Reducing a Conductance-Based Neuron Model to Normal Form

Joseph P. McKenna. Advisor: Richard Bertram Biomathematics Program, Department of Mathematics, Florida State University

Objective

- Compute the normal form of a conductance-based neuron model at codimension-2 bifurcations using a method based on Lie transformations.
- Unfold the normal form in a neighborhood of the bifurcations.

A Conductance-Based Neuron Model

- We use the Morris-Lecar model, a planar system with three ionic currents: \bullet a constant-conductance leak current $I_\ell,$
- an instaneous, persistent (non-inactivating) amplifying current I_m ,
- and a delayed-activating resonant (repolarizing) current *Iⁿ*
- and the two dynamic variables:
- *v*: membrane potential and
- *n*: delayed-activating resonant current activation variable [\[1\]](#page-0-0).

$$
\frac{dv}{dt} = -\left[\overbrace{G_{\ell}(v - v_{\ell})}^{\text{leak current}} + \overbrace{G_m m_{\infty}(v)(v - v_m)}^{\text{amplifying current}} + \overbrace{G_n n(t)(v - v_n)}^{\text{resonant current}} - I_{\text{ap}}
$$
\n
$$
\frac{dn}{dt} = \left[n_{\infty}(v) - n\right] / \tau, \quad x_{\infty}(v) = \left[1 + \exp(k_x(v - u_x))\right]^{-1}
$$

• The model supports three types of excitability (Fig. [1\)](#page-0-1).

 $\begin{array}{c} \hline \end{array}$ $\overline{}$ $|\mathcal{V}_i^2|$ *i* as

Figure 1: For different values of the resonant current half-activation potential u_n , the model (1) exhibits types 1 (left), 2 (center), and 3 (right) excitability in response to an applied current (I_{app}) ramp.

Lie Theory and Computing the Normal Form

- Let \mathcal{V}_i^2 be the vector space of homogenous i^{th} degree polynomial vector fields on \mathbb{R}^2 and let $L_g = [\cdot, g]$ be the Lie bracket with a particular $g \in \mathcal{V}_i^2$, so $L_g f = [f, g] = f'g - g'f.$
- If ψ is the flow generated by *g*, the substitution $(v, n) = \psi(\tilde{v}, \tilde{n})$ transforms $(\dot{v}, \dot{n})^T = f(v, n)$ locally to $(\dot{\tilde{v}}, \dot{\tilde{n}})^T = e^{L_g} f(\tilde{v}, \tilde{n})$ [\[2\]](#page-0-3).
- If $g = g_j$ has degree *j*, *f* is unaltered up to degree $j 1$:

Figure 2: Top: A two-parameter unfolding of (1) . Bottom: I-V curves and periodic branches for various values of the resonant current half-activation potential *vres*.

$$
(\dot{\tilde{v}}, \dot{\tilde{n}})^T = (I + L_{g_j} + L_{g_j}^2/2! + \cdots) (f_1 + f_2 + f_3 + \cdots)
$$

= f_1 + \cdots + f_{j-1} + f_j + L_{g_j}f_1 + \cdots

- The difference of the former (f_j) and the modified (h_j) def $\stackrel{\text{def}}{=}$ $f_j + L_{g_j} f_1) j^{\text{th}}$ degree terms satisfies the linear equation $L_{f_1}g_j = f_j - h_j$.
- This equation can be solved and [\(2\)](#page-0-4) can be calculated numerically by representing the f_i as $2(i + 1)$ -dim vectors of their coefficients and the restrictions L_{g_j} $2(i + j) \times 2(i + 1)$ matrices with respect to the bases

• Canonical forms for the Jacobian matrix (f_1) $\binom{1}{1}$, associated linear operators $(L_{f_1}),$ bases (\mathcal{N}) and normal form terms (h_i) for Bogdanov-Takens and Generalized Hopf bifurcations are:

$$
\left(2\right)
$$

- $a_2 = -\frac{1}{2\tau}$ $2\tau^3$ $n''(v_0)$ $\frac{n''(v_0)}{n'(v_0)}-\frac{G_m}{\tau^2C}$ $\overline{\tau^2 C}$
- depicted in Fig. 2 are

$$
\left\{ \begin{bmatrix} v^i \\ 0 \end{bmatrix}, \begin{bmatrix} v^{i-1}n \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} vn^{i-1} \\ 0 \end{bmatrix}, \begin{bmatrix} n^i \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ v^i \end{bmatrix}, \begin{bmatrix} 0 \\ v^{i-1}n \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ vn^{i-1} \end{bmatrix}, \right\}
$$

$$
\begin{bmatrix} 0 \\ n^i \end{bmatrix} \bigg\} \ .
$$

Motivation

• Codimension-2 bifurcations, such as *Bogdanov-Takens* where loci of saddle homoclinic and Hopf bifurcations meet, and *generalized Hopf*, where Hopf bifurcations switch criticality, organize the dynamics of [\(1\)](#page-0-2) (Fig. 2).

An Algorithm for Computing the Normal Form

- **Expand** [\(1\)](#page-0-2) in a Taylor series about a bifurcation equilibrium point (v_0, n_0) . **2** Perform a linear subsitution for (v, n) that transforms f_1' $\frac{1}{1}$ to a canonical form. **3** Choose a basis $\mathcal N$ for the complement of im L_{f_1} .
- \bullet Repeat for $j = 2, 3, 4, \ldots$
- Set h_j to the projection of f_j onto $\mathcal N$.
- Solve $L_{f_1}g_j = f_j h_j$ for g_j .
- Calculate (2) .
- The resulting system is of the form $(\dot{v}, \dot{n})^T = f_1 + h_2 + h_3 + h_4 + \cdots$

The Form of the Normalized System

Normal Form Coefficients

otherwise zero:

$$
\text{BT: } \begin{bmatrix} \dot{v} \\ \dot{n} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \mu_1 & \mu_2 \end{bmatrix} \begin{bmatrix} v \\ n \end{bmatrix} + \sum_{i \geq 2} v^{i-1} \begin{bmatrix} a_i \\ v \end{bmatrix} + l
$$
\n
$$
\text{GH: } \begin{bmatrix} \dot{v} \\ \dot{n} \end{bmatrix} = \begin{bmatrix} \nu_1 & -1 \\ 1 & \nu_1 \end{bmatrix} \begin{bmatrix} v \\ n \end{bmatrix} + \sum_{i \geq 3} (v^2 + n^2)^{\frac{i-1}{2}} \begin{bmatrix} c_i \\ c_i \end{bmatrix}
$$

Figure 4: Two-parameter unfoldings of the normal form with bifurcations 'BT3' and 'GH2' from Fig. 2 as organizing centers.

Conclusion

- We simplified the Morris-Lecar model by reducing it to normal form at the codimension-2 bifurcations that organize its dynamics.
- Since the normal form exhibits the same dynamics in a neighborhood of the bifurcation at which the transformation was performed, it is a useful analytic tool for studying the original system.

References

- [1] E. M. Izhikevich, *Dynamical systems in neuroscience*, MIT press, 2007.
- [2] J. MURDOCK, *Normal forms and unfoldings for local dynamical systems*, Springer Science & Business Media, 2006.