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1 Introduction

In 1952, Harry Markowitz launched modern finance by framing portfolio con-
struction as a tradeoff between risk, which he characterized as variance, and
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expected or mean return. A standard tool for asset allocation, for construct-
ing quantitative exchange traded funds, mutual funds and active strategies,
and for customizing separately managed accounts, Markowitz’s optimization
remains the workhorse of financial services today. Mean-variance optimized
portfolios are efficient in the sense they minimize variance subject to a return
target and constraints, and they are industry standard for asset allocation and
the construction of exchange traded funds, mutual funds and some indexes.

In his early work, Markowitz considered practical challenges to implement-
ing mean-variance optimization, including the lack of reliable algorithms, the
complexity of inequality constraints required to preclude short positions, and
the impact of data limitations on estimated inputs. Evidently concerned that
classical statistical methods alone would not yield estimates suitable for mean-
variance optimization, Markowitz [52] wrote in 1952:

Perhaps there are ways, by combining statistical techniques and the
judgment of experts, to form reasonable probability beliefs (µi, σij).

This query preceded works by Eugene Wigner, Charles Stein, Volodymyr
Marchenko and Leonid Pastur that launched statistical estimation in high
dimensions and random matrix theory.

Since 1952, the problem of estimating suitable inputs to mean-variance
optimization has been an active area of research. Prescriptions for estimates
of means and covariances vary, and the nature of their errors and their impact
on optimized portfolios can be obscure.

Almost universally, scholars and practitioners use factor models to reduce
the number of parameters required to estimate large covariance matrices. This
is consistent with empirically observed correlations in financial returns and
generates estimated covariance matrices that are well-conditioned enough for
use in optimization. Principal component analysis (PCA) can be used to iden-
tify factors that explain correlation, for example in the arbitrage pricing the-
ory developed by Stephen Ross [62] in 1976. The factor loadings are sample
eigenvectors, linear combinations of security returns that maximize in-sample
variance. When securities are numerous and observations are scant, however,
sample eigenvectors are poor estimates of their population counterparts. As
building blocks of covariance matrices intended for optimization, sample eigen-
vectors lead to estimated optimized portfolios with variance that tend to be
far larger than the true optimum.

We address this problem in the context of a single-factor model, which in-
corporates the most salient features of equity markets in simplest form. In this
setting, we develop high-dimensional covariance matrix estimates that gener-
ate low-variance optimized portfolios. Extending recent research that sheds
light on how estimation error is transmitted via optimization, we apply a form
of James-Stein shrinkage to the leading sample eigenvector, yielding a James-
Stein for eigenvectors (JSE) estimate for the leading population eigenvector.

We advance the literature in four ways. First, we provide, novel, explicit
and easy-to-code formulas for factor-based covariance matrices that are tai-
lored to specific quadratic optimization problems with multiple linear con-
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straints. By neutralizing the component of estimation error that is amplifed in
optimization, our methods produce relatively low-variance instances of port-
folios satisfying optimization constraints. This distinguishes our work from
much of the literature, which focuses almost exclusively on the fully-invested
(single-constraint) minimum variance portfolio. While that simple case is in-
structive, it fails to cover subtle and important issues that arise when multiple
constraints are specified, as they are in all practical settings. Consider, for
example, the minimum variance exchange traded fund, USMV, which in 2024
accounted for more than $24 billion in assets. That robust minimum variance
portfolio includes benchmark-relative sector constraints, position limits and
long-only constraints, in addition to the simple fully invested constraint on
which the literature is largely based. The single-constraint minimum variance
portfolio featured in the literature is rarely used because it is extremely sen-
sitive to small changes in the covariance matrix and, in particular, exhibits
highly variable leverage.

In practice, virtually all quantitatively constructed investable portfolios
include numerous constraints, which stabilize behavior over time. These con-
straints may impose strategy considerations such as a return target or factor
tilt, but they also take account of realistic considerations such as leverage,
turnover and transaction costs. This fact underscores the importance of one
of the central premises of our paper: it is important to go beyond the global
minimum variance portfolio.

The second advancement is a new asymptotic formula for improvement of
JSE over the sample leading eigenvector that depends only on limiting ratios of
sample eigenvalues and the angle between the leading population eigenvector
and the constraint subspace. This novel formula characterizes JSE’s asymp-
totic stochastic dominance over PCA, and opens the way to rate of convergence
analysis that determines the utility of JSE in practical applications.

The third advancement concerns the target of JSE shrinkage. In previ-
ous studies, JSE shrinkage is toward a known fixed direction. To account for
multiple constraints, we generalize the theory to accommodate a stochastic,
data-dependent shrinkage target vector lying in the constraint subspace.

The fourth advancement is to extend the analysis to the more realistic
case of a factor model with heterogeneous specific variances, and further to
the “approximate factor model” setting in which specific returns are allowed
to be correlated.

A distinguishing feature of this article and the works on which we build is
an analysis of how estimation error is transmitted by optimization. In cases
of practical importance, errors in eigenvectors substantially distort optimized
portfolios, while errors in eigenvalues may be less important.

For the problems considered in this article, we show that the ideal shrinkage
target vector is the orthogonal projection of the leading population eigenvector,
which is unobservable, onto the target subspace. We show that a data-driven
shrinkage target obtained by projecting the leading sample eigenvector onto
the constraint subspace is sufficient to guarantee reduced variance of the opti-
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mized portfolio. Beyond a finite fourth moment, none of our theoretical results
rely on parametric distributional assumptions on the underlying data.

In Section 2, we review some background and literature relevant to our
results. In Section 3, we set up the problem of finding a low-variance solu-
tion to mean-variance optimization with linear constraints when the covari-
ance matrix is estimated. Readers interested in the bottom-line formulas for
implementation will find them summarized in Section 3.2, while Section 4 pro-
vides a detailed mathematical discussion of the construction and describes its
asymptotic properties. Numerical experiments illustrating our results are in
Section 5, and Section 6 contains concluding thoughts. Mathematical proofs
are in the Appendix, Section 7.

2 Financial and statistical context

The use of covariance matrices in portfolio construction dates back to work by
Markowitz [52,53] in the 1950s. Effective estimation of the high dimensional
covariance matrices required by Markowitz’s mean-variance optimization rests
on an expansive mathematical literature and is informed by empirical and
practical guidance from finance professionals. Here, we review aspects of the
literature that are relevant to our results. Topics include factor models, random
matrix theory, statistical consistency, and James-Stein shrinkage.

2.1 Factor models

Introduced in 1904 by Charles Spearman [68], factor models provide a frame-
work for analyzing high dimensional data that is parsimonious and, in some
cases, interpretable. When calibrated to equity markets, factor-based covari-
ance matrices are generally well conditioned and, paradoxically, are both suf-
ficiently stable over time and sufficiently responsive to changing market con-
ditions for practical purposes.

In 1963, William Sharpe [64] developed the one-factor or “single index”
market model whose covariance matrix is expressed as a sum of rank one
and diagonal matrices. Empirical evidence of the importance of non-market
factors along with issues of market non-stationarity led to Rosenberg and
McKibben [61] and [60], which develops multi-factor models based on cross-
sectional regressions and forms the basis of Barra’s industry standard funda-
mental factor models. A statistical approach to factor models with roots in
the Arbitrage Pricing Theory pioneered by Ross [62] and developed in Cham-
berlain and Rothschild [10], Connor [12], and Connor and Korajczyk [14,16]
is an antecedent of the material in this article. The strengths and weaknesses
of statistical and fundamental factor models are complementary. The former
respond dynamically to changing markets but can mistake noise for signal and
can rely on factors that are hard to interpret. The latter are based on inter-
pretable factors but require explicit re-architecting to incorporate new factors.
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Connor [13] and Connor and Korajczyk [15] review roles of different types of
factor models in finance.

The results in this paper are framed in terms of latent, single-factor model,
which allows for heterogenous specific variance and even mild correlations
across specific returns. The focus on the single factor allows us to showcase
novel estimation methods in a simple setting, while the allowance for hetero-
geneous variances and correlations for specific returns expand the scope of
applicability of the model.

2.2 Regimes of random matrix theory

A set of methods used to contend with the scarcity of security return data
comes from random matrix theory, which originated in the 1950s with the
work of Wigner [75,76] and Stein [69]. In the 1960s, Marcenko and Pastur [51]
characterized distributions of the eigenvalues of covariance matrices of stan-
dard Gaussian variables as the observations n and the number of parameters p
tend to in infinity in proportion. This work spawned a large literature identi-
fying and correcting biases in high dimensional eigenvalues when the number
of parameters p and the number of observations n tend to infinity. We denote
this asymptotic setting by HH for “high dimension high sample size” and refer
to [3], Edelman and Rao [19], Bai and Silverstein [4], Tao [72], and Paul [59]
for more information.

In the 2000s, Hall, Marron, and Neeman [37] and Ahn et. al [1] explored a
different asymptotic framework in which the number of parameters p tends to
infinity while the number of observations n stays fixed. This asymptotic regime,
which we denote HL for “high dimension low sample size”, is surveyed in the
2018 article by Aoshima et al. [2] and it is the setting for the present article.
It is relevant to practical problems where data are limited by experimental
constraints or non-stationarity of time series.

Random matrix theory overlaps with classical statistics, where asymptotic
guidance is obtained by letting the number of observations n tend to infin-
ity as the number of parameters p stays fixed, the LH regime. Results on
random matrices can be organized around LH, HH and HL as discussed, for
example, in Jung and Marron [43], and Goldberg and Kercheval [31]. Since
any particular problem involves some specific n and p, it can be a matter of
judgment or experimentation to decide which asymptotic regime provides the
best guidance. The choice can be consequential since HL offers novel meth-
ods for correction of eigenvector biases, which demonstrably affect optimized
quantities in simulations calibrated to financial markets.

2.3 Consistency

Sample eigenvalues and eigenvectors are used throughout the sciences to reduce
the dimension of complex problems and distinguish signal from noise. The
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basis for this is the classical fact that sample estimates are consistent in the
sense that they converge to their population counterparts as the number of
independent observations tends to infinity, so long as the total dimension is
fixed.

