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Overview Model Behavior Application
o - | Metabolic Oscillations Understanding Direct Measurement of Glycolysis

* Pancreatic islets are primarily composed of B-cells, which

secrete insulin .in response to.eleva’.ced plasma glucqse. | + The glycolytic reaction performed by the isoform of e Enzyme pyruvate kinase (PK) produces pyruvate in final glycolytic
*  Multiple signaling pathways, including glycolysis, oxidative shosphofructokinase (PFK) present in B-cells is autocatalyzed to reaction, and is primarily activated as a tetramer by F16BP.

phosphorylatlgn, and transmembrane ion currents, regulate introduce oscillations in substrate [F6P] and product [F16BP]. (ref. 2) * FRET sensor “PK activity reporter (PKAR)" fluoresces

the secretion signal. (ref. 1) proportional to [F16BP] when enzyme is tetramerized. (ref. 3)
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Pyruvate mitochondria feeds the citric secretion signal:
acid cycle to charge carriers Electrical Oscillations
W R including NADH The * During silent phase, a PFK-mediated rise in [F16BP] promotes
j ; | mitochondrial electron * |n stimulatory glucose, electric bursts of membrane potential and ATP production to initiate the active phase.
. ¥ 2 transport chain, utilizing transient increases in intracellular [Ca%*] occur during the active * During the active phase, mitochondrial Ca?* influx promotes
o . ° ° ° °
5 = NADH,  establishes  an ohase, during which insulin is secreted. (ref. 1) oxidative phosphorylation to decrease lower glycolytic
I il - electrochemical gradient to metabolites and attenuate PFK autocatalysis.
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5 sensitive K* channels to Dual roles of ATP * We used a mathematical model of signals coupled to insulin
G depolarize the membrane. secretion in B-cells to show that mitochondria energized by
When depolarized above * During the silent phase, glucose-induced increase in [ATP] /[ADP] glucose-induced Ca%* influx may compete with PFK autocatalysis
it i threshold, voltage-activated depolarizes the membrane to initiate the active phase. to shape glycolytic oscillations.
Insulin.« channels : successively * During the active phase , Ca’*-dependent utilization of ATP outpaces
| + + .
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