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1. Introduction

Let K/k be a finite separable field extension of degree n and α a primitive element
of K over k with minimal polynomial f ∈ k[x]. We explore the problem of computing
subfields of K which contain k. We prove that all such subfields (there might be more
than polynomially many) can be expressed as the intersections of at most n particular
subfields which we will call the ‘generating subfields’. We give an efficient algorithm to
compute these generating subfields.

Previous methods progress by solving combinatorial problems on the roots of f , such
as (4; 5; 8; 13). Similar to our algorithm (11) starts by factoring f over K and then
tries to find all subfield polynomials (see Definition 5) by a combinatorial approach.
Such approaches can be very efficient, but in the worst cases they face a combinatorial
explosion. While (14) proceeds by factoring resolvent polynomials of degree bounded by
(

n
⌊n/2⌋

)

. By introducing the concept of generating subfields we restrict our search to a

small number of target subfields. This new fundamental object allows for polynomial
time algorithms.

We can find the generating subfields whenever we have a factorization algorithm for
f over K or any K̃/K and the ability to compute a kernel in k. For k = Q this implies
a polynomial-time algorithm as factoring over Q(α) and linear algebra over k = Q are
polynomial time. When one desires all subfields we give such an algorithm which is
additionally linear in the number of subfields.

For the number field case we are interested in a specialized and practical algorithm.
Thus we replace exact factorization over Q(α) by a p-adic factorization and the exact
kernel computation by approximate linear algebra using the famous LLL algorithm for
lattice reduction (15). We take advantage of some recent practical lattice reduction re-
sults (19) and tight theoretical bounds to create an implementation which is practical on
previously difficult examples.

ROADMAP: The concept of the principal and generating subfields are introduced
in Section 2.1. In Section 2.2 we explain how to compute all subfields in a running time
which is linearly dependent on the number of subfields. For the number field case we will
use the LLL algorithm and this case is handled in detail in Section 3. Finally we compare
our approach with the state of the art in Section 4.

NOTATIONS: For a polynomial g we let ‖ g ‖ be the ℓ2 norm on the coefficient
vector of g. For a vector v we let v[i] be the ith entry. Unless otherwise noted ‖ · ‖ will
represent the ℓ2 norm.

2. A general algorithm

2.1. Generating subfields

In this section we introduce the concept of a generating set of subfields and prove
some important properties. Let K̃ be a field containing K. We remark that we can choose
K̃ = K, but in some case it might be better to choose a larger K̃ from an algorithmic
point of view. E.g. in the number field case we choose a p-adic completion (see Section 3).
Let f = f1 · · · fr be the factorization of f over K̃ where the fi ∈ K̃[x] are irreducible
and f1 = x− α. We define the fields K̃i := K̃[x]/(fi) for 1 ≤ i ≤ r. We denote elements
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of K as g(α) where g ∈ k[x] is a polynomial of degree < n, and define for 1 ≤ i ≤ r the
embedding

φi : K → K̃i, g(α) 7→ g(x) mod fi.

Note that φ1 is just the identity map id : K → K̃. We define for 1 ≤ i ≤ r:

Li := Ker(φi − id) = {g(α) ∈ K | g(x) ≡ g(α) mod fi}.
The Li are closed under multiplication, and hence fields, since φi(ab) = φi(a)φi(b) = ab
for all a, b ∈ Li.

Theorem 1. If L is a subfield of K/k then L is the intersection of Li, i ∈ I for some
I ⊆ {1, . . . , r}.

Proof. Let fL be the minimal polynomial of α over L. Then fL divides f since k ⊆ L,
and fL =

∏

i∈I fi for some I ⊆ {1, . . . , r} because L ⊆ K̃. We will prove

L = {g(α) ∈ K | g(x) ≡ g(α) mod fL} =
⋂

i∈I

Li.

If g(α) ∈ L then h(x) := g(x) − g(α) ∈ L[x] is divisible by x − α in K[x]. The set of
polynomials in L[x] divisible by x−α is the principal ideal (fL) by definition of fL. Then
h(x) ≡ 0 mod fL and hence g(x) ≡ g(α) mod fL. Conversely, g(x) mod fL is in L[x] (mod
fL) because division by fL can only introduce coefficients in L. So if g(x) ≡ g(α) mod fL
then g(α) ∈ K ∩ L[x] = L.

By separability and the Chinese remainder theorem, one has g(x) ≡ g(α) mod fL if
and only if g(x) ≡ g(α) mod fi (i.e. g(α) ∈ Li) for every i ∈ I. 2

Lemma 2. The set S := {L1, . . . , Lr} is independent of the choice of K̃.

Proof. Let f = g1 · · · gs ∈ K[x] be the factorization of f into irreducible factors over K.
Suppose that fi divides gl. Let L resp. Li be the subfield corresponding to gl resp. fi.
Assume g(α) ∈ L, in other words g(x) ≡ g(α) mod gl. Then g(x) ≡ g(α) mod fi because
fi divides gl. Hence g(α) ∈ Li.

Conversely, assume that g(α) ∈ Li. Now h(x) := g(x) − g(α) is divisible by fi, but
since h(x) ∈ Li[x] ⊆ K[x] it must also be divisible by gl since gl is irreducible in K[x]
and divisible by fi. So g(x) ≡ g(α) mod gl in other words g(α) ∈ L. It follows that
L = Li. 2

Definition 3. We call the fields L1, . . . , Lr the principal subfields of K/k. A set S of
subfields of K/k is called a generating set of K/k if every subfield of K/k can be written
as
⋂

T for some T ⊆ S. Here
⋂

T denotes the intersection of all L ∈ T , and
⋂ ∅ refers to

K. A subfield L of K/k is called a generating subfield if it satisfies the following equivalent
conditions

(1) The intersection of all fields L′ with L ( L′ ⊆ K is not equal to L.
(2) There is precisely one field L ( L̃ ⊆ K for which there is no field between L and L̃

(and not equal to L or L̃).
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The field L̃ in condition 2. is called the field right above L. It is clear that L̃ is the
intersection in condition 1., so the two conditions are equivalent.

The field K is a principal subfield but not a generating subfield. A maximal subfield of
K/k is a generating subfield as well. Theorem 1 says that the principal subfields form a
generating set. By condition 1., a generating subfield can not be obtained by intersecting
larger subfields, and must therefore be an element of every generating set. In particular,
a generating subfield is also a principal subfield.

If S is a generating set, and we remove every L ∈ S for which
⋂{L′ ∈ S|L ( L′}

equals L, then what remains is a generating set that contains only generating subfields.
It follows that

Proposition 4. S is a generating set if and only if every generating subfield is in S.