In high dimensional asymptotic regimes, the situation is more nuanced.
For the HH regime, where both p and n tend to infinity, consistency of sample
eigenvalues or eigenvectors can depend on the limit of λ2n/p, where λ2 is a
sample eigenvalue. Wang and Fan [73] show that if data are assumed sub-
Gaussian, then a sample eigenvalue-eigenvector pair (λ2, v) is a consistent
estimator of its population counterpart if and only if λ2n/p tends to infinity as
p→ ∞. For example, in the case that p/n tends to a positive constant and the
leading eigenvalue λ2 is bounded in p, sample eigenvectors are inconsistent.
This occurs in the spiked models discussed in 2001 by Johnstone [41] and
further studied by Johnstone and Lu [42] and Donoho, Gavish, and Johnstone
[18]. For more analyses of consistency of sample eigenvalues and eigenvectors
in high dimension, see Paul’s 2007 article [58], the 2013 article by paper Fan,
Liao, and Mincheva [25], and the 2016 article by Shen, Shen, Zhu and Marron
[65].

In our HL factor model setting, we have λ2/p tending to a finite limit
due to the prevalence condition on beta discussed after assumption A3, so
that λ2n/p is bounded. In this setting, a bounded sample size n prevents
consistency because the sampling error cannot be averaged out. So long as
n remains bounded, there is a need for asymptotic correction of the sample
eigenvector (see Theorem 1 below). This is the JSE correction, which makes
use of laws of large numbers and concentration of measure (see Ball [5] and
Tao [70]).

2.4 James-Stein shrinkage for averages and for eigenvectors

Shrinkage operators dampen the effects of extreme observations in data sets,
which occur routinely in finance. The concept of shrinkage dates back at least
to Stein [69] and James and Stein [39] in the 1950s and 1960s. They show
that in dimension 3 or greater, the sample average is inadmissible: there is
another estimator with lower mean-squared error. That superior estimator is
known as James-Stein, and it is obtained by shrinking sample averages toward
their collective average. This work was extended by replacing the collective
average with arbitrary initial guesses in Efron and Morris [20], and popularized
by Efron [21]. An overview of James-Stein type shrinkage estimation is in
Foudrinier et al. [27].

Recent literature, including Shkolnik [66] and Goldberg et al. [31], develop
James Stein for eigenvectors (JSE). Structurally identical to James-Stein for
averages, JSE improves almost surely on the sample leading eigenvector as an
estimate of ground truth when data follow a one-factor spiked model. The the-
ory rests on laws of large numbers, and therefore is free of special distributional
assumptions other than boundedness of fourth moments.
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2.5 Covariance matrices, extreme factors, estimation error, shrinkage and
portfolio optimization

Our work has roots in two streams of literature that explain how attributes
of a covariance matrix are propagated by optimization. The first considers
how estimation error in a covariance matrix leads to optimized portfolios that
are sub-optimal. A manifestation is excess variance in an optimized portfolio;
see, for example, Klein and Bawa [44], Jobson and Korkie [40], Michaud [57]
and Bianchi et al. [6]. In 2010 and 2013 articles [22] and [23] El Karoui docu-
ments how risk of optimized portfolios is underforecast by covariance matrices
estimated using methods from the HH regime.

The second stream begins with Green and Hollifield’s 1992 article [34],
which explains how dispersion in exposures of a dominant factor can generate
concentration in an optimized portfolio. In 2003 Jagannathan and Ma [38]
show that this type of concentration is mitigated by imposing no-short-sale
constraints, which effectively act as a shrinkage operator on a covariance ma-
trix. In 2011, Clarke, de Silva and Thorley [11] give insightful, useful formulas
for weights of long-short and long-only minimum variance portfolios when re-
turns follow a one factor model. While estimation error is not the focus of these
papers—Green and Hollifield [34] argue that estimation error is not the cause
of the concentration in optimized portfolios—they are, nevertheless, founda-
tional to a a large literature that attempts to mitigate estimation error with
shrinkage.

Ledoit and Wolf develop shrinkage-based schemes for constructing well-
conditioned security return covariance matrices suitable for use in optimiza-
tion. In 2003 and 2004, Ledoit and Wolf published three articles that impose
structure and conditioning on an estimated covariance matrix by expressing
it as a weighted sum of a sample covariance matrix and a single index matrix
[45], a constant correlation matrix [47] and a scalar matrix [46]. In 2012, rely-
ing on guidance from the HH regime, Ledoit and Wolf [48] show that shrinkage
of a sample covariance matrix toward a scalar amounts to linear shrinkage of
sample eigenvalues toward their grand mean while preserving sample eigen-
vectors. They apply non-linear shrinkage to sample eigenvalues and combine
the result with sample eigenvectors to generate estimated covariance matrices,
which they evaluate with matrix norms. Also in 2012, Menchero, Wang and
Orr [56] use guidance from the HH regime to adjust sample eigenvalues of a
covariance matrix with simulation. In their 2017 article, Ledoit and Wolf [49],
like many other researchers, compare realized variance and information ratios
of single-constraint minimum variance portfolios constructed with different co-
variance matrices, some based on the non-linear shrinkage of eigenvalues from
their 2012 article. In a lucid 2024 discussion of out-of-sample tests of covariance
matrices developed for optimization, Menchero and Lazanas [55] argue that
volatility is an appropriate out-of-sample metric, but not information ratio.

Much of the literature on high dimensional covariance matrices of financial
returns relies on an empirically observed spiked structure: data suggest that
one or several leading eigenvalues grow roughly in proportion to the number
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of securities in the pool, while the other eigenvalues stay bounded. Covariance
matrix estimation for spiked models is further developed in 2011 and 2013
by Fan, Liao and Mincheva [24], [25], in 2017 by Wang and Fan [73] and in
2021 by Ding Li and Zheng [17]. In their 2018 article [8], Bodnar, Parolya
and Schmid apply shrinkage to the weights of a minimum variance portfolio
optimized with a sample covariance matrix. In 2021, the results are extended
to include estimates of security means by Bodnar, Okhrin and Parolya [7].

The recent works by Ledoit, Wolf, Fan, Liao, Mincheva, Wang, Ding, Li
and Zheng and many others share several common themes. First, they at-
tempt to correct estimated eigenvalues but still use the sample eigenvectors.
In the language of [18], these covariance matrix estimates are “orthogonally-
equivariant.” Ledoit and Wolf call them “rotationally equivariant.” With the
exception of Wang and Fan [73], these articles rely on the HH regime. In all
cases these models are tested on single-constraint, fully invested minimum
variance portfolios.

By contrast, with their use of James-Stein for eigenvectors, the covariance
matrix estimates discussed in this article rely on distribution-free eigenvector
shrinkage in the HL regime, and can be customized to any quadratic mini-
mization with linear constraints. James-Stein for eigenvectors was developed
in Goldberg et al. [33], Goldberg et al. [32] and Gurdogan and Kercheval [36]
for the purpose of improving optimized minimum variance portfolios. The de-
velopment rests on a novel analysis of the way estimation error in a spiked
covariance model is transmitted via mean-variance analysis. Those articles
show that estimation errors in the leading sample eigenvector contributes ma-
terial errors in estimated minimum variance and its risk forecasts, and that
JSE reduces those errors in the HL regime. In the present article, we show
that the original results are a special case of a more general phenomenon. A
constrained optimization exacerbates estimation error in the leading sample
eigenvector in the direction of the subspace spanned by constraint vectors. By
shrinking the sample leading eigenvector toward that subspace, we correct the
leading eigenvector in a way that is tailored to the constrained optimization
problem, leading to improved results.

2.6 Constraints, risk factors and estimation error

There is an extensive literature that looks at the interaction between con-
straints and risk factors in an optimized portfolio without considering estima-
tion error. In their 2003 article [38], Jagannathan and Ma show an equivalence
between a fully invested, long-only, position-limited quadratic optimization
and an optimization with a shrunken covariance matrix subject only to the
full investment constraint. This result foreshadows the “robustification” of the
simplest Markowitz optimzation problems, a topic that is explored in general-
ity in the 2024 paper [9], by Boyd, Johansson, Kahn, Schiele and Schmelzer.
The 2008 article by Lee and Stefek [50] and the 2012 article by Saxena and
Stubbs, [63] with insightful commentary by Markowitz [54], look at problems
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associated with the misalignment of alpha constraints and risk factors. In con-
trast, Garvey, Kahn and Savi argue in their 2017 article [30] for the benefits
of complete misalignment: alpha constraints that are orthogonal to factors.
Consider this against the backdrop of Ross’s 1976 paper [62] showing that in
an idealized setting, alpha orthogonal to factors must, asymptotically, imply
arbitrage opportunities.

Robust optimization takes account of uncertainty around inputs. In a 2007
article[29] that is widely cited by academics and also used in industry, Gar-
lappi, Uppal and Wang take account of uncertainty around expected returns in
an optimization of Markowitz portfolio. See the 2020 survey [77] by Xidonars
Steuer and Hassapis for a survey of some of the applications of robust opti-
mization to portfolio construction In a 2024 article [67], Shkolnik, Kercheval,
Gurdogan, Goldberg and Bar begin to analyze the interaction between esti-
mation errors in constraints and risk factors using James-Stein type shrinkage
methods, as in this article.

3 The optimization problem and a JSE prescription

3.1 Constrained optimization

We specify the central problem addressed in this article: finding low-variance
solutions to variance-minimizing optimization when inputs are corrupted by
estimation error.

In a universe of p securities, we specify a portfolio by a p-vector of weights
w. The entries of w are the fractions of portfolio value invested in different
securities. Alternatively, we can think of w in an active framework, as the
difference between portfolio weight and benchmark weight. The second per-
spective reduces to the first when the benchmark is cash. Here, we explore a
widely used framework for quantitative portfolio construction.

Let Σ denote the p× p-dimensional covariance matrix of security returns,
assumed non-singular. Consider an optimization problem with k > 0 linear
constraints,

minw
1

2
w⊤Σw (1)

subject to C⊤
1 w = a1

C⊤
2 w = a2

...

C⊤
k w = ak

where the jth constraint coefficient vector Cj is a p-vector, and the jth con-
straint target value aj is a scalar. Typical constraints demand full investment,
total and active return targets, and factor tilts, and in general are chosen to
reflect an investor’s specific investment strategy.
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A simple, explicit formula provides the unique solution to (1) when the
inputs to the problem are known. In finance, however, the covariance matrix
Σ is never known. In what follows, we illuminate the mechanism by which
estimation error in a covariance matrix corrupts optimized portfolios, provide
estimates of Σ tailored to instances of (1) leading to optimized portfolios that
have relatively low variance.

