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Abstract-During the past 50 years mathematics has provided a unique tool for the rational acquisition 
of new objective knowledge about war as a social phenomenon. Four discoveries are examined: the 
hyporeliahility effect in deterrence systems aimed at war prevention; the N-crisis problem of war escalation 
(originally conjectured by Q. Wright); a ledge of time at the onset of war; and a phenomenon called war 
dilation. which explains the decreasing propensity of wars to terminate once they have begun. Though in 
different ways, each of these discoveries exemplifies significant new aspects of war which would not have 
been discovered without the medium of mathematics. 

INTRODUCTION 

War is a lethal social phenomenon presently dated from ca 8000 B.C. (Ferrill 1985). When viewed 
against the background of such a long-range timeline, war is thus a form of social interaction which 

has been reoccurring for z lo4 years. However, until very recently the study of war-i.e. research 
to investigate its causes, mechanisms and the like-was conducted without the assistance of 
mathematics. Thucydides, Caesar, von Clausewitz, Machiavelli, Tolstoy and Sun-Tzu are 

well-known thinkers which exemplify the earlier, pre-scientific stage of the study of war. 
In the first decades of this century the pioneering work of Lewis Fry RichardsonPfollowed a 

few years later by that of Quincy Wright, Nicholas Rashevsky, Anatol Rapoport, Kenneth 
Boulding, Thomas Saaty and others more recently-began a scientific revolution in the study of 
war through the application of mathematics. To date, many different mathematical models have 
been applied to investigate aspects of war, such as patterns of onset, intensity, propagation and 
diffusion.$ As in any other young field of science, many new avenues remain unexplored, but it 
is now clear to scientists working in this area that some new aspects of war have already been 
discovered as a direct result of mathematical modeling and analysis. Significantly, most of these 
discoveries on the nature of war would not have occurred without the assistance of mathematics. 

The purpose here is to consider a small sample of realworld aspects of war which have been 

discovered through the medium of mathematics. Indeed, a key feature of the phenomena we shall 
examine is that the main discovery would not have taken place without the application of 
mathematical methods. We also show how, in some instances, results were obtained through the 
combined use of mathematics and empirical, statistical approaches. 

In their chronologic order of occurrence in the realworld, the four war-related phenomena we 

shall consider pertain to the pre-war, onset and duration phases of war. The first case concerns 
a phenomenon called the h~~:poreliahilit~ eflect. an inherent feature of deterrent systems aimed at 
preventing war. The second is about properties of crisis escalation and the probability of war, in 
a generic epoch of history containing N international crises (the so-called N-crises problem). The 
third case has to do with an intriguing time period which occurs prior to the onset of war, called 

the war ledge. The fourth case concerns a property called war dilation, which sheds new light on 
the nature of warfare and some unstable properties in the international system. 

A word is in order about these four war-related phenomena. First, since the purpose here is to 

TAn earlier version of this paper was presented at the 1988 European Meeting on Systems and Cybernetic Research 
(EMSCR‘SS), Vienna, 558 April 1988. where it won the Best Paper Award in the Symposium on Systems Engineering 
and Peace Research. 

IAn extensive bibliography may be found in Cioffi-Revilla (1979). Recent books illustrating mathematical approaches to 
the study of war-in&he the following: Allan (1983), Brams (1985), Brams and Kilgo& (1988), Bueno ‘de Mesquita 
(198 l), Cioffi-Revilla, Merritt and Zinnes (1987), Dacey (1988), Kugler and Zagare (1987) and Luterbacher and Ward 
(1985), and others cited later in this paper. 
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illustrate how and why some uses of mathematics have made some significant contributions to our 
current scientific understanding of war, no attempt has been made to be all-inclusive. Second, the 
mathematical models of these four phenomena are based on applications of elementary probability; 
no attempt has been made to include numerous contributions made by other types of mathematical 
structures (e.g. dynamical systems, game theory etc.). This is because war is a type of social 
phenomenon naturally amenable to probabilistic treatment (deterministic models also exist). Also, 
while it is often though that probabilistic ideas are vague or imprecise, these cases demonstrate the 
opposite: remarkably precise knowledge about war can originate from the use of probability 
models. Viewing war as a random phenomenon, even in an objective sense (Suppes 1984) does 
not render it immune to rational scientific understanding; au contraire. A third feature is that each 
case illustrates the cognitive (as opposed to merely descriptive) use of mathematics in this area of 
science. Thus, here we are chiefly concerned with what many consider to be the most powerful 
contribution of mathematics to empirical science-for obtaining new knowledge and developing 
theoretical understanding-rather than with subsidiary functions, such as description, prediction 
or engineering contro1.t Fourthly, each case shows the progressive, expansive power of mathe- 
matics in generating new research paths, showing new aspects of war not accessible by intuition 
or historical observation alone. Paraphrasing M. Kline (1985, p. v), we shall be solely concerned 
with realworld aspects of war which have become accessible only through the medium of 
mathematics. Finally, each case has the methodological property of being accessible through 
elementary, rather than advanced mathematics-most ideas stop short of calculus. This demon- 
strates that new scientific knowledge obtained through mathematical means does not always 
require the application of advanced methods. 

THE HYPORELIABILITY EFFECT 

In the transition from peace to war, the first case of mathematical insight we shall consider is 
called the hyporeliability effect-an intriguing phenomenon inherent in all inter-nation security 
relations which are maintained by some type of deterrence-type system. To understand the 
phenomenon, we shall first briefly describe the character of a deterrent relation, for this is where 
the phenomenon occurs, and then focus on the hyporeliability effect itself. 

