
Calculating a Locus of Saddle-Node Bifurcations of Periodics

with AUTO

Joe McKenna

Summary

An example system that undergoes a saddle-node bifurcation of periodics is analyzed. Relations
between parameters and variables for which the system undergoes the bifurcation are derived
and accurately predict AUTO calculations. An explanation of using AUTO to continue the saddle-
node bifurcation of periodics in two parameters is given. The general approach is to locate a
Hopf bifurcation on a stationary branch, locate a saddle-node bifurcation of periodics on the
periodic branch emanating from the Hopf bifurcation, and continue the saddle-node bifurcation
of periodics in two parameters. If the Hopf bifurcation or saddle-node bifurcation of periodics
is known a priori, the first one or two steps, resp., are not necessary to complete the third.

Bifurcation Analysis of Example System

Consider the ODE system in polar coordinates{
ṙ = r(r(b− r)− c) for b > 0

θ̇ = r.
(1)

It can be seen from the graph of ṙ vs. r that (1) undergoes a saddle-node bifurcation of periodics.
An explanation is provided below.

Figure 1: ṙ vs. r for (1).
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The stationary radii of (1), given by ṙ = 0, are r0 = 0 and the roots that result from translating

r(b − r) down by c, that is, r± = b
2 ±

√
b2

4 − c. Note also, since θ̇ ≥ 0, the flow everywhere in

the xy-plane except at the origin is counter-clockwise.

For 0 < c < b2

4 , there are three distinct stationary radii 0 = r0 < r− < r+ for which ṙ(r0),
ṙ(r+) < 0 and ṙ(r−) > 0 (Fig 1, blue), so in the xy-plane, (1) has a stable equilibrium point
(0, 0) surrounded by unstable and stable limit cycles with radii r− < r+, resp.

As c ↑ b2

4 , r+ and r− collide at rsnp = b
2 , for which ṙ(rsnp) = 0 and r̈(rsnp) < 0 (Fig 1, purple), so

in the xy-plane, (1) has a stable equilibrium point (0, 0) surrounded by a semi-stable (attracts
for initial conditions with r ≥ rsnp, repels otherwise) limit cycle with radius rsnp.

For c > b2

4 , the only real solution to ṙ = 0 is r0 = 0, for which ṙ(r0) < 0 (Fig 1, cyan), so in the
xy-plane, (1) has as its only equilibrium the stable equilibrium point (0, 0).

We have shown that a saddle-node bifurcation of periodics occurs at (csnp, rsnp) = ( b
2

4 ,
b
2). It

can also be seen from Figure 1 that (0, 0) becomes stable as it gives rise to an unstable limit
cycle when c increases past zero, that is, the system undergoes a subcritical Hopf bifurcation
at (c, r) = (0, 0). Below are system phase portraits corresponding to the c values in Figure 1.

Figure 2: Phase portraits corresponding to Figure 1. The x and y range of each graph is 3b and
all flows are counter-clockwise.
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Now that we have an analytic relation in (b, c) and (c, r = max y) for which the system undergoes
a saddle-node bifurcation of periodics, we could graph the bifurcation locus in the bc-plane and
the cy-plane by simply plotting c = b2

4 and y =
√
c, resp., but we will use AUTO to generate

these graphs.

Figure 3 is the bifurcation diagram of (1) with c as a bifurcation parameter in a neighborhood
of zero. We will explain how the data plotted in the diagram were generated using AUTO and
how they were used to calculate the locus of saddle-node bifurcations of periodics.

Figure 3: Bifurcation diagram.

Using AUTO

For each run, AUTO expects two files, one to specify the system equations and initial conditions
and one to specify the constants that dictate the program’s behavior.

The Equations File

For this example, the system equations and initial conditions appear in snp.f90, in the two
functions FUNC and STPNT, resp. The values of x, y, b, and c are referred to as U(1), U(2),
PAR(1), and PAR(2), resp. The equations (2) appearing in FUNC are derived from (1) as follows.
Transforming (1) into rectangular coordinates, we write(

x y
−y x

)(
ẋ
ẏ

)
= r2

(
p− c
r

)
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where p(r) = r(b−r), since ṙ = 1
r

(
x y

) (
ẋ ẏ

)T
and θ̇ = 1

r2

(
−y x

) (
ẋ ẏ

)T
for r =

√
x2 + y2.

Multiplying by the inverse of the lefthand side matrix and rearranging, we get(
ẋ
ẏ

)
=

(
x −y
y x

)(
p− c
r

)
(
ẋ
ẏ

)
=

(
p− c −r
r p− c

)(
x
y

)
. (2)

The variables and parameters initialized in STPNT are chosen to first locate a Hopf bifurcation
on a branch of stationary solutions. Knowing that for b > 0, a Hopf bifurcation occurs as c
increases past zero at the equilibrium point (x, y) = (0, 0), we initialize b = 1, c = −0.1, x = 0,
and y = 0, and intend to continue the solution (0, 0) with c increasing to 0.5. After locating the
Hopf bifurcation, we continue in c the periodic solutions that arise from it to locate a saddle-
node bifurcation of periodics. Finally, we continue in b and c the saddle-node bifurcation of
periodics.

