Test 1, Feb 6 2019, Intro Advanced Math.

- 1. Let A, B, C be sets. If $A \subseteq B \bigcup C$ then show $A B \subseteq C$.
- 2. Let p, q be statements. Which of the following statements are logically equivalent, if any? Which are tautologies, if any?
 - $S_1: \quad p \lor q$ $S_2: \quad (\neg q) \lor (p \Longrightarrow q)$
 - $S_3: (\neg q) \Longrightarrow p.$
- 3. Give the definitions of:
 - (a) A function $f: A \to B$ is one-to-one (injective) when:
 - (b) The function $f^{-1}: P(B) \to P(A)$ is defined as follows: If $T \in P(B)$ then $x \in f^{-1}(T)$ if and only if:
 - (c) If $S \subseteq L$ where L is a p.o.set with ordering \leq then u is a greatest lower bound for S when:
 - (d) If u is a bottom element of S, must u then also be a greatest lower bound for S? (Yes/No with brief explanation).
- 4. Let $f : A \to B$ and $g : B \to C$. If the composition $g \circ f : A \to C$ is onto then show that g is onto.
- 5. Suppose L is a chain and that $S \subseteq L$ has no top element. Then show $\forall_{a \in S} \exists_{b \in S} b > a$.

Writing proofs.

- 1. Direct proof for $p \Longrightarrow q$. Assume: p. To prove: q.
- 2. Proving $p \Longrightarrow q$ by contrapositive. Assume: $\neg q$. To prove: $\neg p$.
- 3. Proving S by contradiction. Assume: $\neg S$. To prove: a contradiction.
- 4. Proving $p \Longrightarrow q$ by contradiction. Assume: p and $\neg q$. To prove: a contradiction.
- 5. Direct proof for a $\forall_{x \in A} P(x)$ statement. To ensure you prove P(x) for all (rather than for some) x in A, do this: Start your proof with: Let $x \in A$. To prove: P(x).
- 6. Direct proof for $\exists_{x \in A} P(x)$ statement. Take x := [write down an expression that is in A, and satisfies P(x)].
- 7. Proving $\forall_{x \in A} P(x)$ by contradiction. Assume: $x \in A$ and $\neg P(x)$. To prove: a contradiction.
- 8. Proving $\exists_{x \in A} P(x)$ by contradiction. Assume: $\neg P(x)$ for every $x \in A$. To prove: a contradiction.

9. Proving S by cases.

Suppose for example a statement p can help to prove S. Write two proofs: Case 1: Assume p. To prove: S. Case 2: Assume $\neg p$. To prove S.

- 10. **Proving** $p \land q$ Write two separate proofs: To prove: p. To prove: q.
- 11. Proving $p \iff q$ Write two proofs. To prove: $p \Longrightarrow q$ To prove: $q \Longrightarrow p$.
- 12. Proving p ∨ q
 Method (1): Assume ¬p. To prove: q.
 Method (2): Assume ¬q. To prove: p.
 Method (3): Assume ¬p and ¬q. To prove: a contradiction.
- 13. Using $p \lor q$ to prove another statement r. Write two proofs: Assume p. To prove r. Assume q. To prove r.
- 14. How to use a for-all statement $\forall_{x \in A} P(x)$. You need to produce an element of A, then use P for that element.