Multiplying polynomials.

A polynomial f in $\mathrm{Q}[\mathrm{x}]$ is an expression:

$$
\mathrm{f}=\operatorname{sum} \mathrm{a} . \mathrm{i} * \mathrm{x}^{\wedge} \mathrm{i}
$$

where a.i are rational numbers. For example:

```
\(>\mathrm{f}:=3 / 2\) * \(\mathrm{x}^{\wedge} 3+5 * \mathrm{x}-3\);
```

$$
f:=\frac{3}{2} x^{3}+5 x-3
$$

> degree (f,x); \# = highest power of x
> ldegree(f,x); \# = lowest power of x. Note: 3 = 3*x^0 so lowest power $=0$
> list_of_coefficients := [seq(coeff(f,x,i), i=0..degree(f,x))];

$$
\text { list_of_coefficients }:=\left[-3,5,0, \frac{3}{2}\right]
$$

Now we will represent polynomials in the following way:
The list $\mathrm{L}=[\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{an}]$ will correspond to the polynomial

$$
\left.\mathrm{f}=\mathrm{an} * \mathrm{x}^{\wedge} \mathrm{n}+\ldots+\mathrm{a} 1^{*} \mathrm{x}^{\wedge} 1+\mathrm{a} 00^{*} \mathrm{x}^{\wedge} 0 \quad \text { (note: } \mathrm{x}^{\wedge} 1 \text { is just } \mathrm{x} \text { and } \mathrm{a} 0^{*} \mathrm{x}^{\wedge} 0 \text { is just a0}\right) .
$$

Assignment 1: write a procedure called:

add_poly $:=\operatorname{proc}(\mathrm{L} 1, \mathrm{~L} 2)$
local ...
end:
whose input is two lists, and whose output is one list that corresponds to the sum. Note: Maple can already add lists:
$>[3,6,-1,3 / 4]+[0,0,3,1]$;

$$
\left[3,6,2, \frac{7}{4}\right]
$$

$>[1,2,3,4]+[1,2,3]$;
Error, adding lists of different length
but the addition only works if the lengths are the same.

So your procedure should do the following:
if the lengths are the same (nops(L1) $=$ nops(L2)) then just use +
if the lengths are not the same, then make the shorter list longer by adding 0 's at the end, and then add the lists.

At the end, if the last entry happens to be 0 , for example when you add:
f1:=3*x^2-1;
f2 : $=-3^{*} \mathrm{x}^{\wedge} 2+5^{*} \mathrm{x}+1$;
then you have $\mathrm{L} 1=[-1,0,3]$ and $\mathrm{L} 2=[1,5,-3]$ and the sum is $[0,5,0]$ but $\mathrm{f} 1+\mathrm{f} 2=5 * \mathrm{x}$ which has only degree 1 , so you want to simplify the list $\mathrm{L} 1+\mathrm{L} 2=[0,5,0]$ by removing the last 0 . So if the input is L 1 , L 2 , you compute first $\mathrm{L} 1+\mathrm{L} 2=[0,5,0]$ and then you remove the last 0 . You can not do that by: $\operatorname{subs}(0=$ NULL,...$)$
because that would also remove the first 0 which is not what we want.
So at the end, if $\mathrm{L}=\mathrm{L} 1+\mathrm{L} 2$ and $\mathrm{f}=\mathrm{f} 1+\mathrm{f} 2$ then you want: $\operatorname{nops}(\mathrm{L})=\operatorname{degree}(\mathrm{f} 1, \mathrm{x})+1$.

Assignment 2:

Note that in Maple you can multiply a list by a number:
> -2 * $[3,45,0,-2]$;

$$
[-6,-90,0,4]
$$

So if a polynomial f is represented by a list L , and if k is some number, then this will let you determine the list of coefficients of $k * f$.

The next step is the determine the list of: $f, x^{*} f, x^{\wedge} 2 * f, \ldots$ etc.
Note that to compute the list of $x *$ f, you need to add one entry (with value 0) at the beginning of the list.

Now, if $g=b 0^{*} x^{\wedge} 0+\ldots+b n * x^{\wedge} n$ then you can calculate $g^{*} f$ as:
$\mathrm{b} 0 * \mathrm{f}+\mathrm{b} 1 * \mathrm{x} * \mathrm{f}+\mathrm{b} 2 * \mathrm{x} \wedge 2 * \mathrm{f}+\ldots$
and you can compute this list by using the add_poly command from assignment 1.
This way you can write a procedure:
mult_poly := proc(L1, L2)
end:
that computes the product of two polynomials.

Assignment 3:

If L is a list of numbers, and k is a number, and you do: $k * L$ then the number of multiplications number*number that Maple must do equals: nops(L), there is one multiplication for each element of L.

If L1 and L2 both have n entries, then how many number*number multiplications will be done during
the computation: mult_poly(L1, L2) ?

