

Objective

- Compute the normal form of a conductance-based neuron model at codimension-2 bifurcations using a method based on Lie transformations.
- Unfold the normal form in a neighborhood of the bifurcations.

A Conductance-Based Neuron Model

- We use the Morris-Lecar model, a planar system with three ionic currents: • a constant-conductance leak current I_{ℓ} ,
- an instaneous, persistent (non-inactivating) amplifying current I_m ,
- and a delayed-activating resonant (repolarizing) current I_n
- and the two dynamic variables:
- v: membrane potential and
- n: delayed-activating resonant current activation variable [1].

$$\frac{dv}{dt} = -\left[\overbrace{G_{\ell}(v-v_{\ell})}^{\text{leak current}} + \overbrace{G_{m}m_{\infty}(v)(v-v_{m})}^{\text{amplifying current}} + \overbrace{G_{n}n(t)(v-v_{n})}^{\text{resonant current}} - I_{\text{application}}\right]$$
$$\frac{dn}{dt} = \left[n_{\infty}(v) - n\right]/\tau, \quad x_{\infty}(v) = \left[1 + \exp(k_{x}(v-u_{x}))\right]^{-1}$$

• The model supports three types of excitability (Fig. 1).

Figure 1: For different values of the resonant current half-activation potential u_n , the model (1) exhibits types 1 (left), 2 (center), and 3 (right) excitability in response to an applied current (I_{app}) ramp.

Lie Theory and Computing the Normal Form

- Let \mathcal{V}_i^2 be the vector space of homogenous i^{th} degree polynomial vector fields on \mathbb{R}^2 and let $L_q = [\cdot, g]$ be the Lie bracket with a particular $g \in \mathcal{V}_i^2$, so $\mathcal{L}_g f = [f,g] = f'g - g'f.$
- If ψ is the flow generated by g, the substitution $(v, n) = \psi(\tilde{v}, \tilde{n})$ transforms $(\dot{v}, \dot{n})^T = f(v, n)$ locally to $(\dot{\tilde{v}}, \dot{\tilde{n}})^T = e^{\mathcal{L}_g} f(\tilde{v}, \tilde{n})$ [2].
- If $g = g_j$ has degree j, f is unaltered up to degree j 1:

$$(\tilde{\tilde{v}}, \tilde{\tilde{n}})^T = \left(I + \mathcal{L}_{g_j} + \mathcal{L}_{g_j}^2/2! + \cdots\right) (f_1 + f_2 + f_3 + \cdots)$$

= $f_1 + \cdots + f_{j-1} + f_j + \mathcal{L}_{g_j} f_1 + \cdots$

- The difference of the former (f_j) and the modified $(h_j \stackrel{\text{def}}{=} f_j + L_{g_j} f_1) j^{\text{th}}$ degree terms satisfies the linear equation $L_{f_1}g_j = f_j - h_j$.
- This equation can be solved and (2) can be calculated numerically by representing the f_i as 2(i+1)-dim vectors of their coefficients and the restrictions $L_{g_j}|_{\mathcal{V}^2}$ as $2(i+j) \times 2(i+1)$ matrices with respect to the bases

$$\left\{ \begin{bmatrix} v^i \\ 0 \end{bmatrix}, \begin{bmatrix} v^{i-1}n \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} vn^{i-1} \\ 0 \end{bmatrix}, \begin{bmatrix} n^i \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ v^i \end{bmatrix}, \begin{bmatrix} 0 \\ v^{i-1}n \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ vn^{i-1} \end{bmatrix}, \right\}$$

Reducing a Conductance-Based Neuron Model to Normal Form

Joseph P. McKenna. Advisor: Richard Bertram Biomathematics Program, Department of Mathematics, Florida State University

Motivation

• Codimension-2 bifurcations, such as *Bogdanov-Takens* where loci of saddle ho-

moclinic and Hopf bifurcations meet, and *generalized Hopf*, where Hopf bifurcations switch criticality, organize the dynamics of (1) (Fig. 2).

Figure 2: Top: A two-parameter unfolding of (1). Bottom: I-V curves and periodic branches for various values of the resonant current half-activation potential v_{res} .

An Algorithm for Computing the Normal Form

• Expand (1) in a Taylor series about a bifurcation equilibrium point (v_0, n_0) . **2** Perform a linear substitution for (v, n) that transforms f'_1 to a canonical form. **3** Choose a basis \mathcal{N} for the complement of im L_{f_1} .

- Repeat for j = 2, 3, 4, ...
- Set h_j to the projection of f_j onto \mathcal{N} .
- Solve $L_{f_1}g_j = f_j h_j$ for g_j .
- Calculate (2). The resulting system is of the form $(\dot{v}, \dot{n})^T = f_1 + h_2 + h_3 + h_4 + \cdots$

The Form of the Normalized System

• Canonical forms for the Jacobian matrix (f'_1) , associated linear operators (L_{f_1}) , bases (\mathcal{N}) and normal form terms (h_i) for Bogdanov-Takens and Generalized Hopf bifurcations are:

Bogdanov-TakensGeneralize
$$f'_1, L_{f_1}|_{\mathcal{V}^2_i}$$
 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} L & -I \\ 0 & L \end{bmatrix}$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} U & -I \\ -I \\ 0 & L \end{bmatrix}$ \mathcal{N} $\left\{(0, v^i)^T, (0, v^{i-1}n)^T\right\}$ $\left\{(v^2 + n^2)^{i-1}(v, n)^T, (v, n)^T)$ h_i $v^{i-1}\left(a_i\begin{bmatrix} 0 \\ v \end{bmatrix} + b_i\begin{bmatrix} 0 \\ n \end{bmatrix}\right)$ $(v^2 + n^2)^{i-1}\left(c_i\begin{bmatrix} v \\ n \end{bmatrix} + v^2)^{i-1}\right)$ for $L_{jk} = k$ if $j = k+1, U_{jk} = j$ if $k = j+1$, and 0 other

 $_{\rm pp}]/C$ (1)

$$\begin{bmatrix} 0\\n^i\end{bmatrix}\Big\}$$

- depicted in Fig. 2 are

otherwise zero:

BT:
$$\begin{bmatrix} \dot{v} \\ \dot{n} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \mu_1 & \mu_2 \end{bmatrix} \begin{bmatrix} v \\ n \end{bmatrix} + \sum_{i \ge 2} v^{i-1} \left(a_i \begin{bmatrix} 0 \\ v \end{bmatrix} + b_i \right)$$

GH: $\begin{bmatrix} \dot{v} \\ \dot{n} \end{bmatrix} = \begin{bmatrix} \nu_1 & -1 \\ 1 & \nu_1 \end{bmatrix} \begin{bmatrix} v \\ n \end{bmatrix} + \sum_{\substack{i \ge 3 \\ i \text{ odd}}} (v^2 + n^2)^{\frac{i-1}{2}} \left(c_i \right)$

Figure 4: Two-parameter unfoldings of the normal form with bifurcations 'BT3' and 'GH2' from Fig. 2 as organizing centers.

Conclusion

- We simplified the Morris-Lecar model by reducing it to normal form at the codimension-2 bifurcations that organize its dynamics.
- Since the normal form exhibits the same dynamics in a neighborhood of the bifurcation at which the transformation was performed, it is a useful analytic tool for studying the original system.

References

- [1] E. M. IZHIKEVICH, Dynamical systems in neuroscience, MIT press, 2007.
- [2] J. MURDOCK, Normal forms and unfoldings for local dynamical systems, Springer Science & Business Media, 2006.

Normal Form Coefficients