Inter-nation Deterrent Relations 

Deterrence is an ancient method for attempting to prevent war, and is still probably the most 
common type of inter-nation security relation found in the international system (Naroll, Bullough 
and Naroll 1974; Huth and Russett 1984, 1988). Though modern theory distinguishes several 
species of the genus deterrence (e.g. Kahn 1960; Schelling 1960; Morgan 1983) the fundamental 
logic on which all deterrence relations rest is the same: given a pair of adversary nations, a deterrence 
relation exists whenever at least one nation of the two is dissuaded from attacking the other by fear 
that the other might retaliate (Brodie 1946; Snyder 1959; Raser 1969). When both nations in a pair 
are related by deterrence, this forms a system of mutual assured destruction (MAD), as with the 
superpowers, though one-way deterrence relations are not uncommon (Israel and Arab nations; 
India and Pakistan; South Africa and regional neighbors). Weapons and organizations used for 
maintaining deterrence vary considerably (i.e. the actual politico-military hardware and or- 
ganization of national deterrent systems). Also, weapons need not be nuclear [in fact, they need 
not even be weapons of mass destruction; see Mearsheimer (1983)]. What counts is maintaining 
an unacceptably high level of expected damage through retaliation (mathematically, an expected 
value). Currently, nuclear weapons provide a common, though not unique, way of implementing 
deterrence. 

Given these general concepts, consider the deterrent system, Z, of a single nation in a deterrent 
relation with some other nation. For Z to work (i.e. maintain deterrence = dissuade an adversary’s 

$-The aforementioned distinction between cognitive and descriptive uses of mathematics in empirical science is important 
(Bochner 1966; Kline 1985). The main descriptive function of mathematics in this field is for summarizing empirical 
war data into laws or statistical regularities. 
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attack) it must meet a set of requisites (tasks, functions, operational requirements) with credibly 
high overall reliability probability of success. This includes the political will to carry out post-attack 
retaliation(s). In a landmark paper, A. Wohlstetter (1959, p. 216) first proposed the following six 
requisites for a viable deterrence system Z: 

“Deterrent systems must have [ 1] a stable “steady-state” peacetime operation within 
feasible budgets. . . . They must also have the ability [2] to survive enemy attracks, 
[3] to make and communicate decisions to retaliate, [4] to reach enemy territory with 
fuel enough to complete their mission, [5] to penetrate enemy active defenses, . . . and 
[6] to destroy the target in spite of any “passive” civil defense.” 

Wohlstetter’s requirements are stated in terms of the military technology of his time (in the age 
of Star Wars referents would vary). Here interest lies in the logic of the multi-requisite structure 
of a deterrent system. 

More generally, a deterrent system Z consists of two sets of coordinated entities: (a) a set @ 
containing C operational component entities (decisionmakers, organizations, communications 
channels, weapons systems etc.), organized to perform (b) a set Q consisting of S necessary functions 
(requisites, missions, “logic blocks”). The elements of Q are jointly needed for retaliation (assured 
destruction). Thus, if @ denotes the set of deterrent components, then C is the cardinality of @, 
withC=l,2,3,...; and, similarly, if Q is the set of deterrence requisites, then S is the cardinality 
of Q, with S = 1, 2, 3, . . , n. We note immediately that, since S > 1, the fundamental structure 
of Z is serial, not parallel (though any element of Q may have deeper parallel structures). Modeling 
and analyzing the overall reliability R, of a given deterrent system Z(S, C)-where R, is defined 
as the probability that Z will work-is of central interest, for empirically it is never the case that 
every required function q E Q will obtain with certainty. Generally, 0 < R, < 1 .t 

Let ri denote the reliability probability of successful performance of the ith deterrence requisite 
of Z. (For example, in the Wohlstetter model r, is the reliability of command, control, 
communications and intelligence, or C31.) Using the standard general theory of systems reliability, 
and assuming independence across requirements in Q, then (by the multiplication theorem for the 
probability of compound events) overall deterrent reliability Rz is given by 

R, = R(ri; n) = r,rzr3 . . . r, = R(r, S) = rs, O<r<l, (1) 

where r is an average reliability across elements in Q (deterrence requisites) and S is the serial order 
of Z (cardinality of 0). Since weapons and organizations vary across national deterrent systems, 
S is best viewed as a discrete variable taking integer values 1, 2, 3, . . . , n, rather than as a constant. 
Though formally simple (and well-known to systems analysts and operations researchers), equation 
(1) has several interesting properties which shed light on how deterrence works in the realworld 
(and how it may fail). 

Hyporeliability of Deterrent Systems 

Using these ideas, the hyporeliability effect refers to the following phenomenon: in all realworld 

cases (i.e. when S > 1, 0 <r < I) the overall reliability R, of a deterrent system Z is always strictly 
lower than the lowest in the set of lower-level reliabilities; i.e. 

R, < min{r,, r2, r3, . . . , r,}. (2) 

Using equation (1), the intensity of the hyporeliability effect may be expressed as 

AR=R-r=rS-r. (3) 

So AR -C 0 (whence hyporeliability), since S > 1. 
Though perhaps well-known to modelers in other fields, this debilitating phenomenon inherent 

in all deterrent systems (AR < 0) is seldom recognized by conflict and war analysts. Note that, since 

TWithout loss of essential detail, here we may ignore both the role of @ (because the hyporeliability effect is best detected 
against the background of Q), as well as the nature of the mapping @+Q (the functional relations matrix from 
components to functions). 
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every deterrent system Z has a fundamentally serial structure (because S > 1), the hyporeliability 
effect is a universal phenomenon. In particular, it does not vanish with improvements in weapons, 
communications or organizational aspects of Z, nor does there exist a mapping Q-r@ which can 
make it disappear. It is a robust effect, in the strong sense that it stems fundamentally from the 
serial structure of Z-the inequality (3) is an inherent property of all multi-task, multi-functional 
systems. 

