A few formulas for sets

$$A \subseteq B$$
 means $x \in A \Longrightarrow x \in B$. (1)

$$x \in A \mid B \quad \text{means} \quad (x \in A \lor x \in B) \tag{2}$$

$$x \in A - B$$
 means $(x \in A \land x \notin B)$ (3)

$$x \in \bigcap_{i \in I} A_i \quad \text{means} \quad \forall_{i \in I} \ x \in A_i \tag{4}$$

$$x \in \bigcup_{i \in I} A_i$$
 means $\exists_{i \in I} \ x \in A_i$ (5)

Writing Proofs.

- 1. Direct proof for $p \Longrightarrow q$. Assume: p. To prove: q.
- 2. Proving $p \Longrightarrow q$ by contrapositive. Assume: $\neg q$. To prove: $\neg p$.
- 3. Proving S by contradiction. Assume: $\neg S$. To prove: a contradiction.
- 4. Proving $p \Longrightarrow q$ by contradiction. Assume: p and $\neg q$. To prove: a contradiction.
- 5. Direct proof for a ∀_{x∈A}P(x) statement.
 To ensure you prove P(x) for all (rather than for some) x in A, do this:
 Start your proof with: Let x ∈ A. To prove: P(x).
- 6. Direct proof for $\exists_{x \in A} P(x)$ statement. Take x := [write down an expression that is in A, and satisfies P(x)].
- 7. Proving $\forall_{x \in A} P(x)$ by contradiction. Assume: $x \in A$ and $\neg P(x)$. To prove: a contradiction.
- 8. Proving $\exists_{x \in A} P(x)$ by contradiction. Assume: $\neg P(x)$ for every $x \in A$. To prove: a contradiction.
- 9. Proving S by cases.
 Suppose for example a statement p can help to prove S. Write two proofs: Case 1: Assume p. To prove: S.
 Case 2: Assume ¬p. To prove S.
- 10. **Proving** $p \land q$ Write two separate proofs: To prove: p. To prove: q.
- 11. **Proving** $p \iff q$ Write two proofs. To prove: $p \implies q$ To prove: $q \implies p$.

12. Proving $p \lor q$

Method (1): Assume $\neg p$. To prove: q. Method (2): Assume $\neg q$. To prove: p. Method (3): Assume $\neg p$ and $\neg q$. To prove: a contradiction.

13. Using $p \lor q$ to prove another statement r. Write two proofs: Assume p. To prove r.

Assume q. To prove r.

- 14. How to use a for-all statement $\forall_{x \in A} P(x)$. You need to produce an element of A, then use P for that element.
- 15. If you want to use an exists statement like $\exists_{x \in A} P(x)$ to prove another statement, then you may not choose x. All you know is $x \in A$ and P(x).

List of facts on cardinal numbers

- 1. o(A) = o(B) means $\exists f : A \to B$ with f bijection.
- 2. $o(A) \leq o(B)$ means $\exists f : A \to B$ with f one-to-one.
- 3. \aleph_0 is short notation for $o(\mathbb{N}^*)$.
- 4. c is short notation for $o(\mathbb{R})$.
- 5. The set A is countably infinite when: $o(A) = \aleph_0$. By item 1 this means: $\exists f : \mathbb{N}^* \to A$ with f bijection. Note, in that case $A = f(\mathbb{N}^*) = f(\{1, 2, \ldots\}) = \{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$
- 6. Notation: x < y is short for: $x \le y \land x \ne y$.
- 7. o(A) < o(P(A)).
- 8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $o(\mathbb{N}^*) = \aleph_0$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P(\mathbb{N}^*)$ has larger cardinality by item 7. And $P(P(\mathbb{N}^*))$ has larger cardinality still!
- 9. If $f : A \to B$ is onto then $o(B) \le o(A)$.
- 10. A is *countable* when either: A is countably infinite (defined in item 5) or A is finite.
- 11. A is countable when $o(A) \leq \aleph_0$.
- 12. A subset of a countable set is again countable.
- 13. If $A \subseteq B$ then $o(A) \leq o(B)$.

