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Objective Motivation Normal Form Coeflicients

= Compute the normal form of a conductance-based neuron model at codimension- = Codimension-2 bifurcations, such as Bogdanov-Takens where loci of saddle ho- « Analytic formulas expressed in the biophysical parameters of (1) for the first

2 bifurcations using a method based on Lie transformations. moclinic and Hopt bifurcations meet, and generalized Hopf, where Hopf bifur- coefficients in the Bogdanov-Takens normal form are
. ' ’ ] ' ' itch criticali ize th ics of (1) (Fig. 2). g

Unfold the normal form in a neighborhood of the biturcations. cations switch criticality, organize the dynamics of (1) (Fig. 2) 4y = _2#2' ((;Jg)) S”é ! (vy) + m” (vy) (vy — v1) /2] — % n! (v)

— Fo —— Fold Periodic ogdanov-Takens eneralized Ho 1 1 o G, G,
A Conductance-Based Neuron Model I Fold periodic A Bogdanov-Takens @ Generalized Hopf by — (E _ 72) Z((;}g)) Cul2m/ (vg) + m” (vo) (vg — v1)] — Ean/(vy)
| | o a0k 4 BT2 « Numerical values for the first coeflicients of the normal form at the biturcations
= We use the Morris-Lecar model, a planar system with three ionic currents: — . R
depicted in Fig. 2 are
= a constant-conductance leak current I, 300}

= an instaneous, persistent (non-inactivating) amplifying current I,,,,
- and a delayed-activating resonant (repolarizing) current I,

and the two dynamic variables: ool TGt
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= v: membrane potential and g_
= n: delayed-activating resonant current activation variable [1]. = ™ ‘ S 3 3 . : oY i i
S
dv rleak qurent amplifying current __lesomamgcurrent o oo il Figure 3: Normal form coefficients for the bifurcations depicted in Fig. 1.
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in » nfolding the Normal Forms
= oelv) = /7, o) = [+ explalv — )
00 . . — (.) il N » The normal form dynamics in a neighborhood of the bifurcation can be studied
- The model supports three types of excitability (Fig. 1). Uyes (MV) by inserting parameters (1, gs and v, vy below) in low-degree terms that are
BT: v,,,=—60.3 mV GH: v,,,=—48.0 mV BT: v,,,=—37.6 mV GH: v,,,=—15.6 mV BT: v,.,=13.9 mV
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Applied current 7,,, (pA) Applied current I,,, (pA) Figure 2: Top: A two-parameter unfolding of (1) Bottom: |-V curves and periodic branches for Fdid
various values of the resonant current half-activation potential v,. \
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Figure 1: For different values of the resonant current half-activation potential u,, the model (1) / I GHI —

exhibits types 1 (left), 2 (center), and 3 (right) excitability in response to an applied current (1,,,) An Algorlthm for Computing the Normal Form Hom(imc @L ) >
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o Expand (1) in a Taylor series about a bifurcation equilibrium point (v, nyg). B4 . o
Lie Theory and Computing the Normal Form @ Perform a linear subsitution for (v, n) that transforms f| to a canonical form. ] X4 L .
® Choose a basis NV for the complement of im Ly,. ) ]

- Let V? be the vector space of homogenous """ degree polynomial vector fields o Repeat for j =2,3,4, ... ool | L s |
on R* and let L, = [, g] be the Lie bracket with a particular ¢ € V7, so  Set f; to the projection of f; onto AV. e L R . 1
Lof =1f,9]=f9—4'f. ' %Ollv e 1Lf1gj )P

- Calculate (2).

Figure 4: Two-parameter unfoldings of the normal form with bifurcations ‘BT3" and ‘GH2" from

« If ¢ is the flow generated by g, the substitution (v,n) = ¥(v,n) transforms
(v,7)! = f(v,n) locally to (v,n)! = ek f(v,7) [2].
- If g = g; has degree j, f is unaltered up to degree j — 1: The Form of the Normalized System

The resulting system is of the form (v, n)! = fi + ho + hs + hy + - - -

Fig. 2 as organizing centers.

o - Conclusion
(0,n)" = (I + Ly, + L, /20 4+ ) it ot fot-r) (2) - Canonical forms for the Jacobian matrix (f]), associated linear operators (Ly,), o | o
=h+-+fiat+tfitLhgh+-- bases (N) and normal form terms (h;) for Bogdanov-Takens and Generalized « We simplified the Morris-Lecar model by reducing it to normal form at the
) | - - . di jon-2 bifurcations that ize its d ics.
= The difference of the former (f;) and the modified (h; o fi+Lgfi) 7™ degree Hopf bifurcations are: C(.) PSRRI S DUHTEAOTE . ? oA ynar%’ncs. .
terms satisfies the linear equation Ly g; = f: — h. J | = Since the normal form exhibits the same dynamics in a neighborhood of the
% hdi =7 ) Bogdanov-Takens Generalized Hopt bifurcation at which the transformation was performed, it is a useful analytic

« This equation can be solved and (2) can be calculated numerically by representing

. . . . . 01
the f; as 2(¢ + 1)-dim vectors of their coefficients and the restrictions Lg.| as fi, L fl‘yg [0 0

J V@?

L —1 0-—11 [U—-L I tool for studying the original system.
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D with resp N {00, 0,0 {02+ m2 o, ), (0 4+ ) (—m, )T
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for Lip=kitg=Fk+1, Uy, =7 i k=7+1, and 0 otherwise, 1 < 5,k < ¢+ 1.

References

+ d. [_”D (i odd) 1| E. M. IZHIKEVICH, Dynamical systems in neuroscience, MIT press, 2007.
(] v -

2| J. MURDOCK, Normal forms and unfoldings for local dynamical systems,
Springer Science & Business Media, 2006.



