Test 1, Intro Advanced Math

- 1. Let A, B, C be sets. Assume $C A \subseteq B$, then show $C B \subseteq A$.
- 2. Let p, q be statements. Which of the following statements are logically equivalent, if any? Which are tautologies, if any?
 - $\begin{array}{ll} S_1: & p \lor (p \Longrightarrow q) \\ S_2: & p \lor (q \Longrightarrow p) \end{array}$
 - $S_3: p \Longrightarrow q$
 - $S_4: (\neg p) \Longrightarrow (\neg q).$
- 3. Give the definitions of:
 - (a) A function $f: A \to B$ is onto when:
 - (b) L is partially ordered set when:
 - (c) L is a chain when:
 - (d) If $S \subseteq L$ then a lower bound of S is:
 - (e) If $S \subseteq L$ then a bottom element of S is:
- 4. If $f: A \to B$ is onto and $g: B \to C$ is onto, then show that the composition $g \circ f: A \to C$ is onto.
- 5. Suppose L is a partially ordered set but not a chain. Show that there is a non-empty set $S \subseteq L$ that has no bottom element.
- 6. Give an example of a partially ordered set L and a non-empty subset $S \subseteq L$ where S has a greatest lower bound but not a bottom element.