- 14. The ordering \leq on cardinal numbers is a *partial ordering*. In particular: whenever $d \leq e$ and $e \leq d$ we may conclude d = e. You might remember that the proof was not easy!
- 15. The ordering \leq on cardinal numbers is a *total ordering*. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: d < e or d = e or d > e.
- 16. Set A is uncountable when $o(A) \not\leq \aleph_0$. Using item 15 we can reformulate this by saying: A is uncountable when $o(A) > \aleph_0$.
- 17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
- 18. \mathbb{Z} and \mathbb{Q} are countable.
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
- 20. \mathbb{R} is uncountable. $c = o(\mathbb{R}) = o(P(\mathbb{N}^*))$.
- 21. If d = o(D) and e = o(E) then d + e is the cardinality of $D \bigcup E$ if we assume that $D \bigcap E = \emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^e is the cardinality of D^E where $D^E = \{\text{all functions from } E \text{ to } D\}$.
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$.

If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max(d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations $+, \cdot, \max$ are the same!

- 23. There is a bijection between P(A) and $\{0,1\}^A$, and hence $o(P(A)) = o(\{0,1\}^A) = o(\{0,1\})^{o(A)} = 2^{o(A)}$.
- 24. $c = o(\mathbb{R}) = o(P(\mathbb{N}^*)) = o(\{0,1\}^{\mathbb{N}^*}) = 2^{o(\mathbb{N}^*)} = 2^{\aleph_0}.$
- 25. $(d_1d_2)^e = d_1^e d_2^e, \quad d^{e_1+e_2} = d^{e_1}d^{e_2}, \quad (d^e)^f = d^{e_f}$
- 26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $o(A) \leq de$ (if the d sets are disjoint, then you may replace the \leq by =). Now if d or e is infinite, and both are non-zero, then we can also replace de by max(d,e), see item 22.

List of facts for Chapter 4.

- 1. A metric space M is set with a distance function with the following properties (for all $a, b, c \in M$): D(a, a) = 0, D(a, b) > 0 whenever $a \neq b$, D(b, a) = D(a, b), and the triangle inequality: $D(a, c) \leq D(a, b) + D(b, c)$.
- 2. $S_r(x)$ is the **open ball** with radius r and center x. $S_r(x) = \{p \in M | D(x, p) < r\}$. So this is the set of all points you can reach if you start from x and then travel a distance that is *less than* r.
- 3. We say that p and x are r-close when D(p, x) < r. So $S_r(x)$ is the set of all points that are r-close to x.
- 4. Any set that contains $S_r(x)$ for some r > 0 is called a **neighborhood** of x. So a set U is a neighborhood of x when there exists some positive r such that all points that are r-close to x are in the set U.
- 5. Let U be a subset of M. The following statements are **equivalent**:
 - (a) $\exists_{r>0} S_r(x) \subseteq U$
 - (b) U is a neighborhood of x
 - (c) U contains a neighborhood of x.
- 6. A set $U \subseteq M$ is **open** when property 5(a)(b)(c) is true for every x in U.
- 7. Note: a neighborhood of x is **not the same** as an open set, because if we want to check that U is an open set then we need to check property 5(a) for *every* element of U. Whereas to check if U is a neighborhood of x, we only have to check property 5(a) for one element (namely x).
- 8. The sets \emptyset and M are always open (even if M does not "look" open. To understand this, selecting M means selecting *all points* to be considered. Then all *r*-close points to any x in M are automatically in M).
- 9. An **open neighborhood** is (these conditions are equivalent):
 - (a) A neighborhood of x that happens to be an open set.
 - (b) An open set that happens to contain x.
- 10. Any union of open sets is always open (even infinitely many sets!).
- 11. The intersection of **finitely many** open sets is again open.
- 12. x is an **isolated point** when:
 - (a) $\{x\}$ is open
 - (b) There is a neighborhood of x that contains just x and no other elements.
 - (c) $\exists_{r>0} S_r(x) = \{x\}$
 - (d) A sequence x_1, x_2, \ldots in M can only converge to x when there is some N such that all $x_i = x$ for all $i \ge N$. In other words, when there is some tail x_N, x_{N+1}, \ldots of your sequence that equals x, x, \ldots