A closer look at the hyporeliability effect is useful to appreciate what it means for deterrence. 
Consider a naive observer (e.g. a politician untrained in mathematical reliability theory) having to 
assess the overall reliability Rz(r, S) of a deterrent system Z with S requirements, as just described. 
Such an observer will subjectively assess R, using primarily two heuristics. The first is to examine 
the set {ri} (obtained in some fashion, such as from expert advice), and mentally computing the 
rough mean value. This yields an estimate of RZ, expressed as 

n. 

By inequality (2), however, the value of EmCan (R) is always greater than the objective reliability 

R,> so E,,,, (R) always overestimates Rz 

The second heuristic, used by “more sophisticated” subjects, is based on viewing Q as a “chain” 
(or set of “hurdles,” as Wohlstetter called them), and then use the aphorism “a chain is only as 
strong as its weakest link”. This estimate may be expressed as 

G,,,,(R) = min{r,). (5) 

Though R is closer to Echain than to E,,,,,,, the hyporeliability effect says that Echain also overrates, 
since R is (objectively) not as weak, but weaker than the weakest link. Echaln is incorrect (though 
not as much as E,,,,,,) because it disregards the effect of the remaining (n - 1) “links” making the 
entire chain even weaker than its weakest link. Thus, 

Rz < Chain < Em,,,. (6) 

Both heuristics overestimate, so both are objectively incorrect. 
Though hyporeliability is not apparent from plain intuition alone, it objectively weakens efforts 

to strengthen deterrence, inducing a reductive effect quite the opposite of a multiplier. The effect 
is detectable only through mathematical analysis of the properties of reliability probability RZ. 

Hyporeliable Deterrence and Subjectivity 

Beyond its intrinsic importance, the hyporeliability effect also raises questions about strategic 

decisionmaking and war. For instance, consider recent findings in experimental psychology and 
cognitive science, on how humans process information to form subjective probability estimates. 
(The “human factors” literature is also relevant here.) According to experiments by Khaneman and 
Tversky (1979, 1982), when confronted with outcomes in a decisionmaking situation (events, in a 
probabilistic sense), humans estimate the probability r of an outcome by assigning a likelihood 
weight, w, which generally differs from the objective value r, as shown in Fig. 1. In the low 
probability range (i.e. r < r* in Fig. l), subjects overestimate r, and for medium and high values 
(r > r*) they underestimate. Thus, the probability r of a highly likely event (even when the event 
may be a deterrence-related disaster, such as failure in C31) is underestimated, w < r, for r * < r -C 1; 
whereas that of a very improbable event (such as a pre-emptive enemy strike) is overestimated, 

w $ r, for 1 < r < r*. As shown in Fig. 1, the estimate for the latter case may be off by as much 
as a factor of 10. 

The implications of these ideas for a proper understanding of hyporeliability in deterrence 
relations remain unexplored. In particularly, little is known about the link between such cognitive 
phenomena and the prevention of war (the chief purpose of deterrence). However, the objective 
existence of subjective probability weights readily suggests that the net practical effect of 
hyporeliability, AR, must vary, depending on the value of r with respect to r*. Thus, inequality 
(3) should reflect this dependence, as AR =f(r - r*). In particular, since decisionmakers over- 
estimate in the range 0 < r < r*, AR is strongest in the interval (0, r*), and increases as r +O+. 
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objective reliability probability 

Fig. 1. Graph of a weight function w(r) relating subjective to objective reliability probability r. The r* 
value across individuals (0 6 r* 6 0.25). Source: adapted from Kahneman and Tversky (1979, 1982, 

p. 168). 

Similarly, the effect is least pronounced (and tends to vanish) in the upper range, where r * < r < I, 

since there the subjective underestimation of objectively high reliability tends to balanced the 
hyporeliability effect. The case when l/2 5 r 5 3/4 is interesting, for here subjective under- 
estimation reaches its maximum, so the net result approximates the objective probability value. For 
a decisionmaker, therefore, the intensity of the hyporeliability effect, AR, varies depending on the 
objective value of I [and on the decisionmaker’s personal weight 
joint occurrence of low and high probability events, in the war 
associated with deterrence, may easily result in miscalculation. 

THE N-CRISES PROBLEM 

function w(r)]. In any case, the 
and peace decisions commonly 

Our second case of discovery by mathematical means actually consists of two separate aspects 
of war within a more general puzzle called the N-crises problem. The two aspects of war are: (1) 
the rapidity with which the probability of war approaches certainty as crises (war opportunities) 
re-occur in the international system; and (2) the tradeoff (for avoiding war) between avoiding crises 
and lowering war escalation probability in each crisis. To understand both phenomena, we shall 
first describe the general puzzle within which they arise, the N-crises problem, and then examine 
each phenomena separately. 

The N-crises Problem and Wright’s Solution 

The N-crises problem concerns the relation between crises, escalation and wars, and may be 
described as follows: in a period of history containing N crises (say, in a decade), where each 

individual crisis may escalate to war with probability p, what is the overall probability of war P over 
the entire period? 

The first published solution to this problem (it may have been posed earlier, possibly in the 
eighteenth century) was conjectured some 30 years ago by Q. Wright (1942), and proven more 
recently (Cioffi-Revilla 1987a). Wright’s classic solution states that 

P = 1 - (1 -p)“, (7) 

and is based on assuming the independence of crises occurrences. 
Two other solutions to the N-crises problem have been derived more recently (Cioffi-Revilla and 

Dacey 1988). One is based on an analogue to Daniel Bernoulli’s St Petersburg Paradox, the other 
on the interpretation of the natural language phrase “during N crises” as in the common 
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conditional probability interpretation (i.e. as meaning “war occurs, given that N crises occur”). For 
simplicity, here we shall use Wright’s classic solution, equation (7), since it is the current, dominant 
solution in the interpretation of the N-crises problem (Russett 1983; Deutsch 1978). 