We work in a setting where the number of securities p is larger than the
number of observations n, which is commonplace for investors. In this situa-
tion, the sample covariance matrix S is singular. As a synthesis of information
from data, however, S can serve as a source of spare parts for estimated em-
pirically reasonable covariance matrices that can be used in optimization.

3.2 A JSE prescription for a customized, optimization-friendly estimate of Σ

This section contains a brief summary of our prescribed estimate of the return
covariance matrix Σ that is tailored to mitigate estimation error in the op-
timization problem (1). The centerpiece of the prescription is an estimate of
Σ’s leading eigenvector, which is obtained by applying James-Stein shrinkage
to the sample leading eigenvector. Shrinkage improves on the sample lead-
ing eigenvector as an estimate of ground truth by an amount that we make
explicit.

In this section, we consider first the simplified situation in which returns
have identical specific risk. In Section 4, we discuss the more general one-factor
case, and provide more complete mathematical details.

3.2.1 Structure from a factor model

The persistent, substantial correlations observed across financial returns have
led researchers to use factor models to estimate return covariance matrices.
In the simplest example of a one-factor model with homogeneous specific risk,
the true (population) covariance matrix has the structure

Σ = η2bb⊤ + δ2I, (2)

where b is a leading unit eigenvector of Σ with eigenvalue η2 + δ2.

We don’t observe Σ, but see instead a time series of n realized values of
the returns p-vector r, which determine a sample p × p covariance matrix S
of rank at most n < p. We estimate the parameters of Σ, two variances, η2

and δ2, and the unit vector of factor loadings b, with functions of eigenvalues
and eigenvectors of S in a way that leads to a relatively low variance solution
to (1). We show in Section 4 that the last of these three estimates is the most
consequential.
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3.2.2 A strategy-specific estimate of the vector of factor loadings

For our minimum variance problem, a strategy refers to the choice of constraint
vectors C1, C2, . . . , Ck and constraint values a1, a2, . . . , ak. With tr(S) denot-
ing the trace of the sample covariance matrix S and λ2 denoting its leading
eigenvalue, define

ℓ2 =
tr(S)− λ2

n− 1
, (3)

the average of the non-zero eigenvalues of S that are less than λ2, and

ψ2 =
λ2 − ℓ2

λ2
, (4)

the average relative leading eigengap.

Let C denote the span of the constraint vectors C1, C2, . . . , Ck from (1)
and let hC denote the orthogonal projection of the leading sample eigenvector
h onto the subspace C. Now define the JSE shrinkage constant

cJSE =
ℓ2

λ2(1− |hC |2)
(5)

and define

HJSE = cJSEhC + (1− cJSE)h. (6)

The James-Stein for eigenvectors (JSE) estimate of the true eigenvector b is
the unit vector1

hJSE = HJSE/|HJSE|. (7)

The James-Stein estimate hJSE is a better approximation to the true lead-
ing eigenvector b than than the principal component estimate h = hPCA. Let
θJSE and θPCA denote the angles from b to hJSE and hPCA, and letting Θ
denote the angle between b and the C, then

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
> 0 (8)

in the context of the portfolio construction problems studied in this article,
where Θ < π/2.2

1 Formula (6) is equivalent to formula [6] of [31]. That article and [66] expose the parallel
between JSE and classical James-Stein. Formulas (5), (6) and (7) are identical to formu-
las (37), (38) and (39) in Section 4.1.4.

2 The asymptotic context in which formula (8) holds is described precisely in Theorem 2.
Here, we have overloaded the notation for θJSE, θPCA and Θ.
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3.2.3 A strategy-specific estimate of the covariance matrix

Setting λ2 − ℓ2 and (n/p)ℓ2 as estimates of factor variance η2 and specific
variance δ2, and hJSE and an estimate of b, an estimate of (2) is given by

ΣJSE = (λ2 − ℓ2)hJSEhJSE
⊤
+ (n/p)ℓ2I. (9)

Formula (9) is the one-factor covariance matrix designed for use in quadratic
optimization (1). Note that the dependence of ΣJSE on C is through the factor
loadings hJSE and not through the estimates of factor and specific variance.

We will see, under the assumptions described in Section 4, that |hC |2 is
strictly less than 1 for large p, so that cJSE is well-defined, and cJSE is strictly
between 0 and 1 for large p, so that HJSE is a proper convex combination of
h and hC .

3.3 The true variance of an optimized portfolio

The benefits of this construction are realized in the portfolio wJSE generated
by (1) when Σ is set to ΣJSE.

Let ΣPCA be the covariance matrix obtained by replacing hJSE with the
sample leading eigenvector h in (9), and let wPCA denote the portfolio gener-
ated by (1) when Σ is set to ΣPCA.

Theorem 4 below shows that the ratio of the true variances wJSE and wPCA,

V(wJSE)

V(wPCA)
, (10)

tends to zero as the number of assets grows. When returns to securities in
a sufficiently large investment universe are governed by a one-factor model,
wJSE is an improvement on wPCA by an arbitrarily large factor as measured
by true variance.

4 JSE stochastically dominates PCA

The formulas in Section 3.2 prescribe the construction of a strategy-specific
covariance matrix based on JSE for use in portfolio construction. Here, we de-
scribe in more precise detail the theory asymptotically guaranteeing that JSE
improves eigenvector estimates and lowers variance of optimized portfolios,
relative to PCA.

In our asymptotic analysis, we consider n fixed and p tending to infinity.
Therefore we will need to consider a sequence of models of increasing dimen-
sion. The variables in question may have a superscript (p) to emphasize the
presence of the asymptotic parameter p.

In section 4.1 we show that the JSE estimator asymptotically dominates
the PCA estimator in our one-factor setting, in the sense that it is strictly
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closer, almost surely, to the true unknown leading eigenvector. We provide a
formula for the angular improvement. In section 4.2, we apply these results to
estimating the variance of a portfolio obtained by minimizing variance under
finitely many linear constraints. We obtain an asymptotic formula for the true
variance of the portfolio obtained using an estimated covariance matrix, and
show that the JSE estimator strongly dominates the PCA estimator for almost
all choices of the constraint values.

4.1 JSE theorem for high-dimensional targets

We develop the JSE family of corrections of a leading sample eigenvector and
provide a formula for their improvement as estimates of ground truth b when
data follow a one-factor model. An estimate hJSE is obtained by shrinking the
sample leading eigenvector toward an observable linear subspace, the shrinkage
target C, by a specified optimal amount. The estimate depends on the choice
of shrinkage target. In the one-factor context, the improvement due to a JSE
correction depends only on two quantities:

– The angle between the leading population eigenvector b and the shrinkage
target C, and

– The relative gap between the leading sample eigenvalue and the average of
the lesser, nonzero sample eigenvalues.

A smaller angle and a larger relative gap translate to greater effectiveness of
the JSE correction.

4.1.1 A one-factor model of returns and standing assumptions

For p > 1 we will develop an estimated p-dimensional covariance matrix as-
suming returns follow a latent one-factor model:

r = µ+ βf + z, (11)

where r = r(p) is a random p-vector that is the sole observable, µ = µ(p) is
a mean returns vector, β = β(p) is a p-vector of factor loadings, the random
scalar f is a mean-zero common factor through which the observable variables
are correlated, and z = z(p) is a mean-zero random p-vector of variable-specific
effects that are not necessarily small but are uncorrelated with f .

For the problems we consider in this article, returns are used only to es-
timate a sample covariance matrix. In practice, this involves subtracting ex-
pected return estimates from the observations, and it introduces expected
return estimation noise into the sample covariance matrix. To focus on corre-
lation estimation error that is not related to expected return, we assume mean
zero, µ = 0, and study the model

r = βf + z. (12)
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Replacing r with r − µ does not affect the covariance matrix, and amounts
to the strong assumption that expected returns µ are known, and only the
variances and correlations need to be estimated.

For the asymptotic theory we need to define a sequence of models of in-
creasing dimension. If we imagine that increasing the dimension corresponds
to adding new assets to the model, this will be described by a nested sequence

r(p) = β(p)f + z(p), p = 1, 2, 3, . . . . (13)

The nested property means that the models are defined by an infinite sequence
of scalars {βi} and an infinite sequence random variables {zi} such that trun-
cation at p forms the p-vectors β(p) and z(p), respectively.3

We list below our standing assumptions on the factor model (12).

Standing Assumptions.

A1. The random variable f representing factor returns is non-zero almost surely,
and has mean zero and variance σ2 > 0.

A2. (a) The random variables {zi : i = 1, 2, . . .} representing security spe-
cific returns have mean zero, are uncorrelated with f , and have uniformly
bounded second moments, with variances V ar(zi) = δ2i tending on average
to a limit δ2 > 0:

lim
p→∞

(1/p)

p∑
i=1

δ2i = δ2 > 0. (14)

(b) In addition, we assume either
i. the variables {zi} are mutually independent, or
ii. the variables {zi} have uniformly bounded fourth moments and satisfy

the following correlation decay conditions

1

p2

p∑
i,j=1

Cov(zi, zj)
2 → 0 and

1

p2

p∑
i,j=1

Cov(z2i , z
2
j )

2 → 0 (15)

as p→ ∞.
A3. The sequence {βi : i = 1, 2, 3, . . .} of security exposures to the factor is

bounded and the average of the squared entries tends, as p → ∞, to a
positive limit,

lim
p→∞

(1/p)

p∑
i=1

β2
i = B2 > 0, (16)

or, equivalently, |β(p)|2/p→ B2 as p→ ∞.

In particular, if b(p) = β(p)/|β(p)|, these assumptions imply that {p(b(p)i )2 :
p > 1, i = 1, 2, 3, . . . , p} is bounded.

Importantly, we make no parametric assumptions, Gaussian, sub-Gaussian,
or otherwise, on the distributions of f or z. The finite moment assumptions
on f and zi allow for heavy-tailed distributions.

3 The nested property is not required for our results if we accept a bound on higher
moments, but it simplifies the discussion.
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The assumption that the random variable f representing factor returns
and the random variables zi representing security specific returns have finite
variances is standard in the financial literature, and estimating those variances
is central to financial practice. The optional assumption of finite fourth mo-
ments is common in the literature, but its empirical justification for returns
to public equities is weak. Security returns in public equity markets exhibit
heavy tails, with power law coefficients estimated, in some studies, to be below
4; see, for example, Gabaix [28] and Warusawitharana [74].