The Constants Files

For this example, the constants that dictate the program’s behavior appear in three different
files c.snp.ss, c.snp.ps, and c.snp.snp (AUTO expects each constants file to begin with the
c. prefix) for computing stationary solutions, periodic solutions, and saddle-nodes of periodics,
resp. The full meaning of each constant is explained in Chapter 10 of the AUTO documentation
(auto.pdf) but important values for the current example are explained here.

In c.snp.ss, the value IPS=1 (problem specification index) indicates that a stationary solution
is to be continued and Hopf bifurcations are to be detected. The value IRS=0 (restart index)
indicates that the continuation is to start from the initial conditions specified in snp.f90. The
value ICP=[’c’] (continuation parameter index) indicates that c is the continuation parameter.
The value UZSTOP={’c’:.5} indicates that continuation should stop when c reaches the value
0.5. Note there are other ways to stop continuation such as specifying a maximum number of
steps with NMX, maximum number of bifurcations with MXBF, maximum number of bifurcations
of a specific type with SP (for example, SP=[’HB1’] would stop the continuation at the first
Hopf bifurcation), etc.

In c.snp.ps, the value IPS=2 indicates that a periodic solution is to be continued. The value
ILP=1 (limit point index) turns on detection of limit points, which allows us to locate the saddle-
node bifurcation of periodics. The value ICP=[’c’,’PERIOD’] indicates that c and period are
continuation parameters. By default, AUTO records maximum values of the system variables
when continuing periodic solutions. Setting the value IPLT=-2 indicates that the minimum
values of y = U(2) are also to be recorded. The value THL={’PERIOD’:0.0} neglects period
in determining the continuation stepsize to avoid problems near homoclinic orbits, a standard
precaution taken when continuing periodic solutions.

In c.snp.snp, the value ICP=[’c’,’b’,’PERIOD’] indicates that c, b, and period are contin-
uation parameters. The value ISW=2 (branch switching index) allows AUTO to compute a locus
of saddle-node bifurcations of periodics.

The AUTO Script

The commands that generate the bifurcation diagram data are summarized in the script snp.auto.
They can be run all-at-once from a UNIX command line with auto snp.auto or step-by-step
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from the AUTO command line with demofile(’snp.auto’). Here, we explain the effect of each
command in snp.auto.

First, the stationary branch is stored in the bifurcation diagram object ss by running ss=run(e

=’snp’,c=’snp.ss’). The arguments e=’snp’ and c=’snp.ss’ specify the names of the equa-
tions and constants file, resp. In the terminal output from this command, you should see that
AUTO identified a Hopf bifurcation and labelled it 2. Next, the periodic branch is stored in ps

by running ps=run(ss(’HB1’),c=’snp.ps’). The argument ss(’HB1’) overrides the value of
IRS in the constants file c.snp.ps and instructs AUTO to continue from the first Hopf bifur-
cation located on the stationary branch ss. In the terminal output from this command, you
should see that AUTO identified a saddle-node bifurcation of periodics and labelled it 4. Next,
starting data for continuing the saddle-node bifurcation of periodics is stored in snpstart by
running snpstart=run(ps(’LP1’),c=’snp.snp’). Last, the locus of saddle-node bifurcations
of periodics is stored in snp by running snp=merge(run(snpstart)+run(snpstart,DS=’-’)).
This command merges continuations of the saddle-node bifurcation of periodics for both in-
creasing and decreasing values of continuation parameters. The continuation for solely in-
creasing or decreasing values of continuation parameters could be stored in snp by running
snp=run(snpstart) or snp=run(snpstart,DS=’-’), resp.

The data from each branch are combined and saved in the files b.snp, s.snp, and d.snp

in a format explained in the AUTO documentation by running save(ss+ps+snp,’snp’). The
temporary files created by AUTO are deleted by running clean.

Plotting the Data

The locus of saddle-node bifurcations of periodics is plotted in Figure 4. The data, including
values for b, c, min y, max y, maxx, and period, appear in both b.snp and the last data block
of tex/gnuplot/unstable.dat. While using AUTO, any stored bifurcation diagram object, say
x, can be graphed with PyPlot by running plot(x) from the AUTO command line. Also, the
AUTO documentation describes a few methods for exporting data.

I’ve written a small program cleanData that reformats the data in b.snp into a number of
data blocks in two files tex/gnuplot/stable.dat and tex/gnuplot/unstable.dat. Each data
block corresponds to a connected portion of a branch with the same stability. The source
cleanData.cpp may be modified for a different project by recompiling it after changing the
name of the input and output data files specfied in the source file.

The formats of stable.dat and unstable.dat are conducive to graphing with gnuplot. For
example, the scripts that generated Figures 1 - 4, appearing in tex/gnuplot/plot1.p - plot4.p,
use the two data files. These can be run in tex/gnuplot from a UNIX command line with
gnuplot plot.p or from the gnuplot command line with load ’plot.p’. Also, the data
plotted in Figure 2 were generated by integrating (2) with CVODE by running make (requires
CVODE) then snp in tex/gnuplot/fig2data.
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Figure 4: The locus of saddle-node bifurcations of periodics.
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