Two important questions arise in connection with the N-crises problem and Wright’s solution, 
equation (7). The first is “how fast” does war probability P approaches certainty (the speed of the 
convergence P-+1) as the number of crises (N) increases. The second regards the different 
sensitivity of P(p, N) with respect to N and with respect to p. Answers to these realworld questions 
are not easily obtained-or not available at all-without mathematical analysis. 

War Probability as Crises Recur 

The rapidity with which P + 1 as N -+ co is interesting for several reasons. First, though ordinary 
intuition correctly suggests that P + 1 as N + co, since the greater the opportunities for war (crises) 
the greater the likelihood of war, intuition alone tells us nothing about the speed with which 
convergence to certainty (or near certainty) actually occurs. Second, Wright used the idea of the 
limit “as N+~o” for normative purposes [he was issuing a warning about the risk of war if crises 
continued to occur; similar to Rusten and Stern (1987, p. 1) more recently]. Though this is proper 
in a mathematical sense, his discussion suggests that he actually viewed N as having to be some 
sense “extremely large” for P + 1, otherwise he would have simply said “as N increases”, rather 
than “as N+ co”. 

As it turns out, P + 1 very quickly, as N increases, being virtually equal to 1 while N is still quite 
small, so long as p is anything but negligible. Thus, for N = 5 (which currently occurs in a period 
of only a few years), 

0.67 5 P 5 0.97, for 0.2 Sp 5 0.5. 

For a period twice as long (still less than a decade), when N = 10, we have 

0.893 5 P 5 0.999, for 0.2 Sp 5 0.5. 

Thus, contrary to the impression one gets from the formalism “as N-r co”, analysis shows that 
for historical values of crisis escalation probability p, in the range 0.2 <p < 0.5, war probability 
P is virtually equal to 1, even while N is quite small. 

To illustrate the point empirically, consider that for crises involving major powers (meaning 
something like “powerful nations”), the historical value of escalation probability during a crisis 
has been p z 0.13 in the past century and a half (Singer 1981, p. 11). This means that, for major 
power wars in recent history, equation (7) may be expressed as the empirical equation 

P(major power war occurs) = 1 - (1 - 0.13)N = 1 - 0.87N. (8) 

This has a value nearly equal to 1, even for small historical values of N, and as a baseline, P = l/2 
for N = 5 (see Table 1). 

The main conclusion to be drawn from these mathematically-generated results about war in the 
realworld is that it does not take many crises at all to make the probability of war P very high. 
Further, though the current empirical probability of escalation during crises may not seem high 
(0.13) equation (8) explains why wars are not uncommon. 

War Probability, Crises and Escalation 

A second puzzle within the N-crises problem concerns the different sensitivity of P with respect 
to p and to N. To make such sensitivities comparable (p and N are not directly commensurate, 
since they are expressed in different units), assume the following normalizations based on first-order 
changes. The sensitivity of P with respect to p, denoted by ap, is equal to the ratio of a percentage 
change in P with respect to a percentage change in p. That is, 

aP = ~~~~/~>~~~I/~~~P/P~~~~I = (AP/P)(PIAP), 

Table I. Probability P of major power war in recent history (with 
escalation probability p = 0.13) for various numbers of crises N 

N 5 10 15 20 25 30 
P 0.50 0.75 0.88 0.94 0.97 0.98 
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and taking the limit as Ap+O, 

a&J = (aPlaP)(PlP) = [NPU -P)Np’3/P. (9) 

Similarly, the sensitivity of P with respect to N, or gN, is equal to the ratio of a percentage change 
in P with respect to a percentage change in N: 

bN = [(AP/P)lOO]/[(AN/N)IOO] = (AP/N)(P/AN); 

and using the first-order difference (since N takes only integer values), 

ON = LPN+, - PNl(N/P) = -[NP(~ -p)NI/p. (10) 

Thus, as may be easily seen by comparing equations (9) and (lo), ap > o,VP. So, P is more sensitive 
to p than to N. 

In practice, this finding has several implications. For instance, it offers a rational basis for 
choosing conflict resolution policies aimed at war avoidance. In particular, given a choice between 
reducing the incidence of crises (lowering N) or reducing the probability of war escalation during 
crises (lowering p), the latter policy has greater impact on decreasing P. This is a nice result, since 
from an engineering perspective N seems uncontrollable (because international problems which 
cause crises to arise seem themselves uncontrollable), while p may be controllable. Crises occur for 
reasons which are still largely unknown (no one has provided a scientific explanation as to why 
N has a given value per decade, as opposed to some other value), whereas lowering the probability 
of crisis escalation p seems to be more within the realm of political control (unreliable as this may 
be). For instance, the influence of mediators and peacemakers, the pressure to prevent war (exerted 
by public opinion, other nations or groups), the availability of information technology aimed at 
decreasing uncertainty and fear (e.g. data channels for rapid communication), are but a few of the 
possible ways, or policy instruments, which can be used to lower p. In reference to some empirical 
cases, the current Israeli-Egyptian security relation (since the 1973 war) yields a very low value 
of p for that particular dyad of nations, since if a crisis were to occur, the security systems presently 
deployed in the Sinai make it virtually impossible for either side to surprise the other-and without 
surprise neither side can likely contemplate victory. If so, p is very low for this dyad (Israel-Egypt), 
for it would take a very severe level of dissatisfaction with the status quo for either side to chose 
to go to war, knowing it would lose. 