The assumption that factor returns f and specific returns are uncorrelated
embodies the essence of a “factor model”, and implies that the covariance
matrix decomposes as a sum Σ = η2bb⊤ +Ω of factor and specific covariance
components. Assumptions on the joint distribution of specific returns have
deeper implications, as they are needed for our application of laws of large
numbers to prove asymptotic results.

The condition in A2 and A3 that the sequences {δ2i } and {β2
i } have positive

limiting averages (called pervasiveness in Fan et. al. [26]) means that a non-
negligible fraction of the entries are non-vanishing. This is a basic and mild
non-degeneracy condition on our asymptotic sequence of models. It means
that a non-negligible fraction of extra assets added to increase the model
dimension have non-negligible exposure to the factor, and a non-negligible
fraction have non-negligible specific risk. (The existence of the limit is a matter
of convenience, since otherwise we could pass to subsequences.)

For the factor model (12), under our assumptions the population covariance
matrix of returns takes the form

Σ = σ2ββ⊤ +Ω, (17)

where Ω is the covariance matrix of the specific returns zi, which by A2 has
bounded eigenvalues.

Assumption A2(b)i implies that Ω is diagonal and we have a strict factor
model. The alternative A2(b)ii allows the specific returns to be correlated, so
that we are in the setting of an approximate factor model in the sense of Cham-
berlain and Rothschild [10]. This allows for the presence of additional weak
factors provided their corresponding eigenvalues are bounded. The correlation
decay conditions are satisfied, if, for example, the variables depend only on a
bounded number of other z’s.

If we strengthen assumption A2 to

A2* The random variables zi satisfy assumption A2(a) and in addition are
mutually independent and have uniformly bounded fourth moments,

then the limiting theorems in this paper hold almost surely instead of in prob-
ability.

Note: In this article, what follows will be a series of limit theorems as
p → ∞. All results assume our standing assumptions A1, A2, and A3
hold. All limits of random variables will be in the sense of convergence
in probability. In addition, when assumption A2* also holds, then the
limits will hold almost surely.
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Because β and f appear in the model (12) only as a product βf , their
respective scales |β| and σ cannot be separately identified from observations
of r. Therefore we introduce a single combined scale parameter

η = ηp = σ|β(p)|,

and rescaled model parameters b = β/|β|, a unit vector, and x = f/σ, a
random variable with mean zero and unit variance, and rewrite the factor
model as

r = ηbx+ z. (18)

With this formulation, A3 tells us that η2p/p tends to a positive limit σ2B2

as p→ ∞.
The population covariance matrix is a sum of a factor component, η2bb⊤, and
a specific component, Ω:

Σ = η2bb⊤ +Ω. (19)

4.1.2 The leading sample eigenvector as an estimate of the leading population
eigenvector

Fix n ≥ 2, assume p > n, and consider a sequence of n independent observa-
tions r1, r2 . . . , rn of the p-vector r of security returns with factor structure (18)
and hence, covariance matrix Σ given by (19). Denote by Y the resulting p×n
matrix whose columns are the observations ri. The p × p sample covariance
matrix S = Y Y ⊤/n has a spectral decomposition given by:

S = λ2hh⊤ + λ22v2v
⊤
2 + λ23v3v

⊤
3 · · ·+ λ2pvpv

⊤
p (20)

in terms of non-negative eigenvalues

λ2 > λ22 ≥ · · · ≥ λ2n > λ2n+1 = · · · = λ2p = 0

and orthonormal eigenvectors {h, v2, . . . , vp} of S. We assume the generic con-
ditions that the leading eigenvalue λ2 has multiplicity one and S has rank
n.

Our interest is in the leading sample eigenvalue λ2 and its corresponding
leading unit eigenvector h, with sign chosen, when needed, so that the inner
product ⟨h, b⟩ is positive.

In our context, natural for portfolio theory, we have fixed n and λ2/p
bounded as p → ∞. The following proposition states that h stays away from
b with high probability when p >> n.

Recall

ℓ2 =
tr(S)− λ2

n− 1
(21)

and

ψ2
p =

λ2 − ℓ2

λ2
. (22)
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Proposition 1 The limits

θPCA = lim
p→∞

∠(h, b) and ψ2
∞ = lim

p→∞
ψ2
p (23)

exist, and
cos θPCA = ψ∞ ∈ (0, 1). (24)

These limits hold in probability under assumptions A1, A2, and A3, and hold
almost surely if A2 is replaced by A2*.

This means there is a positive limiting angle between h and b.
The random variable ψ∞ can be expressed in terms of the relationship

between the relative eigengap and the parameters of the factor model (18).
Decomposing, from (18), the p × n data matrix of returns Y into a sum of
unobservable components, we have

Y = ηbX⊤ + Z, (25)

where X = (X1, X2, . . . , Xn)
⊤ is the n-vector of independent realizations of x

and Z is the p × n matrix whose columns are the n independent realizations
of the random vector z. Since x is a mean-zero random variable with unit
variance and finite fourth moment, |X|2 is a noisy estimate of n. The following
proposition is a simple consequence of Lemma 7 stated later.

Proposition 2 The relative eigengap ψ∞ is related to the parameters of the
factor model by

ψ2
∞ = lim

p→∞
ψ2
p = lim

p→∞

λ2 − ℓ2

λ2
=

σ2B2|X|2

σ2B2|X|2 + δ2
≈ pσ2B2

pσ2B2 + pδ2/n
. (26)

These limits hold in probability under assumptions A1, A2, and A3, and hold
almost surely if A2 is replaced by A2*.

The term ψ2
∞, asymptotically equal to the square of the inner product

⟨h, b⟩, is a measure of the asymptotic PCA estimation error when using h to
estimate b. It is random because |X|2 is random, but does not depend on the
random matrix Z. The approximation symbol ≈ in (26) is justified by the fact
that E[|X|2/n] = 1 and |X|2/n → 1 almost surely as n → ∞. (Although we
do not assume the model factor x is normal, if it were, the quantity |X|2 would
be chi-squared distributed with n degrees of freedom.)

The term pσ2B2 appears in the numerator and denominator on the right
hand side of (26). It is the asymptotic trace of the factor component of the
population covariance matrix Σ, specified in (19), and can be viewed as the
variance in the system attributable to the factor. The term pδ2 is the asymp-
totic trace of the specific component of Σ, and can be viewed as the variance
in the system attributable to specific effects.

If we think of factor variance as signal and specific variance as noise, then
Proposition 2 says that the relative eigengap ψ2

∞ is approximated by a ratio
of signal to signal plus (1/n)-scaled noise. The ratio on the right hand side
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of (26) cannot be observed, but it can be estimated in terms of the relative
eigengap of S.

A consequence of Proposition 2 is that, after first taking the limit p→ ∞
and then allowing n→ ∞ the term ψ2

∞ tends to 1. Therefore,

lim
n→∞

lim
p→∞

|h− b| = 0. (27)

As a result, the defect in the PCA estimate h in applications where p >> n can
be viewed as arising from limitations on the size of n. As n grows, the need
for correction diminishes. Measured in radians, the asymptotic angle θPCA

between h and b is, for large n, approximately

θPCA ≈ 1√
n

δ

σB
. (28)

For a typical value δ/(σB) = 4, this means the angular error θPCA will remain
significant even for n as large as 1000 or more, well above the typical values
seen in portfolio optimization.

We note that Wang and Fan [73] provide an HH version of equation (27),
under the additional assumption that the population variables are all sub-
Gaussian: in our factor model context, if n and p both tend to infinity in any
manner, then

lim
n,p→∞

|h− b| = 0. (29)

Central to the ideas underlying Propositions 1 and 2 is a duality between
the p × n problem and an n × p problem in which the roles of p and n are
interchanged. If we consider the p× p sample covariance matrix S = Y Y ⊤/n,
there is a corresponding dual (or “gram”) n× n matrix S∗ = Y ⊤Y/p.

Making use of equation (25),

S∗ =
η2

p
XX⊤ +

1

p
Z⊤Z +

η
√
p

(
X
b⊤Z
√
p

+
Z⊤b
√
p
X⊤

)
(30)

and, with arguments that appear in the proof of the propositions, we can show
that

lim
p→∞

S∗ = σ2B2XX⊤ + δ2In.

This limit takes place in the fixed dimension n and helps us evaluate the limit-
ing behavior of our p-dimensional problem as the dimension p tends to infinity.
We note that in our setting, the n×p problem does not correspond to a simple
LH regime limit because the p dual “observations” are not independent due to
the common factor connecting the returns of different assets. Considerations
of independence aside, the leading eigenvector of S∗ is a consistent estimator
of the unobserved factor returns vector X, while the leading eigenvector of S
is, as we show, not a consistent estimator of the population factor exposure
vector β. This last fact is a central theme of this work.
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4.1.3 Insight about the relationship between h and b from the perspective of
an external reference subspace

Fix k ≥ 1. For each p > k, let C = C(p) be a p × k matrix of rank k. When
there is no risk of confusion, we use C to denote either the matrix or its
k-dimensional column space in Rp.

Notation: We use subscripts to denote orthogonal projection of a vector
onto a linear subspace: hC is the orthogonal projection of h onto C.

For any nonzero vectors x, y ∈ Rp, we denote the smallest angle between
the sub-spaces span(x) and span(y) by ∠(x, y), with 0 ≤ ∠(x, y) ≤ π/2. The
angle ∠(x,C) between a vector x and a subspace C is equal to ∠(x, xC).

Theorem 1 Suppose the angle ∠(b, C) between b and C tends, as p→ ∞, to
a limit

Θ = lim
p→∞

∠(b, C). (31)

Then the limit
Θh = lim

p→∞
∠(h,C) (32)

exists, and
cosΘh = cos θPCA · cosΘ = ψ∞ · cosΘ. (33)

In particular, if 0 < Θ < π/2, then

0 < cosΘh < cos θPCA (34)

and
0 < cosΘh < cosΘ. (35)

These limits hold in probability under assumptions A1, A2, and A3, and hold
almost surely if A2 is replaced by A2*.

This theorem is a generalization of Theorem 3.1 of [33]. It implies, asymptot-
ically almost surely, that h is not orthogonal to C if b is not, but the angle
∠(h,C) is greater than both ∠(b, C) and ∠(h, b). Intuitively, this suggests that
shrinking h toward C might bring it closer to b. This turns out to be correct,
as described next.