- 13. x is **not isolated** when
 - (a) $\{x\}$ is not open.
 - (b) Every neighborhood of x will contain more elements than just x.
 - (c) For every r > 0 the set $S_r(x)$ contains more than just x.
 - (d) There exists a sequence x_1, x_2, \ldots in M that converges to x but where $x_n \neq x$ for every n(To produce such a sequence, do the following: for every n, the set $S_{\frac{1}{n}}(x) - \{x\}$ is not empty by part (c), so we can choose some x_n in $S_{\frac{1}{n}}(x) - \{x\}$. Then $x_n \neq x$ but $D(x_n, x) < \frac{1}{n}$ and therefore x_1, x_2, \ldots converges to x.)
- 14. Let x_1, x_2, \ldots be a sequence. A **tail** is what you get when you throw away the first \ldots (finitely many) elements. So a tail is a subsequence of the form x_N, x_{N+1}, \ldots for some N (here we threw away the first N-1 elements).
- 15. x_1, x_2, \ldots converges to x when
 - (a) For every $\epsilon > 0$ the sequence has a tail contained in $S_{\epsilon}(x)$.
 - (b) $\forall_{\epsilon>0} \exists_N \forall_{i\geq N} D(x_i, x) < \epsilon$

When these equivalent properties hold then we say that x is the limit of the sequence x_1, x_2, \ldots

The most boring convergent sequences are those that have a tail that is constant. Such a sequence obviously converges. If x is isolated, then item 12(d) says that only boring sequences can converge to x.

However, if x is not isolated, then there are more interesting sequences that converge to x, see item 13(d).

- 16. M is **discrete** when
 - (a) Every x in M is isolated.
 - (b) $\{x\}$ is open for every $x \in M$.
 - (c) Every set $U \subseteq M$ is open.
- 17. A set $F \subseteq M$ is closed when
 - (a) If a sequence x_1, x_2, \ldots in F converges to x then x must be in F.
 - (b) If $S_r(x) \cap F$ is not empty for every r > 0 then $x \in F$.
 - (c) If $F \cap U \neq \emptyset$ for every neighborhood U of x then $x \in F$.
 - (d) If every neighborhood of x intersects F (if every neighborhood of x has element(s) in common with F) then $x \in F$.
 - (e) The complement of F is open, i.e. $F^c = M F$ is open.
 - (f) F contains all of its limit points (x is a limit point of $F \Longrightarrow x \in F$).

- 18. A point x is called a **limit point** of A if there is a sequence in $A \{x\}$ that converges to x.
- 19. \overline{A} is called the **closure** of the set A.
 - (a) \overline{A} is the union of A and all of its limit points.
 - (b) \overline{A} is the smallest closed set that contains A.
 - (c) \overline{A} is the intersection of all closed sets that contain A.
 - (d) $x \in \overline{A} \iff$ every neighborhood of x intersects A.
 - (e) $x \in \overline{A} \iff \exists$ a sequence $x_1, x_2, \ldots \in A$ that converges to x.
 - (f) $x \in \overline{A} \iff \forall_{\epsilon>0}$ there is a point in A that is ϵ -close to x.
- 20. x is a **limit point** of A if x is in the closure of $A \{x\}$.
- 21. If x_1, x_2, \ldots converges to x and y_1, y_2, \ldots converges to y, then $D(x_1, y_1), D(x_2, y_2), \ldots$ converges to D(x, y).
- 22. The diameter of a set A is the supremum of $\{D(x, y) | x, y \in A\}$.
- 23. If A is a set, then the diameter of A equals the diameter of \overline{A} . To prove this, you need item 21.
- 24. The union of *finitely many* closed sets is again closed.
- 25. The intersection of closed sets (even if you take infinitely many closed sets!) is again closed.