Another empirical example from the current international system consists of the U.S.-Soviet 
agreement, signed in May 1987, to establish “risk reduction” centers to replace the aging MOLINK 
Hotline (Blechman 1985; Ury 1985).? New superpower communications systems include, among 
other features, very high speed data channels for text and image processing, making it possible for 
decisionmakers to exchange key information that may reassure the other side in times of crisis. The 
purpose is to decrease fear of first strike in crisis conditions of severe uncertainty. Such measures 
are useful, since war probability (P) is more sensitive to escalation probability (p) than to the 
incidence of crises (Nta mathematical insight with both theoretical and practical relevance. 

THE WAR LEDGE 

Thus far we have been mostly concerned with phenomena occurring prior to the actual initiation 
of war-deterrence failing and crises occurring. Our third case of mathematical discovery takes us 
to the brink of war, so to speak-in the mathematical neighborhood of the instant “when war 
breaks out”-to a phenomenon called the war ledge. As was the case for the previous two 
phenomena, this too has received little notice, at least relative to the size of the scientific literature 
on the onset of war.$ However, as we shall see, empirical evidence hinting at the existence of the 
war ledge is abundant, though the phenomenon itself still awaits more extensive theoretical 
interpretation. The historic background for understanding the war ledge may be found in Lewis 

TMOLINK consists mainly of two electromechanical teletype terminals, one in Roman, the other in Cyrillic. 
$For example, Moyal (1949), Singer and Small (1972), Small and Singer (1982), Levy (1983), Cioffi-Revilla (1985), 

Choucri and North (1974), Midlarsky (1986), Davis, Duncan and Siverson (1978), Eberwein (1981), Wilkinson (1980), 
Howeling and Ku& (1984) and Howeling and Siccama (1985). 
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Fig. 2. The timeline z along which wars break out on date z,, T*, TV,. separated by intervals t,, f,, 
t,, . . measured in time units. 

Fry Richardson’s empirical discovery in the early decades of this century [ 1941, 1945a, b; now 
collected in Richardson (1960)] that the onset of wars in history obeys a Poisson distribution. 
Though this finding set the stage, the war ledge came to light only recently, when war onset 
distributions were analyzed mathematically (Cioffi-Revilla 1985, 1987b). 

The war ledge phenomenon may be described as follows: on average, war breaks out at a mean 
time i which comes after the time cp when the probability of war occurring is l/2 (the “even odds” 

point). The war Iedge is the interval of time A given by the d@erence i - cp between these two points 

in time. 

War Onsets on the Timeline of History 

To understand the war ledge phenomenon, let r,, r2, rj, . . . denote historical calendar dates on 
which war breaks out on the timeline T, as in Fig. 2. Also, let t,, t,, t,, . . . denote the time intervals 
(measured in some time unit such as days, month, years etc.) between consecutive onsets of war. 
Thus, ti = ti+ , - zi. 

From a modeling perspective, the set {t } of intervals between wars may be viewed as realizations 
of a continuous random variable (crv) Y. Accordingly, the onset of war at time t is determined 
(caused) by a large set of factors (domestic and international) acting through a complex mechanism 
which is not treated explicitly (as in a classic stochastic approach). The onset of war is-in this 
view-an indeterminate social phenomenon, rather than a deterministic process with identifiable 
mechanics. If Y is a crv, then we define the cumulative density function (cdf) and the probability 
density function (pdf) of Y as 

and 

Q(t) = Pr(Y < t) (11) 

respectively. 

p(t) = d@(t)/ dt, (12) 

In the first scientific papers published on the onset of wars, Richardson (1941, 1945a, b) showed 
that a simple Poisson model of Y fits the onset of wars with intensity parameter ;1 z 0.045 
onsets/month. More recent studies have confirmed this empirical finding for various types of severe 
international conflict events (classes of wars), as shown in Table 2. 

Mathematical Discovery of the War Ledge 

With the preceding ideas in mind, the war ledge phenomenon occurs as follows. If the crv Y 
is Poisson-distributed with intensity parameter 2, as most studies have found, it then follows that 
the cdf (11) is of the form 

Q(t) = 1 - ee”‘, (13) 

since p(t) is the simple negative exponential pdf. Now, the function G(t), which describes the 
cumulative probability of war breaking out by time t, attains the even odds point at a time rp which 
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Table 2. Estimates of the intensity parameter 1 in the Poisson model of war onsets in the international system 
(ca 1500-1965) 

Type of war event 
Force intensity,* 1 

(month- ‘) 
Historical era, 

AZ Database 

Deadly quarrels,” 
3.5 G/J < 4.5 

0.045 1820-1929 Richardson (I 960) 

Wars of modern 
ciwlizationb 

International wars 
Interstate wars 
Reciprocated military 

0.05oc 
0.052* 
0.028” 

1500-1931 Wright (1942) 
1816-1965 Singer and Small (1972) 
18161965 Singer and Small (1972) 

actions 0.032’ 

Source: adapted from Cioffi-Revilla (1985). 
*All estimates are significant at the 0.05 level. 
“1~ = log,, (fatalities). 

1815-1965 Siverson and Tennefoss (I 982) 

%‘. Wright (1942, app. XX) and revised by Richardson (1960, p. 129). 
‘Wright’s estimate calculated from data reported in Richardson (1960, p. 129). 
dCalculated by U. Luterbacher, in Singer and Small (1972). 
‘Reported in Cioffi-Revilla (1985, Table 2). 

satisfies the equation 

1 -e-Q = l/2, 

so therefore 

cp = (In 2)/A z 0.69/A time units. (14) 

(The length of time from 0 to cp may be interpreted as the half-life of peace.) However, on average, 

war breaks out at time t = < given by 

t= (Y) = 
s 

J3 tp(t) dt = l/A. (15) 
0 

From this last result it follows that, since ?> cp, on average war breaks out after the time cp when 
the value of the probability of outbreak has reached l/2 (even odds point). The difference between 
the two time values, the interval of time A = ?- cp, is the war ledge, as illustrated in Fig. 3. 