The k-dimensional target space C may arise in different ways. If chosen at
random independently of b, we expect C to be asymptotically orthogonal to b
as the dimension p tends to infinity (see, for example, Hall et al. [37] and Ahn
et al. [1]). The condition Θ < π/2 thus has a Bayesian interpretation in which
C represents some mild prior information about the direction of b.

In our context, the condition Θ < π/2 arises naturally in financial appli-
cations when C enters as the span of k constraint vectors. An often used con-
straint is the full investment condition, w⊤e = 1, where e = (1, 1, 1, . . . , 1)⊤.
Since stock betas tend to be positive, β will typically have positive mean in
equity applications, we obtain

cos∠(b, C) ≥ ⟨b, e/|e|⟩ = 1

|β|√p
∑

βi =

√
p

|β|

(
1

p

∑
βi

)
> 0 (36)
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asymptotically, and so we can expect that Θ < π/2 in typical financial settings.
The assumption that limp→∞ ∠(b, C) exists is a matter of convenience.

It could be replaced by assuming that lim sup∠(b, C) < π/2, and then the
subsequent discussion would apply to any convergent subsequence.

4.1.4 Shrinkage improves on the leading sample eigenvector h as an estimate
of the leading population eigenvector b

We will use the notation h = hPCA when emphasizing the contrast between
PCA and JSE estimates. Next, we explore the properties of hJSE, which
stochastically dominates hPCA as an estimate of ground truth in the limit
as p→ ∞ under Standing Assumptions A1–A3.

Recall the JSE shrinkage constant cJSE and estimator hJSE are defined by

cJSE =
ℓ2

λ2(1− |hC |2)
, (37)

HJSE = cJSEhC + (1− cJSE)h, (38)

and
hJSE = HJSE/|HJSE |. (39)

Formulas (37), (38) and (39) are identical to formulas (5), (6) and (7) in
Section 3.2.2.

We can show that

lim
p→∞

cJSE =
1− ψ2

∞
1− ψ2

∞ cos2Θ
=

δ2

σ2B2|X|2 sin2Θ + δ2
. (40)

(If now n is taken to infinity, cJSE tends to zero and both h and hJSE converge
to b.)

We normalize hJSE solely for convenience; all that matters is the 1-dimen-
sional subspace it spans, as an estimate of the eigenspace span(b). The angle
between these subspaces is our measure of error.

Define

ϕ2∞ ≡ ψ2
∞

1− ψ2
∞

=
σ2B2|X|2

δ2
= lim
p→∞

λ2 − ℓ2

ℓ2
, (41)

and recall that the angle between two vectors is, by definition, always non-
negative.

Theorem 2 Suppose the limit

Θ = lim
p→∞

∠(b, C) (42)

exists.
Then, under the standing assumptions A1 - A3, the limits

θJSE = lim
p→∞

∠(hJSE, β) and θPCA = lim
p→∞

∠(hPCA, β) (43)
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exist in probabilty, and hold almost surely under additional assumption A2*.
The asymptotic improvement of hJSE over hPCA as an estimate of the

leading population eigenvector is

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
. (44)

In particular, JSE is never worse asymptotically than PCA, and:

– if Θ < π/2, then θJSE < θPCA

– if Θ = 0, then hJSE converges to b and JSE is a consistent estimator, and
– if Θ = π/2 then hJSE converges to hPCA and θJSE = θPCA.

The right hand side of (41) is the ratio of the factor variance to the specific
variance in (18). The formula highlights the relationship between the relative
eigengap and the factor model parameters. Taken together, (26) and (41) imply

ψ2
∞ =

ϕ2∞
1 + ϕ2∞

. (45)

One consequence of Theorem 2 is that the angle between hJSE and h is
strictly positive in the limit when Θ < π/2. Notice also that this theorem is
independent of any optimization problem.

The true asymptotic improvement cos2(θJSE)−cos2(θPCA) cannot be com-
puted from finite data because it depends on the unobservable vector b. An
observable indicator I is:

I(∠(h,C), ϕ2p) =
cos2 ∠(h,C)

(ϕ4p + ϕ2p) sin
2 ∠(h,C)

. (46)

It follows from equations (33) and (44) that

lim
p→∞

I(∠(h,C), ϕ2p) = cos2(θJSE)− cos2(θPCA) (47)

almost surely.

4.2 Estimating Constrained Minimum Variance

We return to the optimization problem (1),

minw
1

2
w⊤Σw (48)

subject to C⊤w = a,

introduced in Section 1, where we have written the constraints in matrix nota-
tion. The columns of the p×k matrix C are the k constraint vectors C1, . . . , Ck
and a = (a1, . . . , ak) ∈ Rk is the non-zero vector of constraint values, fixed for
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all p. As before, the symbol w = w(p) ∈ Rp is a vector of weights defining the
portfolio holdings.

We apply the results in Section 4.1 to estimate a p × p covariance matrix
Σ = ΣJSE for use in (48). The matrix ΣJSE depends on the constraint matrix
C; its core is hJSE, the leading eigenvector of the sample covariance matrix,
shrunken by a prescribed amount in the direction of C. To avoid visual clutter,
we suppress the dependence of ΣJSE and hJSE on C when possible, but the
dependence of ΣJSE on C is a central idea of this section.

4.2.1 Constraints

We assume without loss of generality that the constraint matrix C has full
rank, and the entries of a are non-negative, with at least one positive entry.

We are interested in asymptotic estimation of the constrained minimum
variance as p tends to infinity with the number k of constraints fixed. When
it is required for clarity, dependence on p is indicated with a superscript. To
engage the theory of the previous sections, we accept the standing assumptions
A1 - A3 on the underlying factor model described there. In addition, we wish
to avoid degeneracy of the constraints C⊤w = a in the asymptotic limit, so
from now on we add the following two natural standing assumptions:

A4. For each j = 1, . . . , k, the columns C
(p)
j of C(p) ∈ Rp×k satisfy:

a. supp≥1 |C
(p)
j |∞ <∞, where |.|∞ denotes the maximum norm, and

b. the sequence |C(p)
j |2/p tends to a positive finite limit as p→ ∞.

A5. The constraint matrix C does not become singular in the high dimensional
limit:

lim inf
p→∞

det(C⊤C)/pk > 0. (49)

Assumption A4 is similar to A3, and says that the average squared entry
of the columns doesn’t tend to zero or infinity with p. Assumptions A4 and A5
mean that the angle between any two columns of C is bounded above zero, and
the singular values of C are bounded above and below by positive constants
times p.

The simplest example is the case of the fully invested portfolio, where
k = 1, there is a single constraint e⊤w = 1, where e is the column of 1’s, and
C is the column matrix e. Since |e|2 = p, A4 is satisfied; C⊤C is equal to the
1× 1 matrix with determinant p, so A5 is satisfied.

4.2.2 Estimating ΣJSE

The constraint matrix C and vector of constraint values a in the optimiza-
tion (48) are known to the user, but the covariance matrix Σ must be esti-
mated. When data follow the one factor model (12), the population covariance
matrix Σ takes the form specified in (19):

Σ = η2bb⊤ +Ω. (50)
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true parameter estimate(s)
η2 λ2 − ℓ2

δ2 nℓ2/p
b v, h, hJSE

Table 1: Parameters of a covariance matrix in a one-factor model.

As a consequence of this structure, an estimate of Σ amounts to estimates of
a positive scalar η2, a unit-length p-vector b, and the diagonal entries of Ω.
The estimates we develop are in terms of the sample covariance matrix S of n
observed returns to p securities. We build our estimates from the trace of S,
tr(S), the leading eigenvalue λ2 of S, and its corresponding leading eigenvector
h.

Under our spiked model assumptions, it will turn out that for minimum
variance estimation it suffices to estimate Ω with a multiple of the identity
converging to δ2I. Our estimates of η2 and δ2 are guided, under our standing
assumptions, by the relationships between the eigenvalues of S and the factor
model structure in the HL regime. As described in Lemma 7 below, they are
summarized by the limits

lim
p→∞

(λ2 − ℓ2)/p = σ2B2|X|2/n (51)

and

lim
p→∞

ℓ2/p = δ2/n. (52)

Recall from assumption A3 that η2/p → σ2B2 as p → ∞, and, while X
itself is not observed, we know E[|X|2/n] = 1. Therefore we estimate η2 with
λ2−ℓ2. Noting (52), we estimate δ2 with nℓ2/p. Both λ2 and ℓ2 are observable
from the eigenvalues of the sample covariance matrix S. We therefore have an
estimated covariance matrix, depending on the choice of unit vector v, of the
form

Σv = (λ2 − ℓ2)vv⊤ + (n/p)ℓ2I. (53)

It remains to specify an estimator v of b. We examine two competing estimates
of Σv: ΣPCA and ΣJSE obtained by setting v to h and hJSE, respectively. These
estimates differ only in the leading eigenvector. A summary of our parameter
estimates is in Table 1.

4.2.3 Variance and the optimization bias

For any choice of principal unit eigenvector v, let wv denote the unique mini-
mizer of w⊤Σvw subject to the known constraint C⊤w = a. We are interested
in the true variance Vv = (wv)⊤Σwv of the optimized portfolio wv.

The unique solution wv is obtained via the first order conditions for the
Lagrangian

L(w,Λ) = (1/2)w⊤Σvw + (a⊤ − w⊤C)Λ, (54)
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where Λ ∈ Rk is the vector of Lagrange multipliers (“shadow prices”). We
have

Λv = (C⊤(Σv)−1C)−1a (55)

wv = (Σv)−1CΛv = (Σv)−1C(C⊤(Σv)−1C)−1a. (56)

We use the notation ∠(v, C) to denote the angle between v and col(C),
cos(v, C) to denote the cosine of that angle, and similarly for other trigono-
metric functions of the angle.

Since C has rank k, the k × k matrix C⊤C is invertible, so we may define
the k×p pseudo-inverse C† by (C†)⊤ = C(C⊤C)−1, also of full rank. Therefore
(C†)⊤a is nonzero whenever a ∈ Rk is nonzero.

Definition 1 For any nonzero a ∈ Rk and unit vector v ∈ Rp satisfying

|vC | = cos(v, C) < 1, (57)

define the unit vector

α =
(C†)⊤a

|(C†)⊤a|
(58)

and define the optimization bias associated to v, C, and a by

Ep(v, C, a) =
⟨b, α⟩ (1− |vC |2)− ⟨b, v − vC⟩ ⟨v, α⟩

1− |vC |2
, (59)

where, as usual, b denotes the leading population unit eigenvector.

