied so as to permit an interior Nash- 
Cournot equilibrium. More generally, with rising Marginal Cost there could be 
either a corner or an interior asymmetrical solution, depending upon the nu- 
merical parameters and the exact functional form.9 

Assuming for simplicity that Marginal Cost is constant as in equation (7), 
the Reaction Curves RC, and RC2 associated with the logistic CSF are parallel 
straight lines of 450 slope, up to a point of discontinuity. More specifically, in 
the continuous range the Reaction Curve equations are:10 

C, = C2 + A,, where Al = (2/k)cosh-' {.5sqrt(kV,)) 
C2 = C1 + A2, where A2 = (2/k)cosh-' .Ssqrt(kV2)) (11) 

The discontinuities fall into three distinct patterns - depending upon the rela- 
tive positions of the points C?, Ci, and Ci" as sketched in Figures 3 through 5 
- each leading to a particular class of Cournot solution. 

The pattern of Reaction Curves RC, and RC2 pictured in Figure 3 
represents the "strong asymmetry" case, which stems from a relatively large 
difference V, - V2 between the parties' valuations of the prize. Here RC2, the 
Reaction Curve for the lower-valuing player, rises as C, increases - but only 
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Figure 4. Logistic reaction curves: Moderate asymmetry 

up to point G where the opponent's effort has reached a certain critical value 

C'. At G, player #2's optimum drops off discretely to C2 = 0 (point F), and 
of course remains at zero for all higher values of C,. (The explanation is that, 
given a logistic CSF, the lower-valuing player can always take home some 

profit by investing zero effort. Hence doing so always remains a viable alterna- 
tive, and eventually becomes more advantageous than trying to keep up with 

very large contest efforts on the part of his higher-valuing opponent.) If, as in 
Figure 3, C' < CO - that is, point F is to the left of point E, the latter being 
the point where the higher valuing player's Reaction Curve RC1 intercepts the 
horizontal axis - then the Nash-Cournot equilibrium is at E, where (C1, C2) 



109 

C2 

c 

c 

C2 

J 

G 

iK 
H 

RC2 , 

P 

/Rc, 

E4 F 

co c; c; 'C, 
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= (C, 0). It is easy to verify that, at point E, each player's effort is a best 
response to the opponent's choice. This solution represents one-sided submis- 
sion: the lower-valuing player has abandoned the struggle. 

Numerical Example 2 
Once again each player seeks to maximize his profit Y, = Vpj - C,, where 

p, is defined by equation (4) above. Let the required asymmetry be in the 
valuations of the prize, where specifically V1 = 400 and V2 = 100. Assum- 

ing k = .04, the Reaction Curves are as pictured in Figure 3, with 
CO 

= Al 
=65.848 and CO = A2 = 0. If the higher-valuing player #1 takes C2 = 0 
as given, his profit-maximizing solution C, equals Al = 65.848 (point E). 
Turning to player #2, with C, = 65.848 taken as given the profit- 
maximizing" C2 is indeed C2 = 0. 

The expectations on each side as to the other party's behavior being mutu- 
ally consistent, this is a Cournot equilibrium. The associated shares are p, 
= .933, and p2 = .067, and the profits are Y, = 307.4 and Y2 = 6.699. 
Note that the higher-valuing player does disproportionately better: not only 
is his prize worth more, but he fights harder for it. 

Figure 4 illustrates a "moderate asymmetry" pattern. Here, the difference be- 
tween V1 and V2 being smaller, point E (the horizontal intercept of RCI) lies 
to the left of point F (at the discontinuity along RC2). In consequence, point 
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E, where player #2 unilaterally submits, is no longer a Cournot equilibrium. 
(That is, player #2 will no longer choose C2 = 0 as his best response to player 
#1's choice of C, = CO = A1.) As the prize valuations V, and V2 approach 
equality, finally, the "symmetrical or near-symmetrical" pattern of Figure 5 
is obtained. Here also, it will be evident, unilateral submission will not occur. 
The actual solutions for both the Figure 4 and the Figure 5 patterns involve 
mixed strategies on one or both sides,12 but the specifics of these solutions are 
not of immediate concern to us. 

As the next step, it would be natural to ask whether the ratio versus the 
difference forms of the Contest Succes Function lead to correspondingly 
different outcomes in terms of the Stackelberg or other asymmetrical solution 
concepts. I will not, however, be pursuing these implications here. 