From the point of view of mathematical statistics (distribution theory) the existence of the war 
ledge is explained by the fact that the first moment of the distribution of Y-, i.e. the expected value 
(r), differs from the median value when Y is Poisson- rather than normally-distributed. So if 

F were a normally-distributed crv, then there would be no war ledge, for in this case ?= cp and, 
therefore, A = 0. 

a(t) = Pr (Cr<f) 

t 

Q i 

A = war ledge 

Fig. 3. The war ledge. On average, war breaks out after its probability of occurrence is strictly greater 
than even odds, @ > l/2. 
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The war ledge phenomenon has not received much attention, though it is important for making 
scientific sense of propositions dealing with the idea of “when a war breaks out”. Indeed, when 
does war break out? As we have seen, the mean (F) and the median (cp) both provide alternative 
perspectives on the central tendency of the distribution of values of 5. The conceptual implications 
of this duality, for the theory of war, still await further interpretation. Presently, the war ledge may 
be accounted for on a purely formal basis, in terms of the conventional interpretations assigned 
to the mean and the median. Whereas the former refers to the “expected time of war onset” (in 
an average sense), the latter refers to a different qualitative view of the central tendency of the 
distribution of r and lacks a succinct common language expression: namely, the median is the 
value (realization) of 5 which divides in half the rank-ordered set of values of t, i.e. the inter-war 
duration which divides in two the ordered set (t,, t,, t,, . . .). Asking “when does war break out?” 
is like asking “which of the two statistics is the central tendency of r”? The answer depends on 
one’s perspective, since both t(as the mean) and cp (as the median) make sense as measures of 
central tendency. The war ledge begins with one (cp) and ends with the other (3.7 

WAR DILATION AND INTERNATIONAL INSTABILITY 

Finally, our fourth case of mathematical insight-a phenomenon called war dilation-places us 
directly inside the timespan of war, within the period of “warfare-in-progress”. War dilation 

(“prolongation”, “protractedness” or “propagation”) refers to a dynamic property of the 
stochastic pattern of war duration, and is of central importance to the question of “how long wars 
last” once they begin. As we shall see, beyond its intrinsic significance, the war dilation 
phenomenon also sheds new light on a previously unknown-but no less important-equilibrium 
property of the international system. Though war dilation originally stems from a statistical result 
(an isolated empirical finding first reported some 20 years ago), the very real properties of war to 
which it gives rise would have remained undetectable without the medium of mathematics. 

In qualitative terms, war dilation is a phenomenon which may be described as follows: war is 
a social interaction process which, once begun, has a declining propensity to terminate, in a 
probabilistic sense, as opposed to a constant, or a rising propensity. Alternatively, once underway, war 
has an increasing propensity to continue. As we shall demonstrate, thanks to mathematical analysis 
this long-lived, protracted character of war now has a dynamic explanation-one based explicitly 
(an formally) on the social forces which account for warfare. 

Horvath’s Empirical Finding 

The discovery of war dilation began about 25 years ago, with the pioneering work of H. K. Weiss 
(1963) and W. J. Horvath (1968) (both inspired by L. F. Richardson), and took place in two 
different stages-one statistical, the other mathematical. The first stage, which is only of 
background interest here, began with an empirical discovery by Horvath. Examining Richardson’s 
list of 315 wars of magnitude 2.5 and greater for the historic era 1820-1949 (the Richardson 
war-magnitude is defined as the log,, of war fatalities; so, for example, the 1862-1867 

American-Sioux War, with about 1000 fatalities, was of magnitude 3), Horvath found that the 
duration of wars (D) obeyed a Weibull probability law with cdf given by 

D(D) = 1 - exp[ - (D - 0$/p], 

where a, /I and DO are constants, and 

oi = 0.066, B = 0.608 and d, = 0.05, 

expressed in years. 

(16) 

An instructive lesson may be learned from this first stage of the discovery of war dilation. After 
reporting his statistical findings (i.e. the above estimates of CL, /I and DO), curiously enough Horvath 

tThe preceding discussion also attracts attention to the mode, or the value of d corresponding to the maximum value 
of p(t) (onset time with maximum density). However, since here p(t) is a simple negative exponential function, the 
maximum of p(t) occurs when t = 0, so the modal value of I is degenerative and has no sensible substantive 
interpretation. 
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dedicated only minor discussion to the fact that he had found 8, > 0 (proving that wars “could 
not be ended in a shorter length of time” than about 18 days, for whatever reason), making nothing 

of the fact that he had found 6 < 1. AS we shall see, he missed a key insight which may have led 
him to the discovery of war dilation some 20 years earlier. 

The Mathematical Discovery of War Dilation 

The discovery of war dilation-a phenomenon no less real than the fact that wars have a finite 
duration no shorter than about 18 days-came later, in a second stage. This took place when 
Horvath’s empirical findings were placed in a broader theoretical context with the use of 
mathematics. To get from this initial finding, to the more theoretical idea of war dilation, we must 
examine more closely the probabilistic nature of warfare. 

As was earlier the case for the time interval between war onsets (the crv F), war duration 
(warfare) also may be viewed as a crv, denoted by 9. Accordingly, a(D) = Pr(L3 <D), and 
p(D) = Pr(s = D), denote the cdf and the pdf of 9, respectively. In addition, we also define the 
hazard rate function (hrf) of war duration, F(D), as 

F(D) =~(D)l[l - @P>l. (17) 

In substantive terms, the hrf F(D) may be interpreted as a war termination force at time D, since 
it is defined by equation (17) as the ratio of two probabilities: the probability that war will terminate 
at time D, or the value of the pdf p(D); relative to the probability that war does not terminate 
by time D, or the value of 1 - a(D). Thus, F is a variable akin to an intensity, a propensity, or 
a tension-in brief, a social force-for war to terminate, and F(D) describes the value of such a 
force at time D. 