The optimization bias does not depend on the magnitude of a, but only on
α and the subspace col(C), and is equal to zero when v = b:

E(b, C, a) = 0. (60)

As described below, the optimization bias represents a measure of the variance
error when v is used in place of the true principal eigenvector b.

In the simplest example of the fully invested portfolio, k = 1, a = 1 and
C is the column vector e of ones, so that e⊤w = 1. If we choose v = h, the
leading sample eigenvector, a computation shows

Ep(h, e, 1) =
⟨b, e/|e|⟩ − ⟨b, h⟩ ⟨h, e/|e|⟩

1− ⟨h, e/|e|⟩2
, (61)

which agrees with the optimization bias originally introduced for this case in
Goldberg et al. [33].

The limits in the following two statements hold in probability under as-
sumptions A1-A3, and almost surely if A2* is added.
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Proposition 3 Let C, h be as above and let hC denote the orthogonal projec-
tion of h onto C. If 0 < Θ < π/2, then

lim sup
p→∞

|hC | < 1 (62)

and
lim sup
p→∞

|(hJSE)C | < 1. (63)

Theorem 3 Let v ∈ Rp be a unit vector for each p and satisfying

lim sup
p→∞

|vC | < 1. (64)

Then, for n, k fixed,

0 < lim sup
p→∞

η2|(C†)⊤a|2 <∞, (65)

and the true variance V(wv) of the estimated portfolio wv is

V(wv) ≡ (wv)
⊤
Σwv = η2|(C†)⊤a|2Ep(v, C, a)2 +O(1/p) (66)

asymptotically as p→ ∞.

Because of Proposition 3, Theorem 3 applies to both v = h and v = hJSE.
When v = b, the optimization bias is zero and the true minimum variance is
asymptotically O(1/p). Otherwise, the limiting value of the optimization bias
E2
p controls the large-p variance of the estimated portfolio.

The next theorem states that ΣJSE dominates ΣPCA as measured by the
value of the true variance of the estimated portfolios wJSE and wPCA.

Theorem 4 Suppose that the angle between b and col(C) is asymptotically
between 0 and π/2.

In addition, assume (by passing to a subsequence if needed) that

lim
p→∞

cos(∠(b, (C†)⊤a)) = lim
p→∞

⟨b, α⟩ ≡ ⟨b, α⟩∞ exists. (67)

Then
lim
p→∞

Ep(hJSE, C, a)2 = 0. (68)

Moreover, if ⟨b, α⟩2∞ > 0, then

lim
p→∞

Ep(h,C, a)2 > 0. (69)

Consequently, if ⟨b, α⟩2∞ > 0, the true variance ratio

V(wJSE)

V(wPCA)
(70)

tends to zero asymptotically.
The limits are in probability under assumptions A1 – A3, and hold almost

surely if A2* is added.
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The previous two theorems tell us that V(wTRUE) and V(wJSE) tend to zero
as p→ ∞, but V(wPCA) usually has a positive limit. This means the variance
of wPCA is an arbitrarily large factor greater than the optimal variance as p
grows. The following lemma shows that the condition ⟨b, α⟩∞ ̸= 0 will typically
be satisfied when the vector a is unrelated to the other problem parameters.

Lemma 1 Assume A1-A5 and that the limiting angle Θ is less than π/2.
Suppose (passing to a subsequence if needed) that a does not belong to the
orthogonal complement of the unit vector

lim
p→∞

C†b

|C†b|
∈ Rk. (71)

Then ⟨b, α⟩∞ is not zero.

5 Numerical examples

In this section, we describe the results of simulation experiments supporting
the results stated above. First, we illustrate (44), which asserts the stochas-
tic dominance of the improvement of hJSE over hPCA as an estimate of the
leading population eigenvector. Then we illustrate the assertion that the ratio
of variances of portfolios wJSE and wPCA tends to zero asymptotically almost
surely.

These experiments serve two purposes. The first is to show that the asymp-
totic properties described in the theorems, such as equation (44), are approx-
imately realized when the dimension p has realistic values much less than
infinity. The results reported here are for p = 3000, but we have observed
similar outcomes for p as low as 40.

Second, the variance experiments described in Section 5.3 illustrate the
observed strength of the effect of JSE on the variance ratio for this particular
choice of parameters. Since we do not have theoretical results about the asymp-
totic rate of convergence of the true variance ratio, these experiments confirm
that JSE can be of material use in at least some reasonable circumstances for
a realistic choice of dimension.

5.1 Calibration

We specify the parameters of the return generating process (12), repeated here
for convenience,

r = βf + z, (72)

the p× k matrix of constraint vectors C and k vector of constraint targets a.
We construct β so that the angle θ with e = (1, . . . , 1)⊤ is a prescribed

value and |β|2/p = 1. First draw the components of a vector β∗ from the
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parameter value(s) description

cos θ 0.969, 0.707, 0.174 cosine of the angle between β and e = (1, . . . , 1)⊤

β∗ N(cos θ, sin2 θ) factor loadings
σ 0.16 annualized factor volatility
δ 0.60 annualized specific volatility
f N(0, σ2) factor return
z mean 0, st dev δ specific return

cosΘ 0.97, 0.75, 0.49 cosine of the angle between β and C
p 3000 number of securities
n 24 number of observations
k 2 number of constraints
µ 0.01 (β +N(0.5, 2)) 3000× 1 vector of expected returns
C (e, µ) 3000× 2 matrix of constraint vectors
m 0.01 monthly expected target return

a (1,m)⊤ constraint target vector

Table 2: Simulation parameters

normal distribution N(cos θ, sin2 θ). Let m = m(β∗) be the realized mean of
the entries of β∗, and s = s(β∗) the realized standard deviation. Define

c1 =
sin θ

s
and c2 = cos θ − sin θ

s
m, (73)

and let
β = c1β

∗ + c2e. (74)

Making use of the identity

|β|2 = p(m(β)2 + s(β)2), (75)

a calculation shows that |β|2/p = 1 and the angle between β and e is exactly θ.
Even though the factor loadings β are deterministic in our model, we specify
them by drawing from a normal distribution as described next. The calibration
of the factor model generating returns is completed by setting the factor return
f to be normally distributed with mean 0 and annualized standard deviation
σ to be 16%, and specific return z to be normally distributed with mean 0 and
annualized standard deviation δ to be 60%. The observed qualitative results
do not depend on the choice of normal distribution for specific returns; we
observe similar outcomes for heavier-tailed specific returns, including double
exponential and student-t distributions.

Next, we construct an expect return vector µ so that

µi = βi + ϵi

where ϵi is drawn from a normal distribution with mean 0.5 and variance 2.0,
N(0.5, 2.0). Thus, securities with higher betas tend to have higher expected
returns. The target expected return is m = 0.01.

The two-dimensional shrinkage target C is the span of p-vectors µ and 1.
The angle Θ between β and C is determined by the specification of β and µ.
The 2-vector of constraints targets is a = (1,m)⊤.

Simulation parameters are listed in Table 2.
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5.2 Stochastic dominance of hJSE over hPCA

Under Standing Assumptions A1–A3, formula (44) provides an exact expres-
sion for the difference between the squared cosines of θPCA and θJSE:

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
. (76)

This magic formula for the limiting difference between angles ∠(β, hPCA) and
∠(β, hJSE) as p → ∞ is positive almost surely when Θ < π/2. It is expressed
in terms of two quantities: the angle between the leading eigenvector and the
shrinkage target, Θ = ∠(β,C), and the relative eigengap ϕ2.

How well does the asymptotic guidance provided by the magic formula
work for finite p? For p = 3000, we report

cos2(∠(hJSE, b))− cos2(∠(hPCA, b))

as well as the asymptotic limit of that difference as p tends to infinity, given
by the magic formula. The results of 10,000 simulations are shown in Figure 1
for small, medium and large angles, cos(Θ) = 0.969, 0.707 and 0.174.

In all 10,000 simulations, the improvement was positive, and it declined as
the angle Θ increased. This is consistent with the asymptotic guidance given
by the magic formula, which is decreasing in Θ.

5.3 Stochastic dominance of wJSE over wPCA

We report ratios of variances of portfolios wPCA, wJSE and wTRUE optimized
with (1) where Σ is set to ΣPCA, ΣJSE and ΣTRUE = Σ, the true (population)
covariance matrix. The portfolio wTRUE and covariance matrix ΣTRUE are
independent of state.

The blue and red boxplots in Figure 2 illustrate the variance comparison of
PCA and JSE portfolios: those estimated using ΣJSE have substantially lower
true variance for small and medium angles between b and C. As expected,
improvement is best when the angle between b and C is small, and declines as
this angle increases toward π/2. (In the limit where b is orthogonal to C, we
expect no improvement.)

These results are displayed for p = 3000; they are consistent with the
asymptotic guarantees that V(wJSE)/V(wPCA) and V(wTRUE)/V(wPCA) tend
to 0 almost surely as p tends to infinity.

The asymptotic behavior of V(wTRUE)/V(wJSE) is not known theoretically,
but related experiments suggest it may be close to 1 when the angle Θ between
b and C is small.
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Fig. 1: Boxplots for p = 3000 of 10,000 simulations of the difference between
cos2

(
∠(hPCA, b)

)
and cos2

(
∠(hJSE, b)

)
(finite difference), the asymptotic limit

of this difference (magic formula) as well as the path-by-path difference be-
tween them (difference). The small, medium and large panels correspond to
cosΘ = 0.969, 0.707 and 0.174, Return data follow (12) with parameters spec-
ified in Table 2.

6 Conclusion

In this paper, we extend the literature on James-Stein for eigenvectors (JSE),
a data driven method for improving the accuracy of a high-dimensional, noisy
leading sample eigenvector. For a spiked factor model, prior work guarantees
that JSE shrinkage toward a one-dimensional target improves on the leading
sample eigenvector as an estimate of ground truth. We show those guaran-
tees persist when we shrink toward a target of dimension greater than one.
This generalization greatly enlarges the range of applications of JSE, which
can now be used to be build strategy-specific covariance matrices suitable
for quadratic optimization with any number of linear constraints. We provide
easy-to-code formulas for these covariance matrices as well as a theoretical
guarantee that they lead to relatively low-variance solutions to the optimiza-
tion. The connection between JSE and the variance of optimized portfolios
is via the optimization bias, which was formulated for minimum variance in
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Fig. 2: Boxplots for 10,000 simulations of ratios of variances of optimized and
optimal portfolios, wPCA, wJSE and wTRUE, for p = 3000. The small, medium
and large panels correspond to cosΘ = 0.969, 0.707 and 0.174. The expected
return target is m = 0.01. Return data follow (12) with parameters specified
in Table 2.

earlier work and extended to take account of arbitrary linear constraints in
this article. The optimization bias asymptotically controls the variance of op-
timized portfolios, and it tends to zero as the number of securities tends to
infinity under JSE optimization.