5. Conclusion 

In analyzing rent-seeking or other conflict competitions, models allowing rela- 
tive success to respond continuously to changes in contest commitments have 
heretofore assumed that success must be a function of the ratio of the parties' 
resource commitments. However, this assumption is inconsistent with the ob- 
servation that two-sided peace or one-sided submission do sometimes occur in 
the world. When relative success is postulated to stem instead from the numeri- 
cal difference between the respective contest inputs, a Contest Success Func- 
tion taking the form of a logistic equation is derived. Two-sided peaceful out- 
comes emerge in Cournot equilibrium when the "mass effect parameter" of 
the logistic CSF curve is sufficiently low. One-sided submission can also occur 
when there is a large disparity between the parties' valuation of the prize. As 
these valuations approach equality, the logistic CSF leads to mixed-strategy 
Cournot equilibria. 

Notes 

1. See, e.g., Hillman and Katz (1984), Corcoran and Karels (1985), Higgins, Shughart and Tolli- 
son (1985), Appelbaum and Katz (1986), Allard (1988), Hillman and Samet (1987). 

2. A recent paper of Hillman and Riley (1988) makes use of still another family of contest payoff 
functions, in which - in contrast with the sharing rules analyzed here - the entire prize, as 
in an auction, goes to the high bidder. Their paper also allows for differing prize valuations. 

3. In the standard Lanchester equations of military combat (Lanchester, 1916 (1956); Brackney, 
1959), the outcome is also assumed to depend upon the ratio of the forces committed. But for 
Lanchester the battle result is always fully deterministic, in the sense that the side with larger 
forces (adjusted for fighting effectiveness) is 100% certain to win. This makes the CSF a step 
function, which jumps from p, = 0 to p, = 1 when C, = C2. So Lanchester's formula can 
be regarded as the limiting case of equation (2) as the mass effect parameter m goes to infinity. 
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The same holds also for the auction-style payoffs in Hillman and Riley (1988). 
4. As seen in the previous footnote, the Lanchester equations of combat take this to the extreme. 

The larger force is 100% certain of victory; the smaller force has no chance at all. 
5. Compare T.N. Dupuy's study of diminishing returns in combat interactions between Allied 

and German forces in World War II (Dupuy, 1987: Ch. 11). Dupuy's curves generally show 
the inflection point displaced slightly from the "equal forces, equal success" point, owing (on 
his interpretation) to the superior unit effectiveness of the German army. 

6. I thank David Levine and Michele Boldrin who independently discovered this generalization 
of the logistic Contest Success Function. 

7. The definition of the logit in this context is: 

f(Ci) 
pi = 

Ej f(Cj) 

Using only the general properties of logit functions, Dixit (1987) obtained some important 
qualitative results for "strategic" (non-Nash) behavior in asymmetrical contests. 

8. For the analogous result in a general-equilibrium context, see Hirshleifer (1988, Part B). 
9. Dixit (1987) appears to assume, incorrectly, that all logit functions do lead to an interior Nash- 

Cournot asymmetrical equilibrium. 
10. Player #1 maximizes Y1 = pl V1 - C, where pl is given by: 

pi = 1/(1 + exp(k(C2 - C1))) 1/D (writing D for the denominator) 

For given C2, the first-order condition dY,/dC1 = 0 is: 

V, (dpl/dC1) = kVexp (k(C2 - C1)H/D2 = 1 

Rearranging and taking square roots leads to: 

sqrt(kV1) = exp ((-k/2) (C2 - C1)) + exp I (k/2) (C2 - C1)) 

Since cosh x 
- .5(exp(x) + exp(-x)) = cosh(-x), we can write: 

.5 sqrt (kV1) = cosh ( -(k/2) (C2 - Cl)) 
= cosh I(k/2) (C2 - C1)) 

Thus: (k/2) (C2 - C1) = cosh- (.5 sqrt (kV,)). 
11. As suggested by the preceding discussion, this optimum is not at a smooth maximum (zero first 

derivative). Instead, player #2's profit function has a negative first derivative throughout, lead- 
ing him to cut back effort until the limit of zero is reached. 

12. The key feature guaranteeing existence of a Nash-Cournot equilibrium is that the payoff func- 
tions are continuous, even though the Reaction Curves have discontinuities. See Debreu (1952) 
and Glicksberg (1952). I thank Eric S. Maskin for this point. 
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