Now when ~3 obeys a Weibull distribution it may be shown that F(D) is a power function of 
the form 

F(D) = k-a (D - D,)* ‘, (18) 

where K = l/p. Since Horvath had earlier found that oi M 0.07 < 1, from equation (18) it follows 
immediately that dF(D)/dD < 0. Therefore, F(D) is strictly decreasing, meaning that wars have 
a decreasing force to end. (As a baseline, not that when 9 is Poisson-distributed with intensity ;1, 
then CI = 1, K = 2 and F(D) = A, meaning a constant force for war to end.) 

Horvath’s empirical finding-that ~3 obeys a Weibull distribution with a < l-was initially 
reported simply as a statistical property of the historical distribution of war durations, and aimed 
at improving an earlier Markov model that had been proposed by Weiss. But when the 
mathematical properties of the Weibull distribution are examined more closely-particularly, when 
the force function (18) is mathematically defined by equation (17), and modeled in a meaningful 
fashion-what was initially an isolated statistical finding can then be used as a new starting point. 
Using mathematics, this new information (that a < 1) can be analyzed more rigorously to shed new 
light on a previously unknown aspect of war: namely, that since F(t) is empirically a strictly 
decreasing function of war duration D, since CI < 1, this carries the necessary implication that wars 
have a declining propensity (force) to terminate, once they have begun (at least for wars of the 
era 1820-1949). War dilation is simply a shorthand for describing the decreasing character of the 
force of war termination F; and the effect this has on the nature of warfare. 

Beyond its intrinsic interest, war dilation has several theoretical and practical implications: 

1. The mortality of war-(Q), when defined as the probability of war 
time D, is given by 

R(D) = Pr(C3 < D) = G(D) = 1 - exp[ - (D - DJ/~]. 

2. The mean duration of warfare is 

(~)=D,+K -“u r(1 + l/a), 

terminating by 

(19) 

where T(x) is the value of the gamma function evaluated at x, and (when D,, = 0) 
its variance is 

var(C3) = K~IO' (r(l +2/a) = [r(l + l/a)12}. (21) 
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3. Warfare has a half-life cp, defined as the value of D such that @(cp) = l/2, and is 
given by 

cp = D, + (fi In 2)““. (22) 

Using Horvath’s estimates, cp = 18.25 + 0.7 x 10m3 days z 18 days z D,. So, since 
the second term in the r.h.s. of equation (22) is very small, cp occurs practically 
at the same time as D,. As a consequence, as soon as war has run its minimal 
duration D, the probability of it ending (war mortality Q = @) surpasses the even 
odds point (l/2), and tends to 1 as D + cc. However, since a < 1, the value of 
@(D 3 Do) approaches 1 slower than when c( 3 1. Indeed, @(D 3 Do) has a long 
asymptotic tail which accounts for the high variability of war durations, and for 
the existence of many wars of extreme duration. 

4. Since CI < 1, it can also be shown that cp 6 (9) < var(g), so the distribution of 
9 is hypoexponential. [See also Rood (1978) for a discussion of deviations from 
the exponential distribution in political analysis.] 

As some of these mathematical ideas suggest, a phenomenon similar to the war ledge, though 
not identical, also occurs in the context of war duration: namely, since SI < 1, it can be shown that 
50 <: (g), and therefore /i = (9) - cp > 0. This means that something like a“peace ledge” occurs 
for war duration: war has a propensity to he protracted, or long-lived (war dilation), and on average 
war termination does not occur until after its probability of ending is greater than even odds (i.e. after 

the half-life cp, when @((9)) > l/2). Also, the peace ledge /1 rapidly increases as a decreases. 
These and other properties of war duration in general, and insights like war dilation and the 

war/peace ledges in particular, bring to light a well-known consequence of using mathematical 
methods in empirical science: one discovery often leads to another (synergistically), and quite 
frequently such a progression of knowledge also makes possible the establishment of new, 
unsuspected connections between previously unconnected phenomena. In the case of war dilation, 
not only do we now know that wars have a decreasing propensity to terminate (war dilation); we 
also know that, since /1 > 0 when c( < 1, this establishes a new intriguing link between the onset 
and termination of war: on average, both events occur after their cumulative probability of occurring 

is strictly greater than even odds. Since @ > l/2 in both cases, both exhibit a ledge. Not every 
random process exhibits this characteristic. 

CONCLUSIONS 

The phenomena discussed in this paper provide evidence of progress in our scientific under- 
standing of why, when and how war occurs. Significantly, none of these phenomena may have been 
known-discovered-without the medium of mathematics, for neither common intuition, nor 
statistical approaches alone, could have brought the underlying ideas to light. In reference to each 
of the four phenomena: 

1. The hyporeliability effect not only runs counter to common intuition-which says that a 
deterrence system aimed at preventing war will be as strong, or as reliable, as the weakest-link- 
in-the-chain. It also tells us that the popular chain-of-links aphorism is actually an overly 
optimistic heuristic-one which is scientifically incorrect-for assessing the objective reliability 
of a deterrent system. Discovery of the hyporeliability effect in deterrence has also been 
instrumental in focusing research attention on the cognitive puzzle of how decisionmakers, 
analysts and others involved in the realworld use of deterrence systems perceive various levels 
of reliability probabilities. An avenue of future inquiry leads to consideration of findings from 
cognitive science and experimental psychology-to prospect theory, as developed by Kahneman, 
Tversky and others. The implications of these ideas for a better understanding of the 
hyporeliability effect in deterrence (e.g. fuzzy sets and possibility theory), are yet to be explored.? 