Also new in this article is a formula for the degree of improvement of JSE
over the sample leading eigenvector. The formula depends only on sample
eigenvalues and the angle between the leading population eigenvector and the
target subspace. Simulations suggest that the asymptotic guarantees apply in
situations of practical relevance.

Our research opens a range of intriguing possibilities and questions. These
include the use of JSE to generate low-variance solutions to quadratic opti-
mization in a multi-factor setting, which has been shown effective in numerical
experiments. Another direction forward is to pursue the theoretical connec-
tions between JSE and concentration of measure in high dimensional spheres,
understanding of which may provide new, deeper perspectives on these pow-
erful and often counter-intuitive results.
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7 Appendix: Proofs

7.1 Lemmas

We begin with some preliminary results needed for the subsequent proofs.

Lemma 2 (Triangular Strong Law of Large Numbers, Tao [71]) Let
(Xi,p)i,p∈N,i≤p be a triangular array of scalar random variables such that for
each p, the row X1,p, . . . , Xp,p is a collection of independent random variables.
For each p, define the partial sum Sp = X1,p+ . . .+Xp,p. Assume all the Xi,p

have mean µ.
If supi,pE|Xi,p|4 <∞, then Sp/p converges almost surely to µ.

Lemma 3 (Kolmogorov Strong Law of Large Numbers)
Suppose X1, X2, . . . is a sequence of independent mean-zero random vari-

ables with finite variance and such that

∞∑
i=1

V ar(Xi)

i2
<∞, (77)

and for each p define the partial sum Sp = X1 + . . .+Xp.
Then Sp/p converges almost surely to zero.

Lemma 4 Let {zi : i ∈ N} be a sequence of independent mean-zero random
variables with uniformly bounded fourth moments, and let {bi : i ∈ N} be a
sequence of scalars satisfying

sup
i
{p|bi|2 : i ∈ N} <∞. (78)

Then
1
√
p

p∑
i=1

bizi → 0 (79)

almost surely as p→ ∞.

Proof of Lemma 4. Let Xi,p =
√
pbizi and Sp = X1,p + . . .+Xp,p. By the

assumptions, theXi,p have mean zero and uniformly bounded fourth moments.
By Lemma 2 with µ = 0,

1
√
p

p∑
i=1

bizi =
1

p
Sp (80)

converges to zero almost surely. ⊓⊔
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Lemma 5 Let {zi : i ∈ N} be a sequence of independent mean-zero random
variables with uniformly bounded fourth moments. Suppose

lim
p→∞

(1/p)

p∑
i=1

E(z2i ) = δ2. (81)

Then, almost surely,

lim
p→∞

(1/p)

p∑
i=1

z2i = δ2. (82)

Proof of Lemma 5.
Let Xi = z2i − E(z2i ); it suffices to prove that (1/p)

∑
Xi → 0 as p →

∞. The Xi have uniformly bounded variance because the zi have uniformly
bounded fourth moment. Hence

∞∑
i=1

V ar(Xi)

i2
<∞ (83)

and the result follows by Lemma 3. ⊓⊔
Lemma 6 Recall our p× n data matrix of returns

Y = βX⊤ + Z. (84)

Let Zk ∈ Rp, k = 1, . . . , n, denote the kth column (observation) of Z. Then we
have the following limits in probability:

lim
p→∞

1
√
p
bTZk = 0,

and

lim
p→∞

1

p
ZTZ = δ2In.

These limits hold in probability under assumptions A1, A2, and A3, and hold
almost surely if A2 is replaced by A2*.

Proof of Lemma 6.
The limits in probability follow from straightforward calculation using A2

and Markov’s inequality. The almost sure limits follow from A2*, A3, and
Lemmas 4 and 5. ⊓⊔

The following is a version of Proposition 5.2 in Gurdogan and Kercheval
[35], which remains true with a similar proof under our slightly adapted hy-
potheses:

Proposition 4 Under assumptions A1 - A3, let L = Lp ⊂ Rp be a sequence
of linear subspaces with constant dimension and independent of the random
variables z. Then

1. lim
p→∞

(
⟨h, hL⟩ − ⟨h, b⟩2 ⟨b, bL⟩)

)
= 0,

2. lim
p→∞

(
⟨b, hL⟩ − ⟨h, b⟩ ⟨b, bL⟩)

)
= 0, and

3. lim
p→∞

|hL − ⟨h, b⟩ bL| = 0.

In particular, part 3 implies that ∠(hL, bL) → 0 as p→ ∞.
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7.2 Proof of Proposition 1

Proposition 1. Under assumptions A1 - A3, the limits

θPCA = lim
p→∞

∠(h, b) and ψ2
∞ = lim

p→∞
ψ2
p (85)

exist, and

cos θPCA = ψ∞ ∈ (0, 1). (86)

Recall that we have the sample covariance matrix S = Y Y ⊤/n with unit
leading eigenvector h, choosing the sign so that ⟨h, b⟩ > 0, and leading eigen-
value λ2.

Define χ = χp ∈ Rn such that h and χ are the left and right singular
vectors of Y/

√
n, respectively, with singular value λ > 0. We take |χ| = 1

and specify the sign of χ so that (χ,X) > 0. The vector X ∈ Rn does not
depend on p, and for simplicity in the notation we suppress the dependence
of h, b, λ, χ, Z, Y on p.

Since h, χ, and Y are related by

λh = Y χ/
√
n, (87)

by equation (25) we have

λh =
ηbX⊤χ+ Zχ√

n
. (88)

Taking the dot product of both sides with b and λh/p yields the following
identities:

⟨h, b⟩ =
(
ηX⊤χ

λ
√
n

)
+

(
b⊤Z
√
p

)(
χ
√
p

λ
√
n

)
, (89)

λ2/p =
η2(X⊤χ)2

np
+
χ⊤Z⊤Zχ

np
+ 2(X⊤χ)

(
b⊤Z
√
p

)(
ηχ

n
√
p

)
. (90)

Applying Lemma 6, we may deduce that Z⊤Z/p tends to δ2I and b⊤Z/
√
p

tends to zero as p→ ∞. This means that λ2/p is eventually bounded between
zero and infinity, and

⟨h, b⟩∞ = lim
p→∞

(
ηX⊤χ

λ
√
n

)
(91)

provided the limit in (91) exists.

Recall ℓ2p is the average of the non-zero sample eigenvalues less than λ2. The
proof of the following Lemma is essentially identical to the proof of Lemma
A.2 of Goldberg, et. al. [33]:
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Lemma 7 Under assumptions A1 - A3 and notation as above, we have the
following limits:

lim
p→∞

λ2/p = σ2B2|X|2/n+ δ2/n, (92)

lim
p→∞

χp = X/|X|, and (93)

lim
p→∞

ℓ2p/p = δ2/n. (94)

Applying Lemma 7 to (91), we obtain

⟨h, b⟩∞ = lim
p→∞

ηXTχ

λ
√
n

= lim
p→∞

(
η
√
p

)(√
p

λ

)(
X⊤χ√
n

)
(95)

= σB

(
1√

σ2B2|X|2/n+ δ2/n

)(
|X|√
n

)
(96)

=

√
σ2B2|X|2

σ2B2|X|2 + δ2
∈ (0, 1). (97)

By Lemma 7,

ψ2
p =

λ2 − ℓ2p
λ2

(98)

converges to

ψ2
∞ =

σ2B2|X|2

σ2B2|X|2 + δ2
(99)

and hence ⟨h, b⟩∞ = ψ∞. This completes the proof of Proposition 1.

7.3 Proof of Theorem 1

Theorem 1. Suppose the angle ∠(b, C) between b and C tends, as p → ∞, to
a limit

Θ = lim
p→∞

∠(b, C). (100)

Then the limit
Θh = lim

p→∞
∠(h,C) (101)

exists, and
cosΘh = cos θPCA · cosΘ = ψ∞ · cosΘ. (102)

In particular, if 0 < Θ < π/2, then

0 < cosΘh < cos θPCA (103)

and
0 < cosΘh < cosΘ. (104)

Proof. We apply Proposition 4(1) with L = C, noting that ⟨h, hC⟩ =
cos∠(h,C) and ⟨b, bC⟩ = cos∠(b, C). Since ⟨h, b⟩ → ψ∞ from Proposition 1
and cos∠(b, C) → cosΘ by hypothesis, equation (102) follows immediately.
⊓⊔
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7.4 Proof of Theorem 2

Theorem 2. With notation as above, suppose the limit

Θ = lim
p→∞

∠(b, C) (105)

exists.
Then the limits

θJSE = lim
p→∞

∠(hJSE, β) and θPCA = lim
p→∞

∠(hPCA, β) (106)

exist, and the asymptotic improvement of hJSE over hPCA as an estimate of
the leading population eigenvector is

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
. (107)

If Θ = π/2, then hJSE converges to hPCA, θJSE = θPCA and there is
no improvement, while if Θ = 0 then hJSE converges to b. In other cases,
θJSE < θPCA almost surely, with the improvement given by (44).

Proof. The existence of the limit θPCA has already been established in
Proposition 1. The JSE estimator hJSE relative to the subspace C is an example
of the “MAPS” estimator defined and studied in Gurdogan and Kercheval [36].
We make further use of some results in that paper, first defining for each p,
the oracle estimator ho = ho(C) as follows. Let

U = span(h,C),

and define the unit vector

ho =
bU
|bU |

. (108)

The oracle ho is the normalized orthogonal projection of b onto the linear
subspace spanned by h and C. We use the name “oracle” because, unlike
hJSE, it is not observable from the data, but requires knowledge of b, precisely
the quantity we are trying to estimate.