Here we just want to illustrate the requirements for finding a generating set of subfields
in polynomial time. Suppose that K/k is a finite separable field extension and that one has
polynomial time algorithms for factoring over K and linear algebra over k (for example
when k = Q). Then applying Theorem 1 with K̃ = K yields a generating set S with
r ≤ n elements in polynomial time. We may want to minimize r by removing all elements
of S that are not generating subfields, then r ≤ n− 1.

Note that the computation of the principal subfields Li is trivial when we know a fac-
torization of f over K. In this case we get a k-basis of Li by a simple kernel computation.
In the number field case, the factorization of f over K is the bottleneck. Therefore for
some fields k we prefer to take a larger field K̃ ) K where the factorization is faster. In
Section 3 this is done for k = Q, but this can be generalized to an arbitrary global field.
Then we let K̃ be some completion of K. This reduces the cost of the factorization, how-
ever, one now has to work with approximations for the factors fi of f , which means that
we get approximate (if K̃ is the field of p-adic numbers then this means modulo a prime
power) linear equations. Solving approximate equations involves LLL in the number field
case and (2; 7) in the function field case.

2.2. All subfields

Now suppose that one would like to compute all subfields of K/k by intersecting
elements of a generating set S = {L1, . . . , Lr}. We present an algorithm with complexity
proportional to the number of subfields of K/k. Unfortunately there exist families of
examples where this number is more than polynomial in n. Note that we have represented
our subfields k ≤ Li ≤ K as k-vector subspaces of K. This allows the intersection L1∩L2

to be found with linear algebra as the intersection of two subspaces of a vector space.
To each subfield L of K/k we associate a tuple e = (e1, . . . , er) ∈ {0, 1}r, where ei = 1 if
and only if L ⊆ Li.
Algorithm AllSubfields

Input: A generating set S = {L1, . . . , Lr} for K/k.
Output: All subfields of K/k.

(1) Let e := (e1, . . . , er) be the associated tuple of K.
(2) ListSubfields := [K].
(3) Call NextSubfields(S,K, e, 0).
(4) Return ListSubfields.
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The following function returns no output but appends elements to ListSubfields, which is
used as a global variable. The input consists of a generating set, a subfield L, its associ-
ated tuple e = (e1, . . . , er), and the smallest integer 0 ≤ s ≤ r for which L =

⋂{Li | 1 ≤
i ≤ s, ei = 1}.

Algorithm NextSubfields

Input: S,L, e, s.

For all i with ei = 0 and s < i ≤ r do

(1) Let M := L ∩ Li.
(2) Let ẽ be the associated tuple of M .
(3) If ẽj ≤ ej for all 1 ≤ j < i then

append M to ListSubfields and call NextSubfields(S,M, ẽ, i).

Definition 5. Let L be a subfield of K/k. Then the minimal polynomial fL of α over L
is called the subfield polynomial of L.

Remark 6. Let g ∈ K[x] be a monic polynomial. Then the following are equivalent:
(1) g = fL for some subfield L of K/k.
(2) f1 | g | f and [Q(α) : Q(coefficients(g))] = degree(g).
(3) f1 | g | f and the Q–vector space {h(x) ∈ Q[x] | deg(h) < deg(f), h mod g = h

mod f1} has dimension deg(f)/deg(g).

Remark 7. For each subfield L, we can compute the subfield polynomial fL with linear
algebra. Testing if L ⊆ M then reduces to testing if fL is divisible by fM . For many fields
K this test can be implemented efficiently by choosing a non-archimedian valuation v of
K with residue field F such that the f mod v (the image of f in F[x]) is defined and
separable. Then fL is divisible by fM in K[x] if and only if the same is true mod v, since
both are factors of a polynomial f whose discriminant does not vanish mod v.

Subfields that are isomorphic but not identical are considered to be different in this
paper. Let m be the number of subfields of K/k. Since S is a generating set, all subfields
occur as intersections of L1, . . . , Lr. The condition in Step (3) in Algorithm NextSubfields
holds if and only if M has not already been computed before. So each subfield will
be placed in ListSubfields precisely once, and the total number of calls to Algorithm
NextSubfields equals m. For each call, the number of i’s with ei = 0 and s < i ≤ r is
bounded by r, so the total number of intersections calculated in Step (1) is ≤ rm. Step
(2) involves testing which Lj contain M . Bounding the number of j’s by r, the number
of subset tests is ≤ r2m. One can implement Remark 7 to keep the cost of each test low.

Theorem 8. Given a generating set for K/k with r elements, Algorithm AllSubfields
returns all subfields by computing at most rm intersections and at most r2m subset tests,
where m is the number of subfields of K/k.

2.3. Quadratic subfields

We’ve mentioned that there might be more than polynomially many subfields. We
have presented an algorithm which efficiently computes a set of generating subfields.
This set includes all maximal subfields. As a theoretical application, to illustrate this
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framework, we note that all quadratic subfields can be computed in polynomial time
when we already know the generating subfields. Note that during our discussion we
encounter a field extension with Galois group Cs

2 , which is the simplest example of a field
extension which has more than polynomially many subfields.

Let Q(K/k) denote the subfield generated over k by {a ∈ K|a2 ∈ k}, and let C2

denote the cyclic group of order 2. If K = Q(K/k), in other words the Galois group of
f is Cs

2 for some s, then n = 2s and f splits over K into linear factors f1 · · · fn where
f1 = x−α. Furthermore, there are precisely n− 1 generating subfields L2, . . . , Ln and n
principal subfields L1, . . . , Ln where L1 = K.

Conversely, suppose there are n principal subfields. Every principal subfield corre-
sponds to at least one factor of f over K, and hence to precisely one factor since f has
degree n. So f must split into linear factors, and each Li corresponds to precisely one
linear factor fi. Then the minimal polynomial of α over Li is f1fi when i ∈ {2, . . . , n}.
The degree of f1fi is 2, so there are n − 1 subfields of index 2, which implies that the
Galois group is Cs

2 for some s.

Theorem 9. If factoring over K and linear algebra over k can be done in polynomial
time then all quadratic subfields of K/k can be computed in polynomial time.

Note that a subfield of index 2 of K/k corresponds to an autmorphism of K/k of
order 2 which can be easily computed. Therefore the knowledge of all principal subfields
of Q(K/k) is equivalent to the knowledge of all automorphisms of the Galois group.
Hence, the quadratic subfields of Q(K/k) can be computed easily in polynomial time. So
it suffices to prove that the following algorithm computes Q(K/k) in polynomial time.
Algorithm Q

Input: A separable field extension K/k where K = k(α).
Output: Q(K/k).

(1) Let n := [K : k]. If n is odd then return k.
(2) Compute the set S of generating subfields.
(3) If K/k has n− 1 distinct subfields of index 2 then return K.
(4) Choose a generating subfield Li ∈ S with index > 2, and let L̃i be the field right

above Li, so Li ( L̃i :=
⋂{Lj ∈ S |Li ( Lj}.

(5) If [L̃i : Li] = 2 then return Q(L̃i/k), otherwise return Q(Li/k).

In the first call to Algorithm Q, we can compute a generating set in Step (2) in
polynomial time using Theorem 1 with K̃ := K. For the recursive calls we use:

Remark 10. If S is a generating set for K/k and if L is a subfield of K/k, then
{L⋂L′|L′ ∈ S} is a generating set of L/k.

For Step (3) see the remarks before Theorem 9. If we reach Step (4) then K 6= Q(K/k).
The field Li in Step (4) exists by Lemma 11 below. Let L̃i be the field right above Li. If
[L̃i : Li] = 2 then L̃i 6= K so the algorithm terminates.

Let a ∈ Q(K/k). We may assume that a2 ∈ k. Now L̃i is contained in any subfield L′

of K/k that properly contains Li. So if a 6∈ Li then Li(a) contains L̃i and hence equals
L̃i since [Li : Li(a)] = 2. Then a ∈ L̃i. We conclude Q(K/k) ⊆ L̃i. If [L̃i : Li] 6= 2 then
the assumption a 6∈ Li leads to a contradiction since Li(a) can not contain L̃i in this
case. So Q(K/k) ⊆ Li in this case, which proves that Step (5) is correct.
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Lemma 11. If K/k does not have n− 1 distinct subfields of index 2 then there exists a
generating subfield of index > 2.

Proof. Assume that every generating (and hence every maximal) subfield has index 2.
So the subfields of index 2 form a generating set. Let G be the automorphism group of
K/k. If K/Li and K/Lj are Galois extensions, then so is K/(Li∩Lj) since Li∩Lj is the
fixed field of the group generated by the Galois groups of K/Li and K/Lj . If [K : Li] = 2
then K/Li is Galois. Let k′ be the intersection of all subfields Li of index 2. Then K/k′

is Galois. However, k′ must equal k, otherwise the set of subfields of index 2 can not be
a generating set. It follows that K/k is Galois.

If n is not a power of 2, then there exists a maximal subfield of odd index. If n = 2s

with s > 1 then the Galois group must have an element of order 4 (G can not be Cs
2

since the number of subfields of index 2 is not n−1). This element of order 4 corresponds
to a linear factor fi of f in K[x]. Let Li be its corresponding principal subfield. Then
Li is contained in m maximal subfields where m is either 1 or 3. Let f̌i be the minimal
polynomial of α over Li. If m = 3 then every irreducible factor of f̌i/(x−α) corresponds
to a subfield of index 2. This is a contradiction since fi divides f̌i/(x− α). 2

3. The number field case

3.1. Introduction

In this section we describe an algorithm for producing a generating set when K =
Q(α). Factoring f over K, though polynomial time, is slow, thus we prefer to use an
approximation of a p-adic factorization and LLL. We show that when the algorithm
terminates 1 , it returns the correct output.

For a prime number p, let Qp denote the field of p-adic numbers, Zp the ring of p-adic
integers, and Fp = Z/(p). We choose a prime number p with these three properties: p
does not divide the leading coefficient of f ∈ Z[x], the image f of f in Fp[x] is separable,
and has at least one linear factor which we denote f1 (asymptotically, the probability
that a randomly chosen prime p has these properties is ≥ 1/n, where equality holds when
K/k is Galois).

By factoring f in Fp[x] and applying Hensel lifting, we obtain a factorization of f =
f1 · · · fr over Qp where f1 has degree 1. By mapping α ∈ K to the root α1 of f1 in Qp

we obtain an embedding K → Qp, and so we can view K as a subfield of K̃ := Qp.

The advantage of taking Qp (instead of K) for K̃ is that it saves time on factoring

f over K̃. Since p does not divide the denominators of the coefficients of f , the factors
f1, . . . , fr of f over Qp lie in Zp[x]. We can not compute these factors with infinite
accuracy, but only to some finite accuracy a, meaning that f1, . . . , fr are only known
modulo pa.

For each of the factors, fi, we will need to find the principal subfield Li which was
defined in Section 2.1 as the kernel of φi− id. To do this we will make use of a knapsack-
style lattice in the style of (19). To get the best performance we would like to design a
lattice such that boundably short vectors correspond with elements in Li.

1 a bound for the running time can be obtained in a similar way as in (3)
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A natural approach would be to use 1, α, . . . , αn−1 as a basis, and search for linear

combinations whose images under φi− id are 0 (mod pa). However, we will use a different

basis. Denote Z[α]<n := Z ·α0 + · · ·+Z ·αn−1 (note: if f is monic then this is simply Z[α]

but we do not assume that f is monic). Then the basis 1
f ′(α) , . . . ,

αn−1

f ′(α) of 1
f ′(α) · Z[α]<n

allows us to prove more practical bounds (this phenomena has also been observed in

other contexts (6)). Using this basis of K we prove the existence of a Q-basis of Li which

has a bounded representation. We delay the proof of this theorem until section 3.5.

Theorem 12. Let Li, the target principal subfield, have degree mi over Q. For β ∈
1

f ′(α) · Z[α]<n with β =
∑

bi
αi

f ′(α) we associate the vector vβ := (b0, . . . , bn−1). Then

there exists mi linearly independent algebraic numbers β1, . . . βmi
∈ Li ∩ 1

f ′(α) · Z[α]<n

each with ‖vβk
‖ ≤ n2‖f‖2.

3.2. The computation of a principal subfield

Now we can continue the description of the computation of the principal subfield Li

corresponding to the factor fi of degree di. As mentioned before we will represent our

elements in the basis 1
f ′(α) , . . . ,

αn−1

f ′(α) . Each of these basis elements will be represented as

the column of an identity matrix to which we attach entries for the image of that basis

element under φi− id. Since these images are only known modulo pa we must also adjoin

columns which allow for this modular reduction. Suppose the degree of fi is di, then our

lattice is spanned by the columns of the following (n + di) × (n + di) integer matrix:

Bi :=





























1

. . .

1

c0,0 . . . c0,n−1 pa

...
. . .

...
. . .

cdi−1,0 . . . cdi−1,n−1 pa





























(1)

where ck,j is the kth coefficient of xj

f ′(x)modfi− xj

f ′(x)modf1 reduced modulo pa. To in-

terpret a vector v in the column space of this matrix we take the first n entries b0, . . . , bn−1

and then compute (
∑

bjα
j)/f ′(α). A vector corresponding to an element in Li will have

its final di entries be 0 modulo pa. Thus Theorem 12 shows us that the lattice generated

by columns of Bi contains a dimension mi sublattice which has a small basis. This al-

lows us to use the new sub-lattice reduction techniques of (19) on Bi. Thus, rather than

standard LLL, we use LLL with removals which performs lattice reduction but removes

any vectors in the final position whose G-S norm is above a given bound. The following

lemma is derived from (15) and justifies these removals.

Lemma 13. Given a basis b1, . . . ,bd of a lattice Λ, and let b∗
1, . . . ,b

∗
d be the output of

Gram-Schmidt orthogonalization. If ‖ b∗
d ‖ > B then any vector in L with norm ≤ B is

a Z-linear combination of b1, . . . ,bd−1.
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This technique is common and is used in (10; 19). As the removal condition requires

Gram-Schmidt norms we can state that LLL reduced bases tend to be numerically stable

for Gram-Schmidt computations so a floating point Gram-Schmidt computation could

be used for efficiency (see (20)). Also FLINT 1.6 (9) has an LLL with removals routine

which takes a bound and returns the dimension of the appropriate sub-lattice.

In this way using LLL with removals with the bound from Theorem 12 will allow us to

reduce the dimension. In Figure 1 we give a practical algorithm which will create a basis

of a subfield of K which is highly likely to be Li. We will use D := diag{1, . . . , 1, C, . . . , C}
as a matrix for scaling the last di rows of Bi by a scalar C. Since the vectors guaranteed by

Theorem 12 come from Li we know that the final di entries must be 0. Thus multiplication

on the left by D and removals will eventually ensure that vectors with zero entries are

found by LLL.

Input: fi
Output: hk which probably generate Li

1. Create lattice Bi from equation (1)
2. A := LLL with removals(Bi, n

2 ‖ f ‖)
3. m := dim(A)
4. while ∃l > n, j such that A[l, j] 6= 0 :
5. A := D ·A
6. A := LLL with removals(A,n2 ‖ f ‖)
7. m := dim(A)
8. if m ∤ n increase precision repeat principal
9. for 1 ≤ k ≤ m:

10. hk :=
∑n

j=1
A[j,k]xj−1

f ′(x)

Fig. 1. principal algorithm

Using LLL on the matrix entire Bi will suffice for this paper. However, in practice the

di final rows of Bi can also be reduced one at a time. In this way one could potentially

arrive at a solution without needing all rows of Bi. Such an approach is seen in (19) and

could be adapted to this situation.

The algorithm in figure 1 will produce m p-adic polynomials hk, which are likely to

correspond with algebraic numbers which generate Li as a Q-vector space. It is possible

that m is not mi but some other divisor of n. In particular, if the p-adic precision is

not high enough then there could be entries in the lattice basis which are 0 modulo

pa but not exactly 0. In that case one of the hk would not be from Li. Even so the

Q-vector space generated by the hk must at least contain Li. The reason is that at

least mi linearly independent algebraic numbers from Li remain within the lattice after

LLL with removals thanks to the bound of Theorem 12 and Lemma 13.

Theorem 12 can also be used to make a guess for a starting precision of pa. Since any re-

duced basis has Gram-Schmidt norms within a factor 2n+di of the successive minima and

the determinant of Bi is pa·di then we should ensure than pa·di is at least (2n+din2‖f‖)n.

9

Preliminary version – 29 October 2011



3.3. Confirming a principal subfield

In this section we will assume that we have elements which are likely to generate
a principal subfield (in other words, the output of the algorithm in Figure 1). At this
point it seems reasonable to discuss the possible paths forward. This must include a
discussion of the types of output that a user might want. We recommend outputting
the subfield polynomial represented in the αi/f ′(α) basis. This has the advantage of
certifying that the elements we have indeed generate the target Li. In addition it gives
us a representation of Li which can be stored on a relatively small number of bits.

It may also seem reasonable to ask for a primitive element of Li perhaps given as the
root of some minimal polynomial with coefficients in Z. The coefficients of the subfield
polynomial are a good source of potential primitive elements which will have small min-
imal polynomials. After all, the coefficients of the subfield polynomial must generate the
Li. It might also be likely that such a minimal polynomial could be much larger than
our suggested representation of the subfield polynomial. For these reasons we will deal
primarily with finding the subfield polynomial, we do this in section 3.3.2.

Before that we treat the option of resuming the algorithm using the block methods
of (12; 13). This makes some sense as the combinatorial explosion in that method might
already have been bypassed. This approach is discussed in section 3.3.1. The output of
that algorithm is a primitive element of the Li.

Then in section 3.4 we will give an illustrative example of the algorithm in action so
as to clarify the procedure. Finally in section 3.5 we prove the main technical theorem
which allowed us to provably bound the output of Figure 1.

3.3.1. Using block systems to confirm the subfield

In this section we show the connection with what we have computed so far and the
block systems approach of (12; 13). We can use any of the non algebraic integers output by
figure 1 to generate block systems if we would like to avoid doing more LLL reduction. We
try to combine the advantages of both methods. The big problem of the method presented
in (12; 13) is that we have to consider exponentially many possibilities of potential block
systems in the worst case. On the other hand this method is very efficient as soon as
we have found the right block system. After the computation done in Figure 1 we get
elements h1, . . . , hm and we are almost certain that these elements generate our principal
subfield. More precisely we expect that they build a vector space basis of our prinicipal
subfield Li. In order to be sure we need a proof for this statement. Furthermore we would
like to find a nice presentation of our subfield. Knowing the elements h1, . . . , hm it is easy
to write down the corresponding block system. Having the actual block system in our
hand we can apply the methods described in (12; 13) without having the combinatorial
explosion.

Before we explain this approach let us give a criterion which gives a check if a given
subfield L is equal to the principal subfield Li.

Lemma 14. Let L = Q(β) be a subfield of K. Let β = g(α), where g(x) ∈ Q[x] is
a polynomial of degree smaller than n. As before denote by f = f1 · · · fr ∈ Qp[x] the
factorization of f into irreducible factors over Qp. Define T := {1 ≤ i ≤ r | g(x) ≡
g(α) mod fi}. Then the subfield polynomial fL =

∏

i∈T fi.

10
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The proof of this lemma follows easily from the discussion before Theorem 1. Now L
is a subfield of Li if and only if i ∈ T . From the computation in Figure 1 we know that
Li has at most degree m. This means that our field L = Li, when we know that L ≤ Li

and the degree of L is m.
One approach could be to compute the minimal polynomials of the elements hi hoping

to quickly find a primitive element (of degree m). Then we test if L ≤ Li by using
Lemma 14. We remark that the test in Lemma 14 can be done modulo pk for a small
k (in most cases k = 1). We can increase k until we get that the degree of L times the
product of the degrees of the fi with i ∈ T equals n. In general the elements hi are
non-integral elements and their minimal polynomials are not nice at all. If we look at
our computation it is not necessary to compute the minimal polynomials. In order to
identify the right set T we can use the identity:

T = {1 ≤ i ≤ r | ∀1 ≤ j ≤ m : gj(x) ≡ gj(α) mod fi},
where hj = gj(α).

Now we explain how to compute the corresponding (potential) block system which
can be used by the method described in (13). For this we use the notation of this paper.
Let α1, . . . , αn be the roots of f in some unramified p-adic extension of Qp. Let β = h(α)
be a primitive element of the subfield L of degree m, where h ∈ Q[x] is a polynomial of
degree less than n. Furthermore we denote by β1, . . . , βm be the roots of g in the same
p-adic extension. Then the corresponding block system is given by Lemma 3.21 in (13)
via

∆i := {αj | h(αj) = βi, 1 ≤ j ≤ n}.
Now enter the subfield algorithm in (13) using this potential block system. If this algo-
rithm succeeds in computing a subfield L, then test if L = Li using Lemma 14. Note (see
equation (12) in (13)) that this algorithm computes the element δ1 =

∏

α∈∆1
α as a first

guess of a primitive element of our subfield. If this element fails to generate our subfield
then elements of the form

∏

α∈∆1
(α + k) for some k ∈ Z are chosen. Note that δ1 is, up

to the sign, the absolute coefficient of the subfield polynomial fL. It is easy to adapt the
algorithm described in (13) to use other coefficients of fL. In the case that

∑

α∈∆1
α is

a primitive element, this usually gives generators of small size.

3.3.2. Finding a small representation of the subfield polynomial using LLL

We give an algorithm which will construct the subfield polynomial g, of Li or return
failure, in which case more p-adic precision is needed. We choose the subfield polynomial
as it will provide a proof that we have a principal subfield and can be stored in a relatively
compact way thanks to our new basis. Of course other representations and proofs are
possible.

From here on our algorithmic objective will be to output the minimal polynomial
g ∈ Li[x] of α over Li. This g is the subfield polynomial of Li and its coefficients generate
Li. We know m elements hk modulo pa, we know that m|n and that φi − id(hk) ≡ 0
modulo pa for each k. Recall that the hk were from columns of a lattice basis A. First we
will create a p-adic candidate subfield polynomial which we then subject to 3 certification
checks.

Candidate g: Create an index set T := {j|φj(hk) ≡ id(hk) mod pa∀hk}, that is find
the p-adic factors of f which also agree with f1 on the elements corresponding to the

11
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Input: h1 . . . hm, f1, . . . fr ∈ Qp[x], precision a
Output: g subfield poly, or fail

1. T := {}
2. for each 1 ≤ j ≤ r:
3. if (hk mod fj = hk mod f1) mod pa∀k then:
4. T := T ∪ j
5. gcand := lc(f) ·

∏
j∈T fj mod pa

where lc(f) is the leading coefficient of f
6. Create lattice M using (2)
7. M :=LLL(M)
8. gtemp = 0

9. for each coefficient gk of xk in gcand:
10. create Mgk lattice using (3)
11. Check 1 find v in LLL(Mgk )

with v[n+ 1] = 0 and v[n+ 2] = 1

12. gtemp := gtemp +
∑n

j=1
v[j]αj−1

f ′(α)
xk

13. gcand := gtemp ∈ Q(α)[x]
14. Check 2 ensure gcand|f exactly
15. Check 3 ensure (hk mod gcand = hk mod f1) ∀k
16. return g := gcand

Fig. 2. final check algorithm

basis from A. T will contain at least 1 and i. Now let gcand :=
∏

j∈T fj mod pa. This is
done in steps 1–5 of Figure 2

Check 1: Let Λ(A) ⊆ Z[α]<n

f ′(α) be the lattice generated by the algebraic numbers

corresponding with columns of A. We now attempt to find an exact representation of

gcand by converting each coefficient into an algebraic number in Λ(A) ∩ Z[α]<n

f ′(α) . We’ll do

this by attempting to find linear combinations of hk which exactly equal each coefficient
of gcand.

Note that this gcand is a polynomial with p-adic coefficients, these coefficients can be
quickly Hensel lifted using the fact that f = g · (f/g) mod pa if more precision is needed.

Now we want to express these coefficients in the basis Z[α]<n

f ′(α) ∩ Λ(A). To do this we will

use a lattice basis similar to A with a slight adjustment. Rather than finding algebraic
numbers whose images under φi − id are zero, we’ll find combinations of the hk whose
p-adic valuations match a coefficient of gcand.

Lets call vhk
the coefficient vector of hk, and the corresponding p-adic valuation

cj := hk(α1) (that is, hk modulo f1). Also we pick a large scalar constant C (to ensure
that LLL works on reducing the size of the p-adic row). We let the columns of the new
matrix be (vhj

, C · cj)T , and the column (0, . . . , 0, C · pa).

M :=





vT
h1

. . . vT
hm

0

C · c1 . . . C · cm C · pa



 (2)

A vector in the column space of this matrix is a representation of a combination of the
elements from hk along with a p-adic valuation of that element. Now for each coefficient
we’ll use this matrix to find a combination which matches that coefficient. In practice we
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LLL-reduce M before adjoining data from the coefficients of gcand, but here we present
an augmented M without altering the columns first (for clarity).

For each coefficient gk of gcand augment each column of M with a zero, then adjoin a
new column (0, . . . , 0, C · gk, 1)T . This is what the coefficient matching matrix looks like:

M :=











vT
h1

. . . vT
hm

0 0

C · c1 . . . C · cm C · pa C · gk
0 . . . 0 0 1











(3)

Run LLL on this matrix (provided C is large enough) then find the vector which has

its final two entries as 0,1, the first n entries are an expression of gk in Z[α]<n

f ′(α) . If this

works for every coefficient of gcand then the check has passed.
Check 2: Ensure that gcand|f in Q(α)[x].
Check 3: Ensure that hk mod gcand = hk mod f1 for each hk.

Theorem 15. If all checks pass then the Q-linear combination of the elements corre-
sponding to the lattice basis A generate Li the target principal subfield, and gcand is the
subfield polynomial of Li.

Proof. By construction of gcand and A we know that the span over Q of the elements
corresponding to A, the hk, contains Li. Let’s call this span V , so Li ⊆ V . Since gcand
divides f and fi divides gcand then h mod gcand = h mod f1 implies h mod fi = h
mod f1. By check 1 this implies that V ⊆ Li thus the span over Q of the elements from
the lattice is Li.

Now x−α, fi|gcand mod pa and gcand|f exactly then fi|gcand and (x−α)|gcand exactly.
Now by Remark 6 we know gcand is the subfield polynomial of Li. 2

If check 1 fails then perhaps try a larger constant C, otherwise if any check fails
increase the p-adic precision via Hensel lifting and try again.

3.4. An illustrative example

Here we provide an example from a potential application of the algorithm. Suppose
that one is searching for solutions to the system of equations

a2 − 2ab + b2 − 8 = 0

a2b2 − (a2 + 2a + 5)b + a3 − 3a + 3 = 0.

Using MAPLE’s (16) solve command the output is:

α = RootOf(x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x− 191)

a = α

b = −34α7 + 61α6 + 742α5 − 1757α4 − 3378α3 + 6013α2 + 6368α + 7175.

By writing α in terms of generators of proper subfields of Q(α) we can greatly simplify
the expression to:

a =
√

3 +
4
√

2 −
√

2

b =
√

3 +
4
√

2 +
√

2.
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This illustrates that computing subfields is an important step toward simplifying alge-

braic expressions.

An implementation of the algorithm, requiring the open source number theory library

FLINT version 1.6 (9), can be found at http://andy.novocin.com/path/to/subfields.c.

Here we will give the various stages of the algorithm’s output using the minpoly of α,

f = x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x− 191, as our input.

The first step is to find a prime such that f is squarefree modulo p and has at least

one linear factor. The first acceptable prime is 23 and the factorization of f mod 23 is:

f ≡ (x + 3)(x− 4)(x + 10)(x− 6)(x2 + x + 1)(x2 − 4x− 1).

Now we must Hensel lift this factorization so that short vectors are not likely to be

because of a small modulus. To decide a target p-adic precision we refer to Theorem 12

which asserts that we are looking for vectors of norm ≤ n2 ‖ f ‖2= 64 · 302. One could

begin the algorithm with pa just above this bound and resume hensel lifting in the case of

failure; or one could begin well above the bound to minimize the chances of early failure.

In this particular case a modulus of p25 is always sufficient for solving the problem.

We will let the first linear local factor of f be labeled f1 (in this case the factor whose

image is (x + 3) modulo 23). Recall that f1 is defined to be x − α so that the principal

subfield L1 := {g(α) ∈ Q(α)|g(x) ≡ g(α) mod f1} is simply Q(α). Thus L2 is potentially

the first non-trivial principal subfield, where f2 is the next factor (in this case the p-adic

factor whose image mod 23 is equivalent to x− 4).

Now we must construct the lattice from equation 1 whose columns correspond with

a basis of 1
f ′(α)Z≤n[α]. Specifically column i will be ei (the standard basis vector) aug-

mented with xi−1

f ′(x) mod f2 − xi−1

f ′(x) mod f1, thus any element in L2 will have 0 as the

final entry. In the implementation we compute 1
f ′(x) mod f as an integer polynomial

with a single denominator at the beginning of the procedure and use its image modulo

the local factors in the various stages when it is needed.

For illustration we will show the lattice with low p-adic precision, so that the reader

can easily confirm the construction. In this case 1
f ′(α) mod < x + 3, 23 >≡ 3 and 1

f ′(α)

mod < x− 4, 23 >≡ 22. So ( x0

f ′(x) mod f2) − ( x0

f ′(x) mod f1) is 19. Repeat the process

for the other powers of x, xi−1

f ′(x) mod f2− xi−1

f ′(x) mod f1, to get the lattice from equation 1

with 23-adic precision 1 (i.e. mod 23):
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BT
2 :=















































1 19

1 5

1 3

1 17

1 7

1 4

1 19

1 21

23















































.

Now this matrix doesn’t have large enough p-adic entries to get valuable information
out of an LLL run. However LLL on B2 with higher p-adic precision will yield 4 vectors
of small norm and 5 vectors of large norm. When the precision is at least 2325 then the
G-S norms of the 5 final vectors will be large enough (more than 64 · 302) to prove, via
Lemma 13, that the span of the 4 short vectors must contain the basis of L2 guaranteed
by Theorem 12. In this case the four short vectors are the transpose of:

















7 6 2 −20 −3 2 0 0 0

−18 12 1 5 8 10 −1 −1 0

5 −15 −18 11 −1 9 0 −1 0

−15 −35 3 −23 9 −7 −1 1 0

















.

These four vectors represent a potential basis of L2 ∩ 1
f ′(α)Z≤n[α]. The fact that 4

divides 8 is a simple first check that we have a potential subfield. Next the fact that each
of the last entries is 0 is a check that we might be looking at vectors inside of L2 (the
worst case is that two or four of these vectors happen to have last entry with an image
of 0 mod 2325 but this would not be exactly 0 at infinite precision). From here, there
are several paths we could take, namely: compute the subfield polynomial of L2, that
is the minimal polynomial of α over L2 (proving that we really have L2) or compute a
primitive element of L2 and prove that what we have is actually L2 in some other way.
See the discussion in section 3.3. Here we will compute the subfield polynomial.

The subfield polynomial must be the product of some subset of the p-adic factors of
f . We wish to find all factors which make up the subfield polynomial for L2. We do this
by checking which other p-adic factors of f agree with f1 on the four given elements.

For example to check the first vector one computes (7+6x+2x2−20x3−3x4+2x5)
f ′(x) modulo

< fi, 2325 > for all i. Then any fi which give the same output as f1 will be considered
to agree on the first element. In this case, none of the other factors agree with f1 and f2
on all 4 vectors (although f5 agrees on two of the four elements).

So we now assume that the subfield polynomial is f1 · f2 until we can prove otherwise.
Since we have approximations of those factors to precision 2325 we compute the candidate
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for the subfield poly g = f1 · f2 mod 2325, this is gcand in figure 2. Now we have p-adic
numbers gi for each coefficient in gcand = g0 + g1x + g2x

2. The lattice from equation 3
will help us find a representation of the gi in terms of α. This works by attempting to
find a linear combination of the short vectors which has the same p-adic image as one of
the coefficients of gcand. So if we let vi be the p-adic images of the four short vectors in
our example we could use a lattice like the transpose of this one for finding g0:





























0 0 0 0 0 0 0 0 2325 0

0 0 0 0 0 0 0 0 g0 1

7 6 2 −20 −3 2 0 0 v1 0

−18 12 1 5 8 10 −1 −1 v2 0

5 −15 −18 11 −1 9 0 −1 v3 0

−15 −35 3 −23 9 −7 −1 1 v4 0





























.

In this case we also suggest scaling the column containing pa, vj , and gi by some
large constant (in the implementation we used 240), so that LLL is more likely to
find a vector which ends with 0 and 1. This particular lattice yields such a vector,
(0,−24,−368,−136, 32, 424,−16,−40, 0, 1). We interpret this to say that

g0 =
(−24α− 368α2 − 136α3 + 32α4 + 424α5 − 16α6 − 40α7)

f ′(α)
.

By constructing the same lattice for g1 and g2 we can get a representation of gcand in L2[x]
which uses the αi/f ′(α) basis. That representation could be encoded in the transpose of
the following:











0 −24 −368 −136 32 424 −16 −40

1552 1824 208 −192 −816 −32 80 0

208 24 −96 −392 −80 120 0 −8











.

Note that the final row is actually the coefficients of f ′(α) so this is a monic poly-
nomial. In general the coefficients of g, the subfield polynomial, will have much smaller
minimal polynomials than the elements from the short vectors. If one needs to compute
a primitive element of L2 then we suggest taking coefficients of g and testing if they
are primitive elements. For instance g1 and g0 have minimal polynomials of degree 4,
so either will generate L2 because g has degree 2 and [Q(α) : Q] = 8. In this case the
minimal polynomial of g1, corresponding to the second row above, is x4 − 40x2 + 16. If
this fails then try small combinations of the coefficients.

3.5. Bounds for the coefficients

The only aim of this section is to prove Theorem 12. The techniques described in this
section are not used in the algorithm.

In order to get our desired bounds it is useful to introduce the notation of a codifferent,
see (17, Chapter 4.2) for more details.
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Lemma 16. Let f ∈ Z[x] be primitive and irreducible, with degree n. Let α be a root

of f . Let OK be the ring of integers in K = Q(α) and let O∗
K be the co-different which

is defined as:

O∗
K = {a ∈ K|∀b∈OK

Tr(ab) ∈ Z}.
Then

O∗
K ⊆ 1

f ′(α)
Z[α]<n. (4)

Proof. Let a ∈ O∗
K , so Tr(ab) ∈ Z for any b ∈ OK . The content of a polynomial

g = c0x
0 + · · ·+ cdx

d ∈ K[x] is defined as the fractional ideal c(g) = OKc0 + · · ·+OKcd.

Let g1 = x−α and g2 = f/g1. Gauss’ lemma says c(g1)c(g2) = c(g1g2). Then c(g1)c(g2) =

c(f) = OK , (f is primitive) and since g1 has a coefficient equal to 1 it follows that

c(g2) ⊆ OK , in other words g2 ∈ OK [x]. Now ag2 ∈ a · OK [x]<n and by definition of O∗
K

we see that Tr(ag2) ∈ Z[x]<n. So

Tr(a
f(x)

x− α
) =

∑

a(i)
f(x)

x− α(i)
∈ Z[x]<n

where a(i) and α(i) denote the conjugates of a and α. Evaluating the right-hand side at

x = α = α(1) gives af ′(α) ∈ Z[α]<n and hence a ∈ 1/f ′(α) · Z[α]<n. 2

Now suppose that we have an β ∈ O∗
K , then we can write

f ′(α)β =

n−1
∑

i=0

biα
i with bi ∈ Z. (5)

In our applications β is an element of a principal subfield and we would like to bound

the size of bi. In the following we need the complex embeddings and some norms of

algebraic numbers.

Definition 17. Let K = Q(α) be a number field of degree n and f be the minimal poly-

nomial of α. Then we denote by φ1, . . . , φn : K → C, α 7→ αi the n complex embeddings,

where α1, . . . , αn are the complex roots of f . We assume that α1, . . . , αr1 are real and

the complex roots are ordered such that αr1+i = ᾱr1+r2+i for 1 ≤ i ≤ r2.

For β ∈ K we define the norms

‖β‖1 :=

n
∑

i=1

|φi(β)| and ‖β‖2 :=

√

√

√

√

n
∑

i=1

|φi(β)|2.

Note the well known estimates:

‖β‖2 ≤ ‖β‖1 ≤ √
n‖β‖2.

We are able to give the promised bounds.

Lemma 18. Let β be given as in (5) with coefficient vector b := (b0, . . . , bn−1). Then

we have ‖b‖2 ≤ n‖β‖1‖f‖2 ≤ n1.5‖β‖2‖f‖2.
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Proof. Let h(x) :=
∑n−1

i=0 bix
i. Let αi := φi(α) and βi := φi(β), then we get: h(αi) =

βif
′(αi) for 1 ≤ i ≤ n. Using Lagrange interpolation we get:

h(x) =

n
∑

i=1

βif
′(αi)

f(x)/(x− αi)

f ′(αi)
=

n
∑

i=1

βi
f(x)

x− αi
.

Now:

‖b‖2 = ‖h‖2 =
n
∑

i=1

|βi|‖f/(x− αi)‖2

≤ max
i

‖f/(x− αi)‖2
n
∑

i=1

|βi| ≤ n‖f‖2‖β‖1,

‖f/(x−αi)‖2 ≤ n‖f‖2 is proved in (18, cor4.7). The second estimate follows then trivially
from ‖ · ‖1 ≤ √

n ‖ · ‖2. 2

Now our goal is the following. Let L be a principal subfield of degree m which we would
like to compute. We want to find a Q-basis of L represented in our 1

f ′(α)Z[α]<n–basis.

Note that O∗
L ⊆ O∗

K ⊆ 1
f ′(α) · Z[α]<n. In order to apply Lemma 18 we need to bound

‖βi‖2 for m linearly independent elements β1, . . . , βm ∈ L. We will use the following
theorem.

Theorem 19 (Banaszczyk). Let Λ ⊂ Rm be a lattice and denote by Λ∗ := {y ∈ Rm |
∀x ∈ Λ : 〈x, y〉 ∈ Z} the dual lattice. Furthermore denote by λi, λ

∗
i the i-th successive

minima of Λ,Λ∗, respectively. Then λiλ
∗
m+1−i ≤ m for 1 ≤ i ≤ m.

The proof can be found in (1, Theorem 2.1). In our application λ1 =
√
m, so we get

the upper bound λ∗
m ≤ √

m. There are canonical ways to map number fields to lattices,
but we have the slight problem that the bilinear form L×L → Q, (x, y) 7→ Tr(xy) is not
positive definite, if L has non-real embeddings. We assume the same order of the complex
embeddings of L as in Definition 17, so we have m = r1 + 2r2. Defining γi = φi(γ) and
δi = φi(δ) we get:

Tr(γδ) =
m
∑

i=1

γiδi.

The corresponding scalar product looks like:

〈γ, δ〉 :=

m
∑

i=1

γiδ̄i.

For totally real number fields L those two notions coincide. The dual lattice equals O∗
L

and we can apply Theorem 19 directly to get the desired bounds. First we introduce the
canonical real lattice Λ := Ψ(OL) ⊆ Rm associated to 〈γ, δ〉 via

Ψ : L → Rm, (6)

β 7→ (β1, . . . , βr1 ,
√

2ℜ(βr1+1), . . . ,
√

2ℜ(βr1+r2),√
2ℑ(βr1+1), . . . ,

√
2ℑ(βr1+r2)).

Note that now the standard scalar product of Rm coincides with the (complex) scalar
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product defined above. This is the reason for the weight
√

2 in the above definition.
Denote by 〈·, ·〉1 the standard scalar product of Rm. Furthermore denote by

〈x, y〉2 :=

r1+r2
∑

i=1

xiyi −
m
∑

i=r1+r2+1

xiyi.

Then we have

〈γ, δ〉 = 〈Ψ(γ),Ψ(δ)〉1 and Tr(γδ) = 〈Ψ(γ),Ψ(δ)〉2.
Now we are able to compare our two dual objects, the dual lattice Λ∗ of Λ corresponding
to 〈·, ·〉1 and the codifferent.

