2-descent for Linear Differential Equations

Tingting Fang
Florida State University, Tallahassee, FL 32306-3027, USA
Mark van Hoeij
Florida State University, Tallahassee, FL 32306-3027, USA

Abstract

Let L be a linear ordinary differential equation with coefficients in $\mathbb{C}(x)$. The goal in this paper is to reduce L to an equation that is easier to solve. The starting point is an irreducible L, and the goal is to decide if L is projectively equivalent to another equation \tilde{L} that is defined over a subfield $\mathbb{C}(f)$ of $\mathbb{C}(x)$.

This paper treats the case of 2-descent, which means reduction to a subfield with index $[\mathbb{C}(x): \mathbb{C}(f)]=2$. Although the mathematics has already been treated in other papers, a complete implementation could not be given because it involved a step for which we do not have a complete implementation. The contribution of this paper is to give an approach that is fully implementable. We describe and implement the algorithm for order 2 , and show by an example that the same also work for higher order. Examples illustrate that this algorithm is very useful for finding closed form solutions (2-descent, if it exists, reduces the number of true singularities from n to at most $n / 2+2)$.

Key words: Differential Equation, 2-descent, Algorithms

1. Introduction

Let $L=\sum_{i=0}^{n} a_{i} \partial^{i}$ be a differential operator with coefficients in a differential field $K=\mathbb{C}(x)$, where ∂ is the usual differentiation $\frac{d}{d x}$. The corresponding differential equation is $L(y)=0$, i.e. $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=0$. The problem of finding closed form solutions of L becomes easier if we can factor L as a product of lower order operators as in (Bronstein, 1994), (van Hoeij, 1996), (Barkatou and Pflügel, 1998) or apply some other approach to reduce the order, see (van Hoeij, 2007), (Nguyen, 2008).

[^0]A different type of reduction is called descent. Here, the goal is to reduce L to an operator \tilde{L} of the same order, but this time defined over a proper subfield $k=\mathbb{C}(f)$ of K. Here \tilde{L} must be projectively equivalent to L. Informally, this means that L can be solved in terms of the solutions of \tilde{L} and vice versa (a precise definition will be given in Section 2.2).

In this paper, we treat the case of 2 -descent, meaning that k is a subfield of K with index 2 . We focus on treating second order equations, at the end we will give examples for higher order. For a second order equation L, after applying Kovacic' algorithm, we can assume that L is irreducible (i.e. not a product of lower order factors), and that it has no Liouvillian solutions.

Descent reduces the number of true singularities (Definition 9) from n to at most $n / 2+2$, which helps to solve differential equations as illustrated in Section 7 and Section 8. In particular, for second order equations, if the number of true singularities ${ }^{1}$ drops to 3 , and if these are regular singularities ${ }^{2}$, then a ${ }_{2} F_{1}$-type solution can be obtained quickly. We can also stop reducing when we reach a second order operator with four true singularities, because 4 -singularity equations with ${ }_{2} F_{1}$-type solutions are currently being classified by (van Hoeij and Vidunas, 2011). Classifying equations with closed form solutions and >4 singularities would be hard to do, this is where 2-descent becomes crucial.

If $L \in \mathbb{C}(x)[\partial]$ then there is a finitely generated extension $\mathbb{Q} \subseteq C$ with $L \in C(x)[\partial]$, just take C to be the extension of \mathbb{Q} given by the coefficients of L. The main design goal for our algorithm is to introduce as few algebraic extensions of C as possible. Without this design goal, Sections 3 and 5 would have been much shorter (if we simply compute the splitting field of the singularities then for Section 5 we can follow (Compoint and van der Put, 2009) and Section 3 becomes trivial. Sections 3 and 5 become non-trivial when we aim to minimize field extensions).

The main results in this paper are in Section 4. We know from (van Hoeij and van der Put, 2006) that if there is a gauge transformation G from L to $\sigma(L)$, then L will allow descent with respect to σ. The question is, given G, how to find the descent? Is it necessary (as in the terminology in (van Hoeij and van der Put, 2006) to trivialize a 2-cocycle, or to perform some equivalent complicated operation such as finding a point on a conic over $C(x)$? The answer is no; we give a short and efficient algorithm in Section 4, and we even show (Theorem 1) that it produces a result over an optimal extension of C.

1.1. Relation to prior work

For a second order differential equation, it is shown in (Compoint and van der Put, 2009), (van Hoeij and van der Put, 2006) that the problem of computing 2-descent can be reduced to another problem (trivializing a 2-cocycle) although no step by step algorithm is given in these papers. The paper (van Hoeij, 2007) does give an algorithm, and implementation, that can be used to find 2-descent, as follows. If σ is a Möbius transformation of order 2 , and $\mathbb{C}(f)$ is the fixed field of σ, and if L is projectively equivalent to $\sigma(L)$, then we can compute the so-called symmetric product of $L, \sigma(L)$, then apply factorization (DFactorLCLM in Maple), take the 3'rd order factor found that way, and

[^1]run the algorithm from (van Hoeij, 2007) to find a second order operator. All of these steps are implemented, and the end result is a 2 -descent.

The problem with the above methods is that they rely on an algorithm that can find a point on a conic defined over K (or an algorithm that solves an equivalent problem). Although such a point must exist when $K=\mathbb{C}(x)$, the proof does not show how to find such a point over a field of constants that is optimal or close to optimal (recall that we wish to minimize the extension of C that the algorithm introduces, where $C \subset \mathbb{C}$). There is only an implementation in (van Hoeij and Cremona, 2006) for this step if C is \mathbb{Q} or a transcendental extension of \mathbb{Q}. If L contains algebraic numbers, then there is no implementation for finding a point on a conic, and without that, it is not clear how to obtain from (van Hoeij, 2007), (van Hoeij and van der Put, 2006), (Compoint and van der Put, 2009), a complete implementation for finding 2-descent.