The proof of the following proposition is a simpler version of the proof of
Theorem 5.1 of Gurdogan and Kercheval [36], for slightly adjusted assump-
tions:

Proposition 5

lim
p→∞

|ho − hJSE| = 0. (109)

Next, let

u =
h− hC
|h− hC |



36 Lisa R. Goldberg et al.

Then U ≡ span(h,C) = span(u,C) and u is a unit vector orthogonal to C
(assuming, with probability one, that h does not belong to C). Hence

bU = bC + ⟨b, u⟩u,

and so

⟨ho, b⟩2 =
〈
bU
|bU | , b

〉2
= |bU |2 (110)

= |bC |2 + ⟨u, b⟩2 (111)

= |bC |2 + (⟨h,b⟩−⟨hC ,b⟩)2
1−|hC |2 . (112)

All the terms in the right hand side have previously been show to have
limits as p→ ∞:

|bC |2 → cos2Θ, (113)

|hC |2 → ψ2
∞ cos2Θ, (114)

⟨h, b⟩ → ψ∞ = cos θPCA, (115)

⟨hC , b⟩ → ψ∞ cos2Θ. (116)

Therefore limp→∞ ⟨ho, b⟩2 exists and by Proposition 5,

lim
p→∞

⟨ho, b⟩2 = lim
p→∞

〈
hJSE, b

〉2
= cos2 θJSE. (117)

Writing ψ2
∞ = ψ2 and ϕ2∞ = ϕ2 for the remainder of this proof only, and

recalling

ψ2 =
ϕ2

1 + ϕ2
, (118)

in the limit,

cos2 θJSE − cos2 θPCA = cos2Θ + ψ2(1−cos2 Θ)2

1−ψ2 cos2 Θ − ψ2 (119)

= (1− ψ2)2 cos2 Θ
1−ψ2 cos2 Θ (120)

=
(

1
ϕ2+1

)
cos2 Θ

ϕ2 sin2 Θ+1
. (121)

This is positive when Θ < π/2. In case Θ = π/2, Theorem 1 implies that
hC tends to zero and hJSE tends to h = hPCA, so θJSE = θPCA and JSE
provides no improvement over PCA.

If Θ = 0, it follows from equation (119) that θJSE = 0 and so hJSE tends
to b itself.

⊓⊔
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7.5 Proof of Proposition 3

Proposition 3. Let C, h be as above and hC denote the orthogonal projection of
h onto C. If 0 < Θ < π/2, then

lim sup
p→∞

|hC | < 1 (122)

and
lim sup
p→∞

|(hJSE)C | < 1. (123)

Proof From part 3 of Proposition 4 with L = C, we have, in the asymptotic
limit,

|hC |2 = ⟨h, b⟩2∞ |bC |2 = ψ2
∞|bC |2. (124)

This establishes the first statement. For the second, it suffices to show that
the angle ∠(hJSE, C) is positive in the limit.

We can write

hJSE =
Γph+ hC
|Γph+ hC |

(125)

where

Γp =
ψ2
p − |hC |2

1− ψ2
p

. (126)

Since ∠(hJSE, C) = ∠(hJSE, hC), it suffices to show that

lim inf
p→∞

Γp > 0. (127)

This follows from equation (124) and the standing assumption that the angle
between b and C is asymptotically strictly between 0 and π/2.

7.6 Proof of Theorem 3

Theorem 3. Let v ∈ Rp be a unit vector for each p and satisfying

lim sup
p→∞

|vC | < 1. (128)

Recall that wv denotes the unique vector in Rp minimizing w⊤Σvw subject to
the constraint C⊤w = a.

Then, for n, k fixed, the true variance of the estimated portfolio wv is

V(wv) ≡ (wv)⊤Σwv = η2|(C†)⊤a|2Ep(v, C, a)2 +O(1/p) (129)

asymptotically as p→ ∞.
Furthermore,

0 < lim sup
p→∞

η2|(C†)⊤a|2 <∞. (130)
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Proof. Recall that

Σv = (λ2 − ℓ2)vv⊤ + (nℓ2/p)I,

and define

κ2 =
nℓ2/p

λ2 − ℓ2
,

noting that κ2 = O(1/p).

A computation making use of the Woodbury identity shows that

wv =
(
I +

(vC − v)v⊤

1 + κ2 − |vC |2
)
(C†)⊤a. (131)

Let C = UZV be the singular value decomposition of C, where V is k× k
orthogonal, Z is a k × k diagonal matrix with entries equal to the singular
values of C, and U is a p × k matrix with orthonormal columns. This means
(C†)⊤ = UZ−1V .

Assumptions A4 and A5 imply that the squared singular values of C are
bounded above and below by a constant times p. Therefore the singular values
of C† are bounded above and below by a constant times 1/

√
p. Since η2 = O(p),

this implies

0 < lim sup
p→∞

η2|(C†)⊤a|2 <∞,

which establishes the last assertion of the theorem.

To obtain an expression for true variance, first notice that

V(wv) = (wv)⊤Σwv = η2 ⟨wv, b⟩2 + δ2|wv|2. (132)

For the second term, it follows from A4 and C⊤wv = a that |wv|2 ≤
O(1/p). It remains to analyze the first term.

Making use of equation (131) and recalling

α = (C†)⊤a/|(C†)⊤a|, lim sup
p→∞

|vC | < 1, and κ2 = O(1/p), (133)

we have

η2 ⟨wv, b⟩2 = η2|(C†)⊤a|2
(
⟨b, α⟩ − ⟨b,v−vC⟩⟨v,α⟩

1+κ2−|vC |2
)2

(134)

= η2|(C†)⊤a|2
( ⟨b,α⟩(1−|vC |2)−⟨b,v−vC⟩⟨v,α⟩

1−|vC |2
)2

+O(1/p) (135)

= η2|(C†)⊤a|2Ep(v, C, a)2 +O(1/p). (136)

⊓⊔
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7.7 Proof of Theorem 4

Theorem 4. Suppose that the angle between b and col(C) is asymptotically
between 0 and π/2.

In addition, assume (by passing to a subsequence if needed) that

lim
p→∞

cos(∠(b, (C†)⊤a)) = lim
p→∞

⟨b, α⟩ ≡ ⟨b, α⟩∞ exists. (137)

Then

lim
p→∞

Ep(hJSE, C, a)2 = 0. (138)

Moreover, if ⟨b, α⟩2∞ > 0, then

lim
p→∞

Ep(h,C, a)2 > 0. (139)

Consequently, if ⟨b, α⟩2∞ > 0, the true variance ratio

V(wJSE)

V(wPCA)
(140)

tends to zero asymptotically.
Proof. By Proposition 3, we know that

lim sup |vC | < 1 (141)

for both v = h and v = hJSE. Hence the denominator of

Ep(v, C, a) =
⟨b, α⟩ (1− |vC |2)− ⟨b, v − vC⟩ ⟨v, α⟩

1− |vC |2
, (142)

stays away from zero in both cases. For the first statement (138) of the theorem,
it then suffices to show that the numerator

⟨b, α⟩ (1− |(hJSE)C |2)−
〈
b, hJSE − (hJSE)C

〉 〈
hJSE, α

〉
(143)

vanishes asymptotically. In light of Proposition 5, it suffices to show that
Ep(ho, C, a) = 0 for the oracle ho = bU/|bU | defined previously, where U =
span(h,C). This is a consequence of the fact that ⟨bC , α⟩ = ⟨b, α⟩ and following
straightforward identities:

⟨b, ho − (ho)C⟩ = |bU | − |bC |2
|bU | , (144)

⟨(ho)C , α⟩ = ⟨b,α⟩
|bU | , and (145)

|(ho)C |2 = |bC |2
|bU |2 . (146)

Turning to the second statement (139), first note that Proposition 4 applied
to the subspace L = span(α), implies, asymptotically, ⟨h, α⟩ = ⟨h, b⟩ ⟨b, α⟩,
where we omit the subscripts on ⟨h, α⟩∞, etc., to unclutter the notation. Also,
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setting L = C in the same proposition yields the asymptotic equalities |hC |2 =

⟨h, b⟩2 |bC |2, and ⟨b, hC⟩ = ⟨h, b⟩ ⟨b, bC⟩.
Making use of these facts and simplifying leads to

lim
p→∞

Ep(h,C, a) = ⟨b,α⟩(1−⟨h,b⟩2)
1−⟨h,b⟩2|bC |2 (147)

=
⟨b,α⟩(1−ψ2

∞)
1−ψ2

∞|bC |2 . (148)

When E(h,C, a) is positive but E(hJSE, C, a) tends to zero, equation (129)
implies that V(wPCA) remains bounded above zero while V(wJSE) tends to
zero. This establishes the last claim.

⊓⊔

7.8 Proof of Lemma 1

Lemma 1: Assume that the limiting angle Θ is less than π/2. Suppose a does
not belong to the orthogonal complement of the unit vector

lim
p→∞

C†b

|C†b|
∈ Rk. (149)

Then ⟨b, α⟩∞ is not zero.
We express the singular value decomposition of C as

C(p) = U (p)Z(p)V (p), (150)

where Z = Z(p) is a k × k diagonal matrix with diagonal entries equal to the
positive singular values s1, s2, . . . , sk of C; V = V (p) is k × k orthogonal, and
U = U (p) is p× k orthonormal. Note (C†)⊤ = UZ−1V .

Assumptions A4 and A5 imply, for each j, that s2j/p is bounded away from
zero and infinity. By taking subsequences if necessary, we may assume that
(1/

√
p)Z(p) and V (p) tend to k× k limits Z∞ and V∞, respectively, where V∞

is orthogonal and Z∞ is diagonal with positive diagonal entries.
By taking a further subsequence if needed, we assume that the inner prod-

uct U⊤b tends to a non-zero limit (U⊤b)∞ ∈ Rk as p→ ∞.
A short calculation shows

|(C†)⊤a|2 =
〈
Z−2V a, V a

〉
(151)

and 〈
b, (C†)⊤a

〉
=
〈
C†b, a

〉
=
〈
Z−1U⊤b, V a

〉
. (152)

Hence 〈
b, (C†)⊤a

〉
|(C†)⊤a|

=

〈
Z−1U⊤b, V a

〉√
⟨Z−2V a, V a⟩

→
〈
Z−1
∞ (U⊤b)∞, V∞a

〉√〈
Z−2
∞ V∞a, V∞a

〉 . (153)

This limit is nonzero whenever a does not belong to the orthogonal com-
plement of the non-zero vector V ⊤

∞Z
−1
∞ (U⊤b)∞.

⊓⊔
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