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ABSTRACT
This tutorial will explain the algorithm behind the currently
fastest implementations for univariate factorization over the
rationals. The complexity will be analyzed; it turns out
that modifications were needed in order to prove a poly-
nomial time complexity while preserving the best practical
performance.

The complexity analysis leads to two results: (1) it shows
that the practical performance on common inputs can be
improved without harming the worst case performance, and
(2) it leads to an improved complexity, not only for factoring,
but for LLL reduction as well.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematics of Computing]: Mathemati-
cal Software

General Terms
Algorithms
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Most practical factoring algorithms in Q[x] use a structure
similar to Zassenhaus [10]: factor f modulo a small prime
p, Hensel lift this factorization, and recombine these local
factors into factors in Q[x]. To reduce the combinatorial
part, one first tries several primes, and then selects a p for
which the number (denoted r) of factors mod p is smallest.

Polynomial time algorithms, based on lattice reduction,
were given in [7, 9]. For a polynomial f of degree N , and
entries bounded in absolute value by 2h, these algorithms
perform O(N2(N + h)) LLL switches. Schönhage [9] gave a
modification to LLL reduction, and obtained the following
complexity for factoring: Õ(N4(N +h)2), where ∼ indicates
that logarithmic factors are ignored.
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When comparing an algorithm with other algorithms, it
is useful to know

Q.1 What is the worst-case asymptotic behavior?

Q.2 What is the best proven upper bound?

Q.3 Is the bound a good predictor for the running time on
worst-case inputs?

Q.4 What about the performance on typical inputs?

Most attention is usually spent on Q.2 even though the other
questions are more interesting.

Despite its exponential complexity, Zassenhaus [10] is usu-
ally faster than the polynomial time algorithms in [7, 9]. To
explain this, note that [10] is not exponential in terms of N ,
it is exponential in r, which is usually ≪ N . However, it
is possible for r and N to be comparable in size. The best-
known examples are Swinnerton-Dyer polynomials. They
have r = N/2, which is worst-case (r > N/2 indicates the
presence of factors of low degree).

The algorithm with the best complexity is described in [4].
It is based on the strategy in [5, 8]. It is efficient in practice
and improves Schönhage’s complexity, except if one makes
the highly restrictive assumption that N + h = O(r), in
which case [4] is only faster by a large constant.

We will denote the complexity of the algorithm in [4] as
CH +CL +CO where CH is the time spent on Hensel lifting,
CL is the time spent inside a variation of the LLL algorithm,
and CO are other costs (factoring f modulo several primes,
preparing the input for LLL, reconstructing factors in Z[x]
by multiplying p-adic factors, etc.).

For the LLL cost CL, the answer to question Q.2 is Õ(r6).
The main ingredient is to prove that the number of LLL
switches is bounded by O(r3) (no logarithmic factors). Note
that the bound for CL is independent of both N and h!
Regarding question Q.1, experiments suggest that CL grows
less than r6, but this does not imply that the asymptotic
complexity has degree < 6 (perhaps r6 still manifests itself
for impractically large inputs?). Regarding question Q.3 for
CL, it seems that r6 is roughly in the right ball-park.

CH has lower degree than CL, but this does not imply
that CH is asymptotically smaller than CL. After all, CH

depends on both N and h which are generally much larger
than r. Indeed, for typical inputs, CH dominates the CPU
time. Ideally, one would have a bound for CH that (a) can be
proven, and (b) reflects the actual behavior of the algorithm.

Hensel lifting is highly optimized [3]. In order to know
how much time [4] will spend on Hensel lifting, we need to



know the p-adic precision that [4] will lift to. That turns
out to be difficult to predict, it can vary considerably, and
our bound appears to be a factor N higher than what can
actually occur.

In practice, [4] lifts far less than [7, 9]. Regarding question
Q.1, we conjecture that (just like [10]) it never lifts further

than pa with log(pa) = Õ(N + h). This can be translated
into a number theoretical problem. This problem has some
resemblance to the abc-conjecture and looks plausible, but
unfortunately, we could not prove it. Regarding question
Q.2, our bound from [2] is log(pa) = O(N(N +h)), which is
the same as in [7, 9].

Even though we could not prove an upper bound with
log(pa) = Õ(N + h), the actual amount of Hensel lifting in
[4] is often smaller still, through a technique called early-
termination. Suppose for example that the input f is irre-
ducible (that does not mean that factoring is an empty task;
one still has to compute an irreducibility proof). Though
counter intuitive, computing mod pa often suffices to prove
irreducibility of a polynomial with coefficients ≫ pa.

It would not harm the asymptotic worst-case complexity if
the algorithm starts by Hensel lifting the p-adic factors mod
pa with log(pa) = O(N + h). But it would not be a good
design choice. For instance, suppose f has two factors, f =
f1f2 ∈ Z[x], and that f1 has 10-digit while f2 has 1000-digit
coefficients. Suppose also that the combinatorial problem
is solved once log

10
(pa) reaches 50. Then f1 (but not f2)

can be reconstructed from its image mod pa. But f2 can
be constructed as f/f1. So even though f had coefficients
with ≈ 1000 digits, a far smaller p-adic precision could be
sufficient to factor it.

Inputs where where one of the irreducible factors is large,
and all the others are small, are common (e.g. irreducible
inputs). For questions Q.3 and Q.4, this means that for poly-
nomials with large coefficients, a good worst-case predictor
for CH can overestimate the CPU time on typical inputs.

The goal in [4] was to set up the algorithm in such a way
that we make no compromises on the practical performance
(typical inputs and worst-case inputs) while simultaneously
designing it in such a way that it satisfies the best upper
bound that we are able to prove for a factoring algorithm.

The bound for CL is quite good, but the bound for CH is
not. It is highly implausible that log(pa) = O(N(N + h))
is close to sharp in the worst case. But it is also difficult
to prove a better bound. Settling this issue would lead to
a much better (Q.1 instead of Q.2) description of the com-
plexity of factoring.

I used to think that complexity analysis is not useful in
general, that it was useful if and only if it gives a good de-
scription for the actual CPU time. If known bounds are far
from the actual performance, then, in order to avoid confu-
sion, I thought it is better to give no bound (i.e. complexity
= unknown). My view has become more nuanced since then.
The complexity analysis of CL, the LLL cost during factor-
ing, has lead to improvements (“gradual feeding”, discussed
at [1] and analyzed in [8, 6]) for other LLL applications as
well. Moreover, the complexity analysis also showed how
a strategy called “early termination” (to improve CPU tim-
ings on typical inputs) could be set up in such a way that
the CPU time on worst-case inputs will not be adversely
affected. So even if only CPU timings matter, as I used to
think, complexity analysis still turned out to be useful.

1. REFERENCES
[1] Open Questions From AIM Workshop, 2006.

www.aimath.org/WWN/polyfactor/polyfactor.pdf

[2] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel.
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