2. The N-crises problem also brought to light some realworld phenomena not easily grasped 
without the use of mathematics. On the speed with which P,,,+ 1 as N -+ a3, Wright’s original 

‘rIn passing, much the same can be said in reference to the study of political coalitions-where the hyporeliability effect 
is no less real. In this paper the focus is confined to the study of war. 
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account had (incorrectly) suggested a much slower convergence, expressed as the extreme limit 
“as N goes to infinity”. As we demonstrated, if the probability of crisis escalation p is anything 
but negligible, then the global (long-term) probability of war P increases to values which are 

virtually 1, even for small values of N. Fast convergence is not apparent without mathematical 
analysis. 

Also within the N-crises problem, the tradeoff between avoiding crises and reducing war 
escalation probability is another aspect which is anything but clear without the use of 
mathematics. That nature favors lowering the probability of war escalation, rather than lowering 
the number of crises, may seem intuitive on a post hoc basis (hindsight is always 20/20!), but 
without formal analysis such a result would have no scientific basis. On this, as in other questions 
in social science, there is no possibility of experimentation, so even experience cannot determine 
which of the two is favored by nature. Mathematical analysis alone accounts for the discovery 
of this result. 

3. The war ledge phenomenon was unknown prior to the application of mathematical methods to 
the earlier empirical finding that war obeys a Poisson law of onsets to an acceptably good degree 
of fit. This case of mathematical discovery also typifies the power of mathematics when used 
to derive more information from a previously verified empirical regularity-the Poisson law in 
this instance. That something like the war ledge actually exists in the realworld is by no means 
apparent from statistical analysis alone (Richardson’s extensive work did not report it), nor does 
it become apparent from the study of military history. The ledge is of interest to students of 
war because it points to a time interval preceding the average onset of war, the interval A, which 
may contain (no one has yet determined this) particularly relevant processes or events for 
explaining why, how or when wars occur at a given time. For instance, in reference to the 
traditional distinction between immediate and remote causes of war, A may offer an appropriate 
criterion for distinguishing between the two. Immediate causes may be said to refer to those 
events which arise within the ledge A, whereas remote causes operate in the more remote past 
(i.e. for t < cp = [(F) -A]). Empirically, /1 is of the order of 6 months. Why this particular 
length of time, as opposed to some other, no one has thus far explained. 

4. The mathematical discovery of war dilation-that wars tend to be protracted rather than 
brief-is also insightful. Rightly so, war is often viewed as a “vortex”, involving more and more 
belligerence, as in a runaway reaction. Mathematical analysis, grounded on an empirical pattern, 
provides a basis for this belief. Unlike other social processes, wars in general do not tend to 
terminate after they have started. As was earlier the case for the war ledge, the decreasing 
propensity of wars to terminate once they have begun is also something which would not have 
been discovered from the empirical analysis of war durations alone, without the assistance of 
mathematics, let alone from the erudite study of military history-no matter how carefully 
conducted. War dilation also sheds new light on the equilibrium properties of the international 
system, making the task of peacekeepers more difficult than it was previously imagined. War 
dilation suggests that, when perturbed by the initiation of a war, the international security 
system tends not to restore equilibrium (peace), by making it less and less likely (as opposed 
to more and more likely) for an initiated war to terminate-as when a perturbation to the state 
of a system cannot be easily controlled by a stabilizing regulator attempting to restore a goal 
state (peace). Further, the existence of war dilation perhaps suggests that international 
organizations, such as the U.N., should be more productively employed in war prevention, 
rather than in war containment, since once war is underway it exhibits a decreasing propensity 
to terminate. Another plausible inference may be that the protracted propensity of wars is 
related to the learning capacity of belligerents to sustain war once they have started it, so once 
war begins their mobilization rate matches or exceeds the rate at which war consumes their 
resources. (If belligerents could not mobilize war-waging resources at a rate higher than the rate 
of resource consumption, then wars would tend to be short-lived, with CI > 1.) 

In each of the four cases we examined, as in others beyond the limited scope of this paper, the 
basic discoveries could not have been made, and new knowledge could not have been obtained, 
without the application of mathematical analysis to theoretical concepts, to empirical findings or 
to a combination of both. The heuristic power of mathematical analysis has allowed us to discover 
these realworld, objective properties of war, 
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Where do these and other findings lead? Which new research directions do they suggest? As the 
scientific community addresses questions such as these in the years ahead, it would prove wise to 
assess where we stand today-some 50 years since mathematics were first applied to the study of 
war by L. F. Richardson. We should consider the many aspects of war, and examine the various 
mathematical tools (models) which have been used for each. At a minimum, such an inventory 
would determine major areas of concentration, along with those areas where gaps currently exist. 

When viewed against the long-range timeline of war in human history, the application of 
mathematics to understand war has just begun. However, the last 50 years provide convincingly 
evidence that mathematical modeling approaches have begun their unique and powerful con- 
tribution to the study of conflicts and war. While moving toward the end of this century, it is any 
scientist’s guess as to what may come next by way of new discoveries in this field. In spite of this 
uncertainty it is clear that in this young science much exciting new knowledge will be growing at 
an unprecedented rate. An intriguing feature of this progress-as we have attempted to show in 
this paper-is that progress is occurring with the application of basic and intermediate mathe- 
matical tools, not with highly advanced methods, much as was the case in the early history of 
physical science. Only a rational instrument as powerful as mathematics is capable of this 
feat-allowing us to learn much about something as complex as war, while the tool itself remains 
simple. 
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