Lemma 20. Using the above notations. Then θ : Rm → Rm,

(x1, . . . , xm) 7→ (x1, . . . , xr1+r2 ,−xr1+r2+1, . . . ,−xm)

induces an isomorphism Λ∗ → Ψ(O∗
L) of Z–modules.

Proof. θ is linear and has the property

〈x, y〉1 = 〈x, θ(y)〉2 for all x, y ∈ Rm.

We need to show that θ(Λ∗) = Ψ(OL). Note that θ2 is the identity and therefore this
is equivalent to θ(Ψ(OL)) = Λ∗. Denote by ω1, . . . , ωm a Z–basis of OL. Then Λ =
ZΨ(ω1) + . . . + ZΨ(ωm). Choose γ ∈ O∗

L arbitrarily. Then Tr(ωiγ) ∈ Z for 1 ≤ i ≤ m
and therefore

〈Ψ(ωi), θ(Ψ(γ))〉1 = 〈Ψ(ωi),Ψ(γ))〉2 = Tr(ωiγ) ∈ Z.

Therefore θ(Ψ(γ)) ∈ Λ∗ and we have shown θ(Ψ(O∗
L)) ⊆ Λ∗. Denote by τ1, . . . , τm ∈ O∗

L

the dual basis of ω1, . . . , ωm. Because of duality (e.g. see (17, Proof of Prop. 4.14)) we
know that disc(τ1, . . . , τm) = disc(ω1, . . . , ωm)−1 = d−1

L . Furthermore θ(Ψ(τi)) (1 ≤
i ≤ m) are linearly independent elements of Λ∗ and the discriminant of the Z–module
generated by those elements is |d−1

L | since the corresponding determinants differ by a
power of −1 because we have to consider the twists between our two bilinear forms.
Therefore we know a subset θ(Ψ(O∗

L)) ⊆ Λ∗ which has the correct lattice discriminant.
Therefore we get equality. 2

Now we are able to get our bound by applying Lemma 20 and Theorem 19.

Lemma 21. Let L be a number field of degree m. Then O∗
L contains m Q–linearly

independent elements γ1, . . . , γm such that ‖γi‖2 ≤ √
m for 1 ≤ i ≤ m.

Proof. As before let Λ := Ψ(OL), where Ψ is defined in (6). Now we claim that the first
successive mimimum λ1 equals

√
m by taking the element Ψ(1). Let γ ∈ OL. Then

1 ≤ |Norm(γ)| =

(

m
∏

i=1

|γi|2
)1/2

≤
(∑m

i=1 |γi|2
m

)m/2

=

( 〈Ψ(γ),Ψ(γ)〉1
m

)m/2

,
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where the inequality is the one between geometric and arithmetic means. Now we get
that 〈Ψ(γ),Ψ(γ)〉1 ≥ m which finishes the proof that λ1 =

√
m.

Applying Theorem 19 we find m linearly independent elements y1, . . . , ym ∈ Λ∗ with
euclidean length bounded by m/

√
m =

√
m. By using Lemma 20 we find elements θ(yi) ∈

Ψ(O∗
L) which have the same euclidean length. By choosing γi := Ψ−1(θ(yi)) for 1 ≤ i ≤ m

we finish our proof. 2

Now we are able to prove our theorem. Note that the field L takes the role of the
principal subfield Li in the statement.

Proof. [of Theorem 12] Using Lemma 21 we find mi linearly independent elements βj

in O∗
L with 2-norm bounded by

√
mi. When we interpret those elements in K, we get

n/mi copies of the complex embeddings, which gives that the 2-norm as elements of K
is bounded by

√
n. Now apply Lemma 18. 2

4. An example of progress

The aim of this section is to compare our algorithm with the previous state of the art.
We want to indicate that our approach can be useful in practice. The algorithm most
efficient in practice at the time of this paper is based on (12). That algorithm uses a
combinatorial approach in order to find block systems corresponding to a subfield. The
drawback of that algorithm is that it might have to test exponentially many possibilities
before it finds the right block system.

Our algorithm is more robust. By working only on the generating subfields, and doing
that in a practical way, we ensure an attack which is consistently strong. We compare
our algorithm with (12) by taking an example which was given in the (12) paper.

We use the degree 60 field generated by a root of the polynomial
f(t) := t60+36t59+579t58+5379t57+30720t56+100695t55+98167t54−611235t53−2499942t52−

1083381t51 + 15524106t50 + 36302361t49 − 22772747t48 − 205016994t47 − 194408478t46 +
417482280t45+954044226t44+281620485t43−366211766t42−1033459767t41−8746987110t40−
15534020046t39 + 23906439759t38 + 104232578583t37 + 31342660390t36 − 364771340802t35 −
547716092637t34+583582152900t33+2306558029146t32+998482693677t31−3932078004617t30−
5195646620046t29 + 2421428069304t28 + 10559164336236t27 + 3475972372302t26 −
22874708335419t25 − 33428241525914t24 + 21431451023271t23 + 90595197659892t22 +
50882107959528t21 − 67090205528313t20 − 117796269461541t19 − 74369954660792t18 +
25377774560496t17 + 126851217660123t16 + 104232393296166t15 − 29072256729168t14 −
83163550972215t13 − 24296640395870t12 + 14633584964262t11 + 8865283658688t10 +
5364852154893t9−1565702171883t8−7601782249737t7−2106132289551t6+3369356619543t5+
3717661159674t4 + 1754791133184t3 + 573470363592t2 + 74954438640t+ 3285118944

which is the splitting field of the polynomial t5 + t4 − 2t3 + t2 + t + 1. The Galois
group of this polynomial is the alternating group A5 and therefore all elements have
order 1, 2, 3, or 5.

In (12) these subfields were found using clues about this particular example by as-
suming that it was not some random degree 60 polynomial but something specifically
constructed. Requiring clues and tricks it was able to reduce an impossible combinato-
rial problem to something which was solvable in a couple of hours. Our algorithm does
not rely on tricks (the polynomial can again be treated as random) and can find each
principal subfield in 3–5 seconds on the same machine that ran the (12) code.
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Catholic University Nijmegen, 1994.

[8] J Dixon. Computing subfields in algebraic number fields. J. Austral. Math. Soc.
Series A, 49:434–448, 1990.

[9] W. Hart. Flint. open-source C-library http://www.flintlib.org.
[10] Mark Van Hoeij. Factoring polynomials and the knapsack problem. J. Number

Theory, 95:167–189, 2002.
[11] A. Hulpke. Block systems of a Galois group. Exp. Math., 4(1):1–9, 1995.
[12] J. Klüners. Über die Berechnung von Automorphismen und Teilkörpern algebraischer

Zahlkörper. Dissertation, Technische Universität Berlin, 1997.
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