In this paper from Section 3 to Section 7, we describe a step by step algorithm for finding 2 -descent for a second order differential equation. The algorithm can be fully implemented (Fang, 2011) because it does not call a conic algorithm. Note: If $L \in C(x)[\partial]$ with $C \subset \mathbb{C}$ of order 2, and if one allows unnecessary algebraic extensions of C (potentially exponentially large), then it is not hard to implement a conic algorithm, in which case one can consider 2-descent an already solved problem. But in practice our algorithm would be much preferable because it only extends C when necessary (i.e. when there is no 2-descent defined over C). In Section 8, we give an example of 2-descent for fourth order differential equations.

2. Preliminaries

2.1. Differential Operators and Singularities

Let $K=\mathbb{C}(x)$ denote the differential field and let $\mathcal{D}=K[\partial]$ be the ring of differential operators with coefficients in the differential field K. Here ∂ denotes the usual differentiation $\frac{d}{d x}$. Then elements $L \in \mathcal{D}$ are of the form $L=a_{n} \partial^{n}+\cdots+a_{1} \partial+a_{0}$ with $a_{i} \in K$.

A point $p \in \mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$ is called a singularity of a differential operator $L \in K[\partial]$, if p is a zero of the leading coefficient of L or p is a pole of one of the other coefficients of $L . p$ is called a regular point if it is not a singularity.

We denote the solution space of a differential operator as $V(L)=\{y \mid L(y)=0\}$ where the y are taken in some universal extension (van der Put and Singer, 2003) of $\mathbb{C}(x)$. If p is a regular point of L, we can write all solutions of L at p as convergent power series $\sum_{i=0}^{\infty} a_{i} t_{p}^{i}$, where t_{p} denotes the local parameter which is $t_{p}=\frac{1}{x}$ if $p=\infty$ and $t_{p}=x-p$, otherwise.

2.2. Transformations

There are three known types of transformations that send, for any n^{\prime} th order $L_{1} \in$ $K[\partial]$, the solution space of L_{1} to the solution space of some $L_{2} \in K[\partial]$, again of order n. They are (notation as in (Debeerst and van Hoeij, 2008)):
(i) change of variables: $y(x) \rightarrow y(f(x))$,
(ii) exp-product: $y \rightarrow e^{\int r d x} \cdot y$,
$f(x) \in K \backslash \mathbb{C}$. $r \in K$.
(iii) gauge transformation: $y \rightarrow r_{0} y+r_{1} y^{\prime}+\cdots+r_{n-1} y^{(n-1)}, \quad r_{0}, r_{1} \cdots, r_{n-1} \in K$.

Definition 1. Let $L_{1}, L_{2} \in K[\partial]$. They are called gauge equivalent (notation: $L_{1} \sim_{g} L_{2}$) if there exists a so-called gauge transformation from $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$, which means a bijection of the form (iii).

Remark 2. Let $L_{1}, L_{2} \in K[\partial]$. The \mathcal{D}-modules $\mathcal{D} / \mathcal{D} L_{i}, i=1,2$ are isomorphic if and only if $L_{1} \sim_{g} L_{2}$. In particular, \sim_{g} is an equivalence relation (see (Barkatou and Pflügel, 1998)).

Definition 3. Let $L_{1}, L_{2} \in K[\partial]$. They are called projectively equivalent (notation: $L_{1} \sim_{p} L_{2}$) if there exists a bijection $V\left(L_{1}\right) \rightarrow V\left(L_{2}\right)$ of the form

$$
\begin{equation*}
y \longrightarrow e^{\int r} \cdot\left(r_{0} y+r_{1} y^{\prime}+\cdots+r_{n-1} y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

for $r, r_{0}, \cdots, r_{n-1} \in K$.
Projective equivalence is also an equivalence relation, see (Barkatou and Pflügel, 1998). An implementation (for order 2) is given in (van Hoeij, 2001) to decide if $L_{1} \sim_{p} L_{2}$, and if so, to find the projective equivalence (the r, r_{0}, r_{1} in (1)). An algorithm for arbitrary order n was given in (Barkatou and Pflügel, 1998) (implemented in ISOLDE).

2.3. 2-descent

Definition 4. Let $f=\frac{A}{B}$ with $A, B \in \mathbb{C}[x]$ coprime, then the degree of f is defined as

$$
\operatorname{deg}(f)=\max (\operatorname{deg}(A), \operatorname{deg}(B))=[\mathbb{C}(x): \mathbb{C}(f)]
$$

Remark 5. If $\sigma \in \operatorname{Aut}(\mathbb{C}(x) / \mathbb{C})$ has order 2, then the fixed field of σ is a subfield of $\mathbb{C}(x)$ of index 2 , and by Lüroth's theorem this subfield is of the form $\mathbb{C}(f)$, for some $f \in \mathbb{C}(x)$ of degree 2 (note: we can find such f in $\{x+\sigma(x), x \sigma(x)\} \backslash C)$. Any subfield $\mathbb{C}(f) \subset \mathbb{C}(x)$ of index 2 is the fixed field of some $\sigma \in \operatorname{Aut}(\mathbb{C}(x) