
2-descent for Linear Differential Equations

Tingting Fang

Florida State University, Tallahassee, FL 32306-3027, USA

Mark van Hoeij

Florida State University, Tallahassee, FL 32306-3027, USA

Abstract

Let L be a linear ordinary differential equation with coefficients in C(x). The goal in this paper
is to reduce L to an equation that is easier to solve. The starting point is an irreducible L, and
the goal is to decide if L is projectively equivalent to another equation L̃ that is defined over a
subfield C(f) of C(x).

This paper treats the case of 2-descent, which means reduction to a subfield with index
[C(x) : C(f)] = 2. Although the mathematics has already been treated in other papers, a
complete implementation could not be given because it involved a step for which we do not have
a complete implementation. The contribution of this paper is to give an approach that is fully
implementable. We describe and implement the algorithm for order 2, and show by an example
that the same also work for higher order. Examples illustrate that this algorithm is very useful
for finding closed form solutions (2-descent, if it exists, reduces the number of true singularities
from n to at most n/2 + 2).

Key words: Differential Equation, 2-descent, Algorithms

1. Introduction

Let L =
∑n
i=0 ai∂

i be a differential operator with coefficients in a differential field
K = C(x), where ∂ is the usual differentiation d

dx . The corresponding differential equation

is L(y) = 0, i.e. any
(n) + · · · + a1y

′ + a0y = 0. The problem of finding closed form
solutions of L becomes easier if we can factor L as a product of lower order operators
as in (Bronstein, 1994), (van Hoeij, 1996), (Barkatou and Pflügel, 1998) or apply some
other approach to reduce the order, see (van Hoeij, 2007), (Nguyen, 2008).

? This research was supported by NSF grant 1017880.

Email addresses: tfang@math.fsu.edu (Tingting Fang), hoeij@math.fsu.edu (Mark van Hoeij).

URLs: www.math.fsu.edu/∼tfang (Tingting Fang), www.math.fsu.edu/∼hoeij (Mark van Hoeij).

Preprint submitted to Elsevier 20 October 2011

A different type of reduction is called descent. Here, the goal is to reduce L to an
operator L̃ of the same order, but this time defined over a proper subfield k = C(f) of
K. Here L̃ must be projectively equivalent to L. Informally, this means that L can be
solved in terms of the solutions of L̃ and vice versa (a precise definition will be given in
Section 2.2).

In this paper, we treat the case of 2-descent, meaning that k is a subfield of K with
index 2. We focus on treating second order equations, at the end we will give examples
for higher order. For a second order equation L, after applying Kovacic’ algorithm, we
can assume that L is irreducible (i.e. not a product of lower order factors), and that it
has no Liouvillian solutions.

Descent reduces the number of true singularities (Definition 9) from n to at most
n/2+2, which helps to solve differential equations as illustrated in Section 7 and Section 8.
In particular, for second order equations, if the number of true singularities 1 drops
to 3, and if these are regular singularities 2 , then a 2F1-type solution can be obtained
quickly. We can also stop reducing when we reach a second order operator with four
true singularities, because 4-singularity equations with 2F1-type solutions are currently
being classified by (van Hoeij and Vidunas, 2011). Classifying equations with closed form
solutions and > 4 singularities would be hard to do, this is where 2-descent becomes
crucial.

If L ∈ C(x)[∂] then there is a finitely generated extension Q ⊆ C with L ∈ C(x)[∂],
just take C to be the extension of Q given by the coefficients of L. The main design goal
for our algorithm is to introduce as few algebraic extensions of C as possible. Without
this design goal, Sections 3 and 5 would have been much shorter (if we simply compute
the splitting field of the singularities then for Section 5 we can follow (Compoint and
van der Put, 2009) and Section 3 becomes trivial. Sections 3 and 5 become non-trivial
when we aim to minimize field extensions).

The main results in this paper are in Section 4. We know from (van Hoeij and van
der Put, 2006) that if there is a gauge transformation G from L to σ(L), then L will
allow descent with respect to σ. The question is, given G, how to find the descent? Is
it necessary (as in the terminology in (van Hoeij and van der Put, 2006) to trivialize a
2-cocycle, or to perform some equivalent complicated operation such as finding a point on
a conic over C(x)? The answer is no; we give a short and efficient algorithm in Section 4,
and we even show (Theorem 1) that it produces a result over an optimal extension of C.

1.1. Relation to prior work

For a second order differential equation, it is shown in (Compoint and van der Put,
2009), (van Hoeij and van der Put, 2006) that the problem of computing 2-descent can
be reduced to another problem (trivializing a 2-cocycle) although no step by step algo-
rithm is given in these papers. The paper (van Hoeij, 2007) does give an algorithm, and
implementation, that can be used to find 2-descent, as follows. If σ is a Möbius trans-
formation of order 2, and C(f) is the fixed field of σ, and if L is projectively equivalent
to σ(L), then we can compute the so-called symmetric product of L, σ(L), then apply
factorization (DFactorLCLM in Maple), take the 3’rd order factor found that way, and

1 the number of removable singularities (Def. 9) is irrelevant
2 for the irregular singular case, finding closed form solutions if they exist can be done with (van Hoeij

and Yuan, 2010), (Debeerst and van Hoeij, 2008)

2

run the algorithm from (van Hoeij, 2007) to find a second order operator. All of these
steps are implemented, and the end result is a 2-descent.

The problem with the above methods is that they rely on an algorithm that can find
a point on a conic defined over K (or an algorithm that solves an equivalent problem).
Although such a point must exist when K = C(x), the proof does not show how to find
such a point over a field of constants that is optimal or close to optimal (recall that
we wish to minimize the extension of C that the algorithm introduces, where C ⊂ C).
There is only an implementation in (van Hoeij and Cremona, 2006) for this step if C
is Q or a transcendental extension of Q. If L contains algebraic numbers, then there is
no implementation for finding a point on a conic, and without that, it is not clear how
to obtain from (van Hoeij, 2007), (van Hoeij and van der Put, 2006), (Compoint and
van der Put, 2009), a complete implementation for finding 2-descent.

In this paper from Section 3 to Section 7, we describe a step by step algorithm for
finding 2-descent for a second order differential equation. The algorithm can be fully
implemented (Fang, 2011) because it does not call a conic algorithm. Note: If L ∈ C(x)[∂]
with C ⊂ C of order 2, and if one allows unnecessary algebraic extensions of C (potentially
exponentially large), then it is not hard to implement a conic algorithm, in which case
one can consider 2-descent an already solved problem. But in practice our algorithm
would be much preferable because it only extends C when necessary (i.e. when there is
no 2-descent defined over C). In Section 8, we give an example of 2-descent for fourth
order differential equations.

2. Preliminaries

2.1. Differential Operators and Singularities

Let K = C(x) denote the differential field and let D=K[∂] be the ring of differential
operators with coefficients in the differential field K. Here ∂ denotes the usual differ-
entiation d

dx . Then elements L ∈ D are of the form L = an∂
n + · · · + a1∂ + a0 with

ai ∈ K.
A point p ∈ P1 = C ∪ {∞} is called a singularity of a differential operator L ∈ K[∂],

if p is a zero of the leading coefficient of L or p is a pole of one of the other coefficients
of L. p is called a regular point if it is not a singularity.

We denote the solution space of a differential operator as V (L) = {y|L(y) = 0} where
the y are taken in some universal extension (van der Put and Singer, 2003) of C(x). If
p is a regular point of L, we can write all solutions of L at p as convergent power series∑∞
i=0 ait

i
p, where tp denotes the local parameter which is tp = 1

x if p =∞ and tp = x−p,
otherwise.

2.2. Transformations

There are three known types of transformations that send, for any n′th order L1 ∈
K[∂], the solution space of L1 to the solution space of some L2 ∈ K[∂], again of order n.
They are (notation as in (Debeerst and van Hoeij, 2008)):

(i) change of variables: y(x)→ y(f(x)), f(x) ∈ K \ C.

(ii) exp-product: y → e
∫
r dx · y, r ∈ K.

(iii) gauge transformation: y → r0y + r1y
′ + · · ·+ rn−1y

(n−1), r0, r1 · · · , rn−1 ∈ K.

3

Definition 1. Let L1, L2 ∈ K[∂]. They are called gauge equivalent (notation: L1 ∼g L2)
if there exists a so-called gauge transformation from V (L1) to V (L2), which means a
bijection of the form (iii).

Remark 2. Let L1, L2 ∈ K[∂]. The D-modules D/DLi, i = 1, 2 are isomorphic if and
only if L1 ∼g L2. In particular, ∼g is an equivalence relation (see (Barkatou and Pflügel,
1998)).

Definition 3. Let L1, L2 ∈ K[∂]. They are called projectively equivalent (notation:
L1 ∼p L2) if there exists a bijection V (L1)→ V (L2) of the form

y −→ e
∫
r · (r0y + r1y

′ + · · ·+ rn−1y
(n−1)) (1)

for r, r0, · · · , rn−1 ∈ K.

Projective equivalence is also an equivalence relation, see (Barkatou and Pflügel, 1998).
An implementation (for order 2) is given in (van Hoeij, 2001) to decide if L1 ∼p L2, and
if so, to find the projective equivalence (the r, r0, r1 in (1)). An algorithm for arbitrary
order n was given in (Barkatou and Pflügel, 1998) (implemented in ISOLDE).

2.3. 2-descent

Definition 4. Let f = A
B with A,B ∈ C[x] coprime, then the degree of f is defined as

deg(f) = max(deg(A),deg(B)) = [C(x) : C(f)].

Remark 5. If σ ∈ Aut(C(x)/C) has order 2, then the fixed field of σ is a subfield of
C(x) of index 2, and by Lüroth’s theorem this subfield is of the form C(f), for some
f ∈ C(x) of degree 2 (note: we can find such f in {x + σ(x), xσ(x)} \ C). Any subfield
C(f) ⊂ C(x) of index 2 is the fixed field of some σ ∈ Aut(C(x)/C) of order 2 (after all,
every extension of degree 2 is Galois). The automorphisms of C(x) over C are Möbius
transformations:

x 7→ ax+ b

cx+ d
(2)

This paper treats 2-descent, so we only consider σ of order 2, which is equivalent to
having d = −a in (2).

Remark 6. Any σ ∈ Aut(C(x)/C) extends to an automorphism of C(x)[∂]. If σ has
finite order, and if C(f) is the fixed field of σ, and if L ∈ C(x)[∂], then

L = σ(L)⇐⇒ L ∈ C(f)[∂f], (3)

in other words, C(f)[∂f] is the fixed ring of σ. Here ∂f := d
df = 1

f ′ ∂, where ′ is differen-

tiation w.r.t. x.

Definition 7. Let L ∈ C(x)[∂]. We say that L has 2-descent if ∃f ∈ C(x) with deg(f) = 2
and ∃L̃ ∈ C(f)[∂f] such that L ∼p L̃.

One could instead use the term “projective 2-descent” for this (because we use pro-
jective equivalence ∼p) but we opted to use the shorter term.

4

Main goal: Let L ∈ K[∂] be irreducible. The goal of this paper is to give an explicit
algorithm that can decide if L has 2-descent, and if so, find it (i.e. find L̃ ∈ C(f)[∂f]

with L ∼p L̃ for some f of degree 2). Moreover, if L is defined over some field C ⊂ C,
we should only introduce algebraic extensions of C when necessary.

In the following sections, we limit L to be of order 2, unless otherwise specified. We
will divide our algorithm into several steps. The first step is to find candidates for C(f)
with deg(f) = 2. Such a field is the fixed field of a Möbius transformation of order 2.

3. Möbius transformations

Proposition 8. A Möbius transformation has order 2 if it is of the form σ(x) = ax+b
cx−a .

Such σ has 2 fixed points in C ∪ {∞}.

One could apply a transformation that moves the fixed points of σ to 0,∞, which
reduces σ to the notationally convenient x 7→ −x. Our algorithm does not do this because
it can introduce an unnecessary algebraic extension of the constants.

3.1. The singularity structure

Definition 9. Let L ∈ D have order n. Assume p is a singularity of L. If there exists a

basis of V (L) of the form e
∫
rf1, . . . , e

∫
rfn where r ∈ C(x) and f1, . . . , fn are analytic

at x = p, then p is called a removable singularity (also called false singularity). Otherwise
p is called a true singularity.

Suppose p is a singularity of L. If there exists a projectively equivalent L̃ for which
p is a regular point, then p is a removable singularity. The true singularities of L are
precisely those p that stay singular when L is replaced by any projectively equivalent
operator.

For a second order differential operator L, denote (as in (van Hoeij and Yuan, 2010),
(Debeerst and van Hoeij, 2008)) the (generalized) exponent-difference as ∆(L, p).

Definition 10. For any true singularity p, denote

type(L, p) :=

′′irreg′′ if ∆(L, p) /∈ C
′′irrat′′ if ∆(L, p) ∈ C \Q

e ∈ [0, 12] if ∆(L, p) ∈ Q

Here, e ∈ [0, 12] such that ∆(L, p) ∈ (e+ Z) ∪ (−e+ Z).
Then we write the singularity structure of L as

Stype := {(p, type(L, p)) | p true sing}.

Let πi project on the i′th entry of Stype, then S := π1(Stype) ⊆ P1(C) denotes the set of
true singularities of L.

Lemma 11. ((Debeerst and van Hoeij, 2008), (van Hoeij and Yuan, 2010)).
If L ∼p L̃ ∈ D then L and L̃ have the same singularity structure Stype.

5

If L ∈ C(x)[∂] for some field C ⊂ C, we denote:

MC := {σ =
ax+ b

cx− a
| a, b, c ∈ C and σ(S) = S}

MC := {σ =
ax+ b

cx− a
| a, b, c ∈ C and σ(S) = S}

M type
C := {σ ∈MC |σ(Stype) = Stype}

M type
C := {σ ∈MC |σ(Stype) = Stype}

places(C) :={f ∈ C[x] |f is monic and irreducible }
⋃
{∞}.

Remark 12. places(C) ∼= P1(C) = C
⋃
{∞}

If σ ∈ Aut(C(x)/C) then σ acts on places(C) in a natural way, preserving degrees,
which are defined as:

deg(p) =

 1 if p =∞;

deg(p) if p is a polynomial .

If L = an∂
n + · · · + a0∂

0 with a0, . . . , an ∈ C[x], then computing the singularities as
a subset of P1(C) ⊂ P1(C) would mean computing all roots (the splitting field) of an.
The algorithm does not compute this splitting field because it could have exponentially
high degree over C. Instead, it uses irreducible factors of an in C[x] (and the point ∞)
to represent the singularities, then we have the notation Stype

C and

M type
C := {σ ∈MC |σ(Stype

C) = Stype
C }

To ensure that S is invariant under ∼p it is essential to discard all removable singu-
larities.

Example 13. Let C = Q, and

L := ∂2 +
12x4 + 1

x(2x2 − 1)(2x2 + 1)
∂ − 8

(2x2 − 1)2

For this example we find

Stype := {(∞, 0), (0, 0), (
−1√

2
, 0), (

1√
2
, 0), (

−1√
−2

, 0), (
1√
−2

, 0)}.

The set of true singularities is

S = π1(Stype) = {∞, 0, 1√
2
,
−1√

2
,

1√
−2

,
−1√
−2
}

Written in terms of places(Q) it becomes

SC := {∞, x, x2 +
1

2
, x2 − 1

2
} ⊂ places(Q),

Stype
C := {(∞, 0), (x, 0), (x2 +

1

2
, 0), (x2 − 1

2
, 0)}

and

M type
C = {−x, 1

2x
,
−1

2x
}.

6

This example was quite easy because it has obvious 2-descent. Moreover, all singu-
larities were true singularities with type(L, p) = 0. Removable singularities are common
in larger examples, such as Example 3 in Section 7. Using S instead of SC would have
introduced an extension of C = Q of degree 4 in this example, however, such an extension
could have been much larger (e.g. if x5 − x − 1 had appeared in the denominator of L,
which has a splitting field of degree 120).

3.2. Finding candidates for σ

For i = 1, 2, . . ., let Si denote the set of all p ∈ SC with deg(p) = i.

Algorithm: Compute Möbius transformations.

Input: The singularity structure Stype
C .

Output: The set M type
C , i.e., the set of all σ ∈ Aut(C(x)/C) of order 2 that fix Stype

C .
(In this paper we omit 2-descent for σ’s that are not defined over C because in that case
is better to compute a larger descent, of type C2 × C2, Dn, A4, S4, or A5).

Step 1: Compute Si from Stype
C and let ni denote the number of elements of Si.

Step 2: Let nsing :=
∑
i ni (the total number of true singularities when counted in

P1(C)).
Step 3: If nsing < 3 then return “With < 3 singularities, descent is not necessary nor

implemented” and stop.
Step 4: Now nsing ≥ 3.

(i) If n1 ≥ 3, then call Case1
(ii) If n1 = 1, n2 = 1, then call Case2
(iii) If n1 = 2, n2 = 1, then call Case3
(iv) If n2 ≥ 2, then call Case4
(v) If ni ≥ 1 for some i ≥ 3, then call Case5

Algorithm: Case1.

Input: Stype
C with S1 having ≥ 3 elements.

Output: The set M type
C .

Before describing Algorithm Case1, first some remarks. In general σ = ax+b
cx+d is deter-

mined by the image of three points σ(p1), σ(p2), σ(p3). Since we assume |σ| = 2, we can
write σ = ax+b

cx−a . In general, such σ is determined by two points σ(p1), σ(p2) except in one
case: when σ(p1) = p2, σ(p2) = p1. In that case one more point is needed to determine
σ = ax+b

cx−a .

Algorithm Case1 will choose a pair p1, p2 ∈ S1 (p1 6= p2) and loops over all n(n − 1)
pairs q1, q2 ∈ S1 (q1 6= q2). If the types of q1, q2 match those of p1, p2, the algorithm will
compute the σ that maps p1, p2 to q1, q2. In the one case that q1, q2 = p2, p1, a third point
p3 is used to determine σ. There are n− 2 choices for σ(p3), namely from S1 − {p1, p2}.
The number of computed σ’s is then ≤ n(n− 1)− 1 + (n− 2) (equality if they all have
the same type). Then we remove those σ for which Stype

C is not σ-invariant (That means
remove all σ’s that send a true singularity to a non-singular point or to a false singularity
(Definition 9), and, remove all σ’s that send a singularity to a singularity of a different
type).

7

Algorithm: Case2

Input: Stype
C with S1 having 1 element and S2 having 1 element.

Output: The set M type
C .

Step 1: Let the polynomial in S2 be x2 + c1x+ c0.

Step 2: Write σ1 = − c1 x+2c0
2x+c1

and σ2 = a x+c0 c+c1 a
c x−a .

Remark 14. σ1 is the unique Möbius transformation of order 2 that fixes the roots

of x2 + c1x+ c0; σ2 is the parameterized family of all σ of order 2 that swap the roots

of x2 + c1x+ c0.

Step 3: Let p1 be the one element of S1. Equating σ(p1) to p1 gives a linear equation

that determines the values of the homogeneous parameters a, c in σ2.

Step 4: Check which (if any) of σ1, σ2 fix Stype
C and return those.

Algorithm Case3 is similar to Algorithm Case2.

Algorithm: Case4

Input: Stype
C with S2 having ≥ 2 elements.

Output: The set M type
C .

Step 1: Choose one polynomial from S2. Denote it as f1 = x2 + c1 x+ c0.

Step 2: Do the following substeps 1− 4 to get the set T1:

(1) Write σ1 = − c1 x+2c0
2x+c1

and σ2 = a x+c0 c+c1 a
c x−a (See the Remark in Algorithm Case2).

(2) Choose another polynomial in S2, and denote it as f2 = x2 + d1 x+ d0.

(3) Write σ3 = −d1 x+2d0
2x+d1

and σ4 = a x+d0 c+d1 a
c x−a .

(4) Let a := d0 − c0, c := c1 − d1, then σ2 = σ4 swaps the roots of f1 as well as the

roots of f2.

T1 := {σ ∈ {σ1, σ2, σ3}|σ fixes Stype
C }.

Step 3: Denote the polynomials in S2 as fi, then T2 :=

n2⋃
i=2

FindMaps(f1, fi)

(See below for the subalgorithm FindMaps)

Step 4: T3 :=

n2⋃
i=3

FindMaps(f2, fi).

Step 5: T1
⋃
T2

⋃
T3.

Remark. Taking a set union means removing duplicates. The duplicates are the ele-

ments of T3 that do not swap the roots of f1, and σ3 might also be duplicate (it could

be in T2 if n2 > 2).

Subalgorithm: FindMaps

Input: Two irreducible polynomials f, g ∈ C[x] of equal degree.

Output: All σ ∈M type
C that map roots of f to roots of g.

(1) Compute the roots of g in C(α) ∼= C[x]/(f).

(2) For each root βj , compute a, b, c ∈ C (not all 0) with aα+b
c α−a = βj .

This is done by computing coefficients (w.r.t α) of aα+b−βj(c α−a) and equating

them to 0.

(3) For each a x+b
c x−a found in step 2 check if it fixes Stype

C , if so, include it in the output.

8

Algorithm: Case5

Input: Stype
C with Si having ≥ 1 elements and i ≥ 3.

Output: The set M type
C .

Step 1: Find Si for an i ≥ 3 with ni > 0.

Step 2: Choose a polynomial f in Si. Denote C(α) ∼= C[x]/(f), with f(α) = 0.

Step 3: For each polynomial g ∈ Si, call FindMaps(f, g). Then M type
C would be⋃

g∈Si

FindMaps(f, g).

4. Computing 2-descent, Case A

Notations: Let L ∈ C(x)[∂] have order 2, and be irreducible (even in C(x)[∂]). Let

σ ∈ Aut(C(x)/C) have order 2 and fixed field C(f) ⊂ C(x).

Lemma 15. If ∃L̃ ∈ C(f)[∂f] with L ∼p L̃, then L ∼p σ(L).

Proof. L ∼p L̃ = σ(L̃) ∼p σ(L). 2

So if not L ∼p σ(L) then L ∈ C(x)[∂] ⊂ C(x)[∂] does not descend to C(f). If L ∼p σ(L)

then we will consider two cases:

Notation 1. Case A is when there exists G = r0 +r1 ∂ ∈ C(x)[∂] such that G(V (L)) =

V (σ(L)), i.e. L ∼g σ(L).

Case B is when there exists G = e
∫
r· (r0 + r1 ∂) such that G(V (L)) =

V (σ(L)), i.e. L ∼p σ(L).

(Note: Case A ⇒ Case B.)

This section treats only Case A. Section 5 will reduce Case B to Case A.

In Case A, when L ∼g σ(L), it is known in (van Hoeij and van der Put, 2006) that

there exists L̃ ∈ C(f)[∂f] with L̃ ∼g L. Then we have the following diagram:

Diagram 1

V (L)
G - V (σ(L))

V (L̃)
�

σ(
A
)

A

-

Here, A, σ(A), and L̃ are unknown. Whether or not such a diagram commutes is studied

in Theorem 17 below.

Remark 16. A gauge transformation is a bijective map A : V (L) → V (L̃) that can

be represented by a differential operator in C(x)[∂]. So we can define σ(A) simply by

applying σ to the operator that represents the map A.

9

Theorem 17. Let L and σ be as before, and G : V (L)→ V (σ(L)) be a gauge transfor-
mation. Suppose L̃1, L̃2 ∈ C(f)[∂f] and Ai : V (L) → V (L̃i) are gauge transformations.
Then:

(1) For each i = 1, 2, there is exactly one λi ∈ C∗ such that the following diagram
commutes.
Diagram 2

V (L)
λiG - V (σ(L))

V (L̃i)
�

σ(
A
i
)

A
i

-

(2) If L̃1 ∼g L̃2 over C(f), then λ1 = λ2; Otherwise, λ1 = −λ2.
(3) In particular, {λ1,−λ1} depends only on (L, σ,G).

Proof.
First consider the diagram without λi in it. In it we find two gauge transformations

V (L)→ V (L̃i), namely Ai and σ(Ai)G. After choosing bases of V (L) and V (L̃i), we can
view these gauge transformations as bijections: C2 → C2. Then by linear algebra, there
is a constant λi ∈ C∗ such that the map:

Ai − λiσ(Ai)G : V (L)→ V (L̃i). (4)

has a non-zero kernel. The kernel of (4) corresponds to a right hand factor of L, namely,
the GCRD of L and the operator in (4). However, L is irreducible so this kernel must
be V (L) itself. That means Diagram 2 commutes. That λi is unique follows from linear
algebra: there can be at most one λi for which (4) is the zero map. Item 1 follows.

For item 2, since L̃1 ∼g L ∼g L̃2, there exists a gauge transformation B : V (L̃1) →
V (L̃2). This B is unique up to multiplying by a constant that we choose in such a
way that the composition BA1 : V (L) → V (L̃2) coincides with A2. Since σ(L̃1) = L̃1,
σ(L̃2) = L̃2 one sees that σ(B) maps V (L̃1) to V (L̃2) as well. So σ(B) must be c ·B for
some c ∈ C∗. Then |σ| = 2 implies that c = ±1. Now c = 1 iff σ(B) = B iff B ∈ C(f)[∂f]

iff L̃1, L̃2 are gauge-equivalent over C(f). Otherwise, if c = −1, then B 6∈ C(f)[∂f] and

L̃1, L̃2 are gauge-equivalent over C(x) but not over C(f). To prove item 2 we now have
to show that λ2 = cλ1.

If λi is such that Diagram 2 commutes (for i = 1, 2) then the following diagram
commutes:
Diagram 3

V (L)
c λ1G - V (σ(L))

V (L̃1)
c -

A
1
-

V (σ(L̃1))
� σ(

A
1
)

V (L̃2)
� σ(

B
)

B

-

10

The composed map BA1 at the left of Diagram 3 coincides with the map A2 in Diagram 2

for i = 2. Applying σ to BA1 and A2, we see that the composed map at the right of

Diagram 3 coincides with the map σ(A2) in Diagram 2 for i = 2. Then the maps at the

top of Diagram 3 and Diagram 2 for i = 2 must coincide as well, i.e., λ2G = cλ1G. Hence

λ2 = cλ1. Item 2 (and hence item 3) follow. 2

4.1. Algorithm for finding 2-descent in Case A

Notations L, C, G, σ, A are as in Section 4. Our goal is to compute 2-descent: L ∼p L̃ ∈
C(f)[∂f]. Here f is determined from σ as in Remark 5. We will compute A : V (L)→ V (L̃)

first, then use A to find L̃.

Algorithm: Case A for computing a 2-descent L̃ for L.

Input: L, G, σ and C.

Output: L̃ and A, defined over an optimal extension of C.

Step 1: Write A = (a00+a01x)∂+(a10+a11x), with a00, a01, a10, a11 unknowns (which

will take values in C(f)).

Step 2: The operator A − λσ(A)G in (4) should vanish on V (L), so the remainder of

A − σ(A)λG right divided by L must be 0. This remainder is of the form (R00 +

R01x)∂0 + (R10 + R11x)∂, where the Rij are C(λ, f)-linear combinations of aij . This

produces a system of 4 equations Rij = 0 in 4 unknowns aij .

Step 3: To have a nontrivial solution, the corresponding 4 × 4 matrix M must have

determinant 0. Equating det(M) to 0 gives a degree 4 equation for λ. Solve for λ.

Remark. The equation for λ is of the form (λ2 − a)2 = 0, where a = λ21 = λ22 with

λ1, λ2 as in Theorem 17. If L and σ are defined over a field C ⊆ C then L̃ and A are

defined over C(
√
a).

If
√
a 6∈ C then it follows from Theorem 17 that the extension by λi = ±

√
a is

necessary.

Step 4: Plug in one value for λ in M , then solve M to find values for a00, a01, a10, a11
in C(

√
a, f).

Step 5: Compute LCLM(A,L) to obtain L̃A. Right divide byA to find L̃ ∈ C(
√
a, f)[∂f].

Step 6: (optional) Introduce a new variable, say x1, and compute an operator Lx1 ∈
C(
√
a, x1)[∂x1] that corresponds to L̃ under the change of variables x1 7→ f .

5. Computing 2-descent, Case B

Definition 18. Let L1, L2 ∈ D = K[∂]. The symmetric product L1sL2 is defined as

the monic differential operator in D with minimal order for which y1 y2 ∈ V (L1sL2) for

all y1 ∈ V (L1), y2 ∈ V (L2).

Lemma 19. If L = ∂2 + c0 ∈ C(x)[∂], and G := e
∫
r · (r0 + r1∂) is a bijection from

V (L) to V (σ(L)), then (e
∫
r)2 is a rational function.

If L := ∂2 + a1∂ + a0 ∈ C(x)[∂], then L1 := Ls(∂ − 1
2a1) is of the form ∂2 + c0 (with

c0 = a0 − 1
4a

2
1 − 1

2a
′
1).

11

The proof of the lemma follows by computing the effect of G on the Wronskian, and
the fact that the Wronskians of ∂2 +c0 and σ(∂2 +c0) are rational functions (1 and σ(x)′

respectively).

Let L ∈ C(x)[∂] irreducible (even over C) and of order 2, and σ ∈ Aut(C(x)/C) of
order 2. The implementation equiv (van Hoeij, 2001) can check if L ∼p σ(L), and if so,

find r, r0, r1 ∈ C(x) for which G := e
∫
r · (r0 + r1∂) is a bijection from V (L) to V (σ(L)).

Assume that such σ and G are given. After the simple transformation in the lemma

above, we may assume that (e
∫
r)2 is a rational function.

If e
∫
r itself is a rational function, then we are in Case A. Otherwise, we can write

e
∫
r = p(x)

√
f(x) for some square-free polynomial f(x), and some p(x) ∈ C(x).

Definition 20. The branch points of G are the roots of f(x), and ∞ if f(x) has odd
degree.

To reduce Case B to Case A, we have to eliminate the branch points. Our algorithm
will first eliminate all branch points that can be eliminated without a field extension of
C. It will only extend C if there is no descent w.r.t. σ defined over C.

5.1. Branch points

It is convenient to view the set of branch points as a subset of P1(C). However, to
avoid splitting fields, the algorithm represents the branch points with a set B ⊂ places(C)
instead. This B is the set of irreducible factors of f(x) in C[x], as well as ∞ if f(x) has
odd degree. The goal is to eliminate branch points until we reach B = ∅, i.e., Case A.

Definition 21. If σ(∞) =∞, then denote Inf := {∞}, otherwise Inf := {∞, x−σ(∞)}.
Denote BI = B

⋂
Inf and BN = B \BI .

Let f1(x), f2(x) ∈ BN . We say that f1(x) matches f2(x) when the roots of f2(x) are the
same as the roots of f1(σ(x)) (i.e. the numerator of f1(σ(x)) is f2).
If σ(∞) 6=∞, then we say that the polynomial x− σ(∞) matches ∞.

Lemma 22. If f1(x) 6= f2(x) ∈ BN and f1(x) matches f2(x), then BN turns into

BN \ {f1, f2} when we replace L by Lnew := Ls(∂ − 1
2 ·

f1(x)′
f1(x)

).

Proof. The composed transformation

V (Lnew)→ V (L)→ V (σ(L))→ V (σ(Lnew))

is √
σ(f1) ·G · 1√

f1
.

The polynomial f equals f1f2 · · · where the · · · refer to the other factors of f in B \{∞}.
The transformation G is of the form

√
f1f2 · · · · (r0 + r1∂). Factors can be removed from

the square-root in G either by division or by multiplication by a square-root (factors in
C(x) can be moved to r0, r1). So in the composed transformation, the factors f1 and f2
will disappear from the square-root in G (note: this uses the assumption f1 6= f2 (which
implies that their gcd is 1 since they are monic irreducible polynomials)).
A subtlety is that if σ(∞) 6= ∞, then σ(f1) is not f2 but cf2/(x − σ(∞))d, for some

12

c ∈ C, where d is the degree of f1 and f2. This means that if σ(∞) 6= ∞ and d is odd,
then the set BI will change when we replace L by Lnew (BI = ∅ will change to Inf, and
BI = Inf will change to ∅). 2

Lemma 23. If σ(∞) 6= ∞, and BI = {∞, f1} (here f1 = x − σ(∞)) then the factor
f1 inside the square root in G will cancel out (i.e. BI will become ∅) if we replace L by
Lnew := Ls(∂ − 1

4 ·
1
f1

).

Proof. The solutions of Lnew differ a factor 4
√
f1 from the solutions of L. The lemma

follows from a similar computation as the proof of Lemma 22, except that this time
σ(f1) is of the form c/f1 for some constant c. Thus, the composed map is of the form
4
√
c/f1 ·G · 1/ 4

√
f1, and

√
f1 is canceled from the square root in G. 2

In the following algorithm, L and σ are as in Section 4, and G = e
∫
r · (r0 + r1∂) with

r, r0, r1 ∈ C(x).

Algorithm: Case B for computing a 2-descent L̃ for L.

Input: L, G, σ and C.

Output: L̃ and A (defined over C whenever possible).

Step 1 Initialization: If (e
∫
r)2 is not a rational function, then replace L by Ls(∂ −

1
2 ·

a1
a2

) as in Lemma 19 and update G accordingly.

Rewrite G as
√
f(x)(r0+r1∂) with f(x) monic and square-free (updating r0, r1 ∈ C(x)

to move any rational factor from e
∫
r to r0, r1).

If f(x) = 1 then call Case A and stop.
Step 2: Factor f(x) in C[x] to find B,BI , BN ⊂ places(C).
Step 3: g :=Findg(BN , σ, C).

(See below for the subalgorithm Findg)
Step 4: Let h := 1

2 ·
g′
g . Replace L by Ls(∂ − h) and update G,B,BI , BN accordingly.

Now BN should be ∅.
Step 5: If BI 6= ∅ then let h := 1

4 ·
1
f1

with f1 as in Lemma 23. Replace L by Ls(∂−h)

and update G,B accordingly. Now B should be ∅.
Step 6: Call Case A.

Subalgorithm: Findg.

Input: BN , σ, C.

Output: g.
Step 1: If BN = ∅, return 1 and stop.
Step 2: Else, for each Pi ∈ BN ,

(1) Find its matched (Def. 21) element Pj ∈ BN .
(2) If Pi 6= Pj then g := Findg(BN \ {Pi, Pj}, σ, C), return g · Pi and stop.

Step 3: Now each P ∈ BN matches itself, and hence has even degree. Choose P ∈ BN
with minimal degree, and let α ∈ C be one root of P , so C(α) ∼= C[x]/(P). Let BαN be
the set of all irreducible factors in C(α)[x] of all elements of BN . Return Findg(BαN ,
σ, C(α)).

13

6. Main Algorithm

Algorithm 2-descent.

Input: A second order irreducible differential operator L ∈ C(x)[∂] and the field C.

Output: descent, if it exists for some σ ∈ Aut(C(x)/C) of order 2.
Step 1: Compute the set of true singularities, and the singularity structure Stype

C .
Step 2: Call Compute Möbius transformations in Section 3.2 to compute the set
M type
C .

Step 3: For each σ ∈ M type
C , call (van Hoeij, 2001) to check if L ∼p σ(L), and if so, to

find G : V (L)→ V (σ(L)).
If we find σ with L ∼p σ(L), then call algorithm Case B in Section 5.1 and stop.

7. Examples

We give two examples. The first example is easy (it has G = r0+r1∂ with r1 = 0). The
second one is less trivial 3 . The first example is in Case A as in Section 4, the second
example involves both Case A and Case B.

Example 24. Let

L = ∂2 +
28x− 5

x(4x− 1)
∂ +

144x2 + 20x− 3

x2(4x− 1)(4x+ 1)

Step 1: Compute the singularity structure of L

Stype
C := {(x, 0), (∞, 0), (x− 1

4
, 0), (x+

1

4
, 0)}

Step 2: Compute Möbius transformations. Since S1 has n1 = 4 elements, we end up in
algorithm Case1 of Section 3.2 which produces:

{−x, −1

16x
,

1

16x
,
−1

4

4x− 1

4x+ 1
,

1

4

4x+ 1

4x− 1
}

Step 3: There are 5 choices for σ. The first one is x 7→ −x corresponding to the subfield
C(f) = C(x2). The equiv (van Hoeij, 2001) program finds G = 4x−1

4x+1 . Next we compute

A := −4x2 + x, and then L̃. After applying a change of variable x 7→ √x1 the result
reads

Lx1 := (16x1 − 1)x1∂
2 + (32x1 − 2)∂ + 4

which has 3 true singularities and is easy to solve.

Example 25. Consider the operator:

L := ∂2 +
4(1296x5 + 576x4 − 144x3 − 72x2 + x+ 1)

x(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)
∂+

2(5184x6 − 864x5 − 1656x4 + 48x3 + 162x2 + 6x− 1)

(−1 + 2x)x2(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)

3 it was e-mailed to one of us to find its closed form solutions. There have been many such requests,

which motivates us to develop these algorithms.

14

Step 1: Compute the singularity structure of L

StypeC := {(x, 0), (∞, 0), (x− 1

2
, 0), (x+

1

2
, 0), (x− 1

6
, 0), (x+

1

6
, 0)}

(12x2 − 1 is a removable singularity, Definition 9).

Step 2: Compute Möbius transformations. Since S1 has n1 = 6 elements, we are again

in Case1, and find:

{−x, −1

12x
,

1

12x
,
−1

2

2x− 1

6x+ 1
,

1

2

2x+ 1

6x− 1
,
−1

6

6x− 1

2x+ 1
,

1

6

6x+ 1

2x− 1
}

Step 3: The first σ we try is x 7→ −x. The equiv program finds

G :=
x(12x2 + 4x− 1)

12x2 − 1
∂ +

3

2

(2x+ 1)(10x− 1)

12x2 − 1

so G(V (L)) = V (σ(L)). Then compute a 4 by 4 matrix from the linear equations for the

aij , equate the determinant to 0 and find λ = ±2. We choose λ = 2 and find

A := (−36x4 − 1

4
+ 10x2)∂ + 1− 1

4

(288x4 + 1− 84x2)

x
.

We get

Lx1
:=4x21(−1 + 36x1)(4x1 − 1)(12x1 − 1)2∂2+

8x1(12x1 − 1)(4x1 − 1)(216x21 − 54x1 + 1)∂−
3− 2544x21 + 10368x31 + 48x1

which is L̃ ∈ C(x2)[∂x2] rewritten with x 7→ √x1. This Lx1
has 4 true singularities, and

allows a further 2-descent. Applying steps (1)(2)(3) to Lx1
again, we are actually in Case

B as in Section 5, applying the algorithm (details are given in a Maple worksheet (Fang,

2011)) we find a new operator L̃1 ∼p Lx1
defined over the subfield C(f1) where f1 :=

x1 + 1
144x1

. Replacing f1 by a new variable x2 we get:

Lx2
:=4(36x2 + 11)(18x2 − 5)(6x2 + 1)(6x2 − 1)2∂2+

36(6x2 − 1)(1296x32 + 1620x22 + 20x2 − 9)∂+

34992x32 − 207036x22 − 2331 + 3456x2

which has 3 true regular singularities (as well as a few removable singularities). That

means that Lx2 (and hence L) has closed form solutions (see (Fang, 2011)) in terms of

hypergeometric 2F1 functions.

8. 2-descent for Fourth Order Linear Differential Equation

2-descent is not limited to second order linear differential equations. It can also be

applied to higher order linear differential equations.

For higher order equation, one can still define the type of a singularity, but it will

involve more than just one exponent-difference.

15

The following example comes from (Assis, et al, 2011).

L :=∂4 +
(7x4 − 68x3 − 114x2 + 52x− 5)

(x+ 1)(x2 − 10x+ 1)(x− 1)x
∂3+

2(5x5 − 55x4 − 169x3 + 149x2 − 28x+ 2)

(x2 − 1)x2(x2 − 10x+ 1)(x− 1)
∂2+

2(x4 − 13x3 − 129x2 + 49x− 4)

(x2 − 1)x2(x2 − 10x+ 1)(x− 1)
∂−

3(x+ 1)2

(x− 1)2x3(x2 − 10x+ 1)

L has 4 regular true singularities:
p = 0,∞, 1,−1

Among these 4 singularities, 0,∞ have the same type (at both points, the formal solutions
involve the cube of a logarithm). At the singularities 1,−1, the solutions also have a
logarithm (but not a square or a cube of a logarithm). Hence σ({0,∞}) must be {0,∞}
and σ({−1, 1}) must be {−1, 1}. Then we find the set of Möbius transformations with
order 2 as follows:

M type
C = {−x, 1x ,

−1
x }

Here, C = Q. For these 3 Möbius transformations, we find 3 subfields Q(x2), Q(x + 1
x)

and Q(x− 1
x) of index 2 respectively.

The possible 2-descent reductions for L:
Diagram 4

Q(x)

Q(x2)
�

Q(x+
1

x
)

?

Q(x− 1

x
)

-

Q(x2 +
1

x2
)

? �
-

Next, take σ = −x for example, we will show how to find L̃ defined over Q(x2).
we compute the gauge transformation between L and σ(L):

G :=
x3(x− 1)2(x4 + 24x3 − 18x2 + 24x+ 1)

(x+ 1)4(x2 − 10x+ 1)
∂3+

3x2(x− 1)(x5 + 39x4 − 26x3 + 58x2 − 7x− 1)

(x+ 1)4(x2 − 10x+ 1)
∂2+

x6 + 88x5 − 65x4 + 240x3 − 65x2 − 8x+ 1)x

(x4 − 8x3 − 18x2 − 8x+ 1)(x+ 1)2
∂+

x3 + 9x2 − 9x− 1

2(x3 − 9x2 − 9x+ 1)

16

Then, we follow the steps of the algorithm in Section 4.1.

Step 1, set A := (a30 + a31x)∂3 + (a20 + a21x)∂2 + (a10 + a11x)∂ + a00 + a01x.

Step 2, compute A − σ(A)λG right divided by L, set the remainder to be 0, we get 8

equations in 8 unknowns aij . Let M be the corresponding 8× 8 matrix.

Step 3, compute the determinant of M , we find an equation of λ: (λ− 2)4(λ+ 2)4R(x2),

here R(x2) ∈ Q(x2). We solve for λ and find λ = ±2. We choose λ = 2 and find

A :=
(3 + 3x8 − 12x6 + 18x4 − 12x2)

6(5x4 + 10x2 + 1)(x2 + 3)
∂3 + (1 +

1 + 3x8 − 42x6 − 52x4 − 38x2

2x(5x4 + 10x2 + 1)(x2 + 3)
)∂2+

(
3x10 − 135 + 414x6 − 273x2 + 90x4 − 99x8

6(x4 + 2x2 − 3)(5x6 + 5x4 − 9x2 − 1)
− −27x8 + 132x6 + 6x4 − 108x2 − 3

6x(5x8 − 14x4 + 8x2 + 1)
)∂

Note 1. A is not unique. The kernel of M −λ is a 4-dimensional Q(x)-vector space, and

any nonzero element in it provides an equally valid A.

Finally, we found 2-descent L̃ of L in Q(x2)[∂], which is written by new variable x1

with x1 = x2:

L̃x1 :=16x41(x1 + 3)(5x21 + 10x1 + 1)(9x81 + 1008x71 − 31820x61 + 264480x51

− 14194x41 + 162992x31 − 8156x21 + 18368x1 + 529)(x1 − 1)4∂4

+ 32x31(−7935− 358000x1 − 3502550x21 − 24264785x41 − 1520720x31

− 12737440x51 − 13562976x71 − 20800372x61 − 905046x101 + 20706063x81

+ 28080x111 + 6593808x91 + 225x121)(x1 − 1)3∂3

+ 8x21(2250x131 + 312135x121 − 12439492x111 + 134614866x101

− 42449802x91 − 470021643x81 + 267358792x71 − 102361428x61 + 163767350x51

+ 221768417x41 − 11134724x31 + 48114210x21 + 3717898x1 + 77763)(x1 − 1)2∂2

+ 8x1(x1 − 1)(1350x141 + 230355x131 − 10741153x121 + 169118578x111

− 503407892x101 + 340703465x91 + 768939585x81 − 411403540x71

+ 839007558x61 − 333028107x51 − 52500447x41 + 44391810x31 − 43359960x21

− 2602385x1 − 42849)∂

+ 720x151 + 210495x141 − 9498286x131 + 240224513x121 − 1412138412x111

+ 4365382207x101 − 7520009378x91 − 2959167271x81 − 2667880856x71

− 5367819659x61 − 136668050x51 − 365681445x41 − 305688780x31 + 30068365x21

+ 2524194x1 + 14283

Note that L̃x1
is not unique. It depends on the choice for A (See Note 1).

By intersecting the set of singularities of L̃x1
and of LCLM(L̃x1

, ∂x1
), we see that

the set of true singularities of L̃x1 is {0, 1,∞}. By observing the exponents at these

3 points, we can guess that L̃x1
has 4F3 type solutions. We check this guess with

DEtools[Homomorphisms] and also get the 4F3 type solution of L in this way, see (Fang,

2011) for details.

17

9. Future work

At the moment, we only consider σ’s that are defined over the same field of constants C
over which L is defined. We can modify the Compute Möbius transformations algorithm
to also find σ’s defined over an extension of C. However, for such σ we do not plan to
compute 2-descent because if there exists descent w.r.t. a σ that is not defined over C,
then a larger descent should exist as well.

References

Assis, M., Boukraa, S., Hassani, S., van Hoeij, M., Maillard, J-M., McCoy, B.M., 2011.
Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equa-
tions. http://arxiv.org/abs/1110.1705.

Barkatou, M. A., Pflügel, E., 1998. On the Equivalence Problem of Linear Differential
Systems and its Application for Factoring Completely Reducible Systems. In ISSAC
1998, 268–275.

Bronstein, M., 1994. An improved algorithm for factoring linear ordinary differential
operators. In ISSAC 1994, 336–340.

Compoint, E., van der Put, M., Weil, J-A., 2010. Effective descent for differential oper-
ators. J. Algebra. 324 , 146–158.

Debeerst, R., van Hoeij, M., Koepf, W., 2008. Solving Differential Equations in Terms
of Bessel Functions. In ISSAC 2008, 39–46.

Fang, T., 2011. Implementation and examples for 2-descent.
www.math.fsu.edu/∼tfang/2descentprogram/.

van Hoeij, M., Vidunas, R., 2011. All non-Liouvillian 2F1-solvable Heun equations with
pullbacks in C(x). www.math.fsu.edu/∼hoeij/Heun/overview.html.

van Hoeij, M., 1996. Factorization of Linear Differential Operators. PhD thesis, Univer-
siteit Nijmegen.

van Hoeij, M., 2001. Implementation for finding equivalence map.
www.math.fsu.edu/∼hoeij/files/equiv.

van Hoeij, M., 2007. Solving Third Order Linear Differential Equations in Terms of
Second Order Equations. In ISSAC 2007, 355–360. Implementation at:
www.math.fsu.edu/∼hoeij/files/ReduceOrder.

van Hoeij, M., Cremona, J., 2006. Solving conics over function fields. J. de Theories des
Nombres de Bordeaux.18 , 595–606.

van Hoeij, M., van der Put, M., 2006. Descent for differential modules and skew fields.
J. Algebra. 296 , 18–55.

van Hoeij, M., Yuan, Q., 2010. Finding all Bessel type solutions for Linear Differential
Equations with Rational Function Coefficients. In ISSAC 2010, 37–44.

van der Hoeven, J., 2007. Around the Numeric-Symbolic Computation of Differential
Galois Groups. J. Symb. Comp. 42 , 236–264.

Nguyen, A. K., 2008. A modern perspective on Fano’s approach to linear differential
equations. PhD thesis.

van der Put, M., Singer, M. F., 2003. Galois Theory of Linear Differential Equations,
vol. 328 of A Series of Comprehensive Studies in Mathematics. Springer, Berlin.

18

