
Computer Algebra, week 1, lecture 4:

Modular arithmetic.

iquo = integer quotient
irem = integer remainder
> iquo(80,12);

6
> irem(80,12);

8
Means: if you divide 80 by 12, it fits 6 times, and the remainder is 8.  So 80 = 6*12 + 8.
> 80/12;

20

3
> evalf(%);

6.666666667
The command evalf computes a floating point approximation (evalf = EVALuate Floating) of an exact 
expression.
As you see above, there are different ways to divide integers. A division with / could produce an 
integer or a rational number. But there is also integer division, which always produces integers. In 
integer division, there is a quotient (iquo in Maple, short for: integer quotient. The command  quo in 
Maple means quotient of polynomials and not integers) and there is a remainder irem (again rem in 
Maple is for polynomials, and irem is integer remainder, so irem is for integers).

In general, if you have positive integers a,b, then integer division a by b means finding two integers q 
and r such that a=q*b+r. Here q is the quotient and r is the remainder. Furthermore r must be smaller 
than b, and r must be greater or equal than 0. That makes the quotient and remainder uniquely defined. 
> a:=80;

 := a 80
> b:=12;

 := b 12
> q:=iquo(a,b);

 := q 6
> r:=irem(a,b);

 := r 8
> a;

80
> q*b+r;

80
So indeed a = q*b+r.
> a:=2083475029337498275;
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 := a 2083475029337498275
> b:=1000;

 := b 1000
> ‘Number of Digits of a‘ := length(a);

 := Number of Digits of a 19
> q:=iquo(a,b);

 := q 2083475029337498
> r:=irem(a,b);  # irem when b=10^3 gives you the last 3 digits

 := r 275
> a = q*b + r;

=2083475029337498275 2083475029337498275
Now lets say we keep b fixed for a little while, and we take a couple of a’s.
> a1, a2, a3 :=2234523, 4574574567, 86547654765465; 

 := , ,a1 a2 a3 , ,2234523 4574574567 86547654765465
> r1, r2, r3 := seq(irem(a||i,b), i=1..3);


# Note: This is for Maple 6 and 7

# To make it work in Maple 5 you must replace the || by a dot .

# So in Maple 5 you have a.i instead of a||i

‘|‘ unexpected

> a1*a2*a3;

884689442003174970864474956565
> irem(%,b);

565
> r1*r2*r3;

r1 r2 r3
> irem(%,b);

( )irem ,r1 r2 r3 1000
Hey, that’s the same.

"Computing modulo b" means: "whenever you see a number K >= b, replace it with irem(K,b)".

If we compute a1*a2*a3 and then reduce it modulo b (that means: take the remainder 
irem(a1*a2*a3,b)) we get the same result as when we first reduce a1,a2,a3 modulo b, then take the 
product, and then reduce again modulo b. Another example:
> b:=9;

 := b 9
> a1, a2, a3 :=1231, 3434, 123;

 := , ,a1 a2 a3 , ,1231 3434 123
> r1, r2, r3 := seq(irem(a||i,b),i=1..3);
‘|‘ unexpected

> a1+a2+a3;
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4788
> irem(%,b);

0
> r1+r2+r3;

+ +r1 r2 r3
> irem(%,b);

( )irem ,+ +r1 r2 r3 9
> 135*a1^2*a2 + 98*a3^12+a3;

1175134057174257519619332771
> irem(%,b);

6
> 135*r1^2*r2 + 98*r3^12+r3;

+ +135 r12 r2 98 r312 r3
> irem(%,b);

( )irem ,+ +135 r12 r2 98 r312 r3 9
> irem(135,b)*r1^2*r2 + irem(98,b)*r3^12+r3;

+8 r312 r3
> irem(%,b);

( )irem ,+8 r312 r3 9
Whenever you have an expression with products and sums, you can replace whatever you want in 
there by its remainder modulo b. The expression will then change, but its remainder modulo b will not. 
The following illustrates this, and illustrates the use of the Maple command map.
> V:=[112,2343,32445,1114,12345];

 := V [ ], , , ,112 2343 32445 1114 12345
> map(hello,V);

[ ], , , ,( )hello 112 ( )hello 2343 ( )hello 32445 ( )hello 1114 ( )hello 12345
> map(hello,V, x,y,z);

( )hello , , ,112 x y z ( )hello , , ,2343 x y z ( )hello , , ,32445 x y z ( )hello , , ,1114 x y z, , , ,[

( )hello , , ,12345 x y z ]
> map(x -> x^2, V);

[ ], , , ,12544 5489649 1052678025 1240996 152399025
> map(x -> 1/x, V);







, , , ,

1

112

1

2343

1

32445

1

1114

1

12345
> irem( V[1]*V[2]+V[3]*V[4]*V[5] , 123);

39
> V:=map(irem,V,123);

 := V [ ], , , ,112 6 96 7 45
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> irem( V[1]*V[2]+V[3]*V[4]*V[5] , 123);

39
The following is an example about a determinant, then irem. Then we first do irem’s in the matrix, 
take the determinant, and do irem. And again the result is the same.
> A:=matrix(4,4,[seq(seq(i^j,i=11..14),j=4..7)]);

 := A













14641 20736 28561 38416
161051 248832 371293 537824

1771561 2985984 4826809 7529536
19487171 35831808 62748517 105413504

> with(linalg):
Warning, new definition for norm
Warning, new definition for trace

> d := det(A);

 := d 3997261151801229312
> b:=34;

 := b 34
> irem(d,b);

20
> AA:=map( irem, A, b);

 := AA













21 30 1 30
27 20 13 12
25 2 33 32
3 24 21 6

> dd := det(AA);

 := dd 687024
> irem(dd,b);

20
Note: If we only wanted to know if matrix A is invertible or not, so if det(A) is zero or not, it would 
have been sufficient to compute irem(det(AA),b). That computation is faster because the entries of AA 
are smaller than those of A. It would have shown that the determinant of A is non-zero modulo b, and 
hence det(A) is non-zero, and A is invertible.
 Instead of writing irem(dd,b) you can also write:
> dd mod b;

20
The command mod will apply irem on every integer in sight, except exponents of polynomials. The b 
we’ve used so far, we were computing modulo b, is called the modulus. It is often denoted by m 
instead of b.
> m:=9;

 := m 9
> f:=293* x^101 + 2134 * x^12 -2 * x^3;

 := f + −293 x101 2134 x12 2 x3
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> f mod m;

+ +5 x101 x12 7 x3

> v:=[123,4325345,15*x^15+12*x-1];

 := v [ ], ,123 4325345 + −15 x15 12 x 1
> v mod m;

[ ], ,6 8 + +6 x15 3 x 8
Note: In Maple, if a<0 and b>0 then irem(a,b)<=0. In mathematics the usual definition of remainder is 
such that the remainder is always >=0. The command mod in Maple behaves like that definition, "a 
mod b" is the usual definition of the integer remainder, it’s >= 0.
> r:= -123 mod 9;

 := r 3
> r:=irem(-123,9);

 := r -6
> q:=iquo(-123,9);

 := q -13
> q*9+r;

-123
Maple’s definition of iquo is such that the relation a*q+r=b still holds. You can also compute the 
quotient and remainder at the same time.
> restart;
> q:=iquo(12345,12,r);

 := q 1028
> r;

9
> q:=iquo(12345,12,r);
Error, wrong number (or type) of parameters in function iquo

Do you remember from the worksheet on quotes what the reason is that it fails the second time?

The optional third argument of iquo and irem must be a name. Since r was evaluated to 9, the input 
really is 12345, 12, 9 and so the third argument is not a name. To fix this one should stop the 
evaluation of r, as follows:
> q:=iquo(12345,12,’r’);

 := q 1028
> r;

9
Now lets take some polynomials, multiply, and reduce all entries modulo 5. Then afterwards, lets first 
reduce, then multiply, and then reduce again.
> p:=29;

 := p 29
> f1 := x^4+randpoly(x,degree=3);
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 := f1 − − − −x4 85 x3 55 x2 37 x 35
> f2 := x^4+randpoly(x,degree=3);

 := f2 + + + +x4 97 x3 50 x2 79 x 56
> f:=expand(f1*f2);

 := f − − − − − + + − −4837 x 13033 x4 14350 x3 7753 x2 1960 x8 12 x7 8250 x6 9543 x5

> sort(f);

+ − − − − − − −x8 12 x7 8250 x6 9543 x5 13033 x4 14350 x3 7753 x2 4837 x 1960
> f mod p;

+ + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
> F1:=f1 mod p;

 := F1 + + + +x4 2 x3 3 x2 21 x 23
> F2:=f2 mod p;

 := F2 + + + +x4 10 x3 21 x2 21 x 27
> F:=expand(F1*F2) mod p;

 := F + + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
The polynomial f is an element of Q[x]. It is reducible, it equals f1*f2. The polynomial F equals f mod 
p. It is "reducible modulo p" because there are polynomials F1, F2 such that F1*F2 is congruent to F 
modulo p (i.e. the have the same remainder modulo p). This is something that Maple uses to factor 
polynomial.
> f;

+ − − − − − − −x8 12 x7 8250 x6 9543 x5 13033 x4 14350 x3 7753 x2 4837 x 1960
> factor(f);

( )− − − −x4 85 x3 55 x2 37 x 35 ( )+ + + +x4 97 x3 50 x2 79 x 56
> F;

+ + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
> factor(F);

+ + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
> % mod p;

+ + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
> factor(F) mod p;

+ + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
The command factor(F) mod p does two things: first it factors, then it reduces modulo p. The 
following command does something else:
> K:=Factor(F) mod p;

 := K ( )+ + + +x4 2 x3 3 x2 21 x 23 ( )+ + + +x4 10 x3 21 x2 21 x 27
The command factor(F) searches for polynomials f1,f2,.. such that their product is exactly equal to F.

However, the command Factor(f) mod p; searches for polynomials f1,f2,.. such that the product 
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However, the command Factor(f) mod p; searches for polynomials f1,f2,.. such that the product 
f1*f2*... is not necessarily equal to F, the product is only the same as F  when you reduce F and the 
product modulo p.
> expand(K);

+ + + + + + + +1050 x 365 x4 788 x3 1005 x2 621 x8 12 x7 44 x6 114 x5

Not the same as F.
> % mod p;

+ + + + + + + +x8 12 x7 15 x6 27 x5 17 x4 5 x3 19 x2 6 x 12
That’s equal to F.

If the modulus is m, then the command "mod m" reduces all integers to integers in the range 0..m-1. 
> m:=40;

 := m 40
> k:=1/7 mod 40;

 := k 23
There is a unique integer k in the range 0..m-1 such that the product k*7 reduces to 1 modulo m. 
Therefore, 1/7 will be reduced to that integer k when computing modulo m.
> k*7 mod 40;

1
> 1/15 mod 40;
Error, the modular inverse does not exist

This leads to an error because there is no k such that k*15 can reduce to 1 modulo 40.

In general, there exists a number k such that k*a reduces to 1 modulo m if and only if igcd(a,m)=1.
> igcd(13,40);

1
> 1/13 mod 40;

37
> igcd(22,40);

2
> 1/22 mod 40;
Error, the modular inverse does not exist

A special case is when the modulus m is a prime number. In that case we usually use the letter p. Now 
whenever an integer is reduced modulo p, it ends up in the range 0..p-1. All integers in this range have 
igcd 1 with p,  except the number 0.
So modulo m you can divide by numbers that have igcd 1 with m, but modulo a prime p you can 
divide by any non-zero element (note that by non-zero I mean: non-zero after it has been reduced 
modulo p. Every multiple of p reduces to 0 modulo p).
> p:=19;

 := p 19
> v:=[seq(1/i,i=1..p-1)];

Page 7



 := v






, , , , , , , , , , , , , , , , ,1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13

1

14

1

15

1

16

1

17

1

18
> w:=v mod p;

 := w [ ], , , , , , , , , , , , , , , , ,1 10 13 5 4 16 11 12 17 2 7 8 3 15 14 6 9 18
> seq(w[i]*i, i=1..p-1);

, , , , , , , , , , , , , , , , ,1 20 39 20 20 96 77 96 153 20 77 96 39 210 210 96 153 324
> [%] mod p;

[ ], , , , , , , , , , , , , , , , ,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Another typical thing for prime numbers is that when a is non-zero modulo p, then a^(p-1) reduces to 
1 modulo p, which is called Fermat’s little theorem (not the same as his famous "last theorem").
> {seq(i^(p-1) mod p,i=1..p-1)};  # Fermat’s little theorem holds:

{ }1
> p:=51;

 := p 51
> {seq(i^(p-1) mod p,i=1..p-1)}; # Fermat’s little theorem fails, 

which means that p=51 can not be a prime number.

{ }, , , , , , , , , , , , , , , ,13 15 16 18 19 21 25 30 33 34 36 42 43 49 1 4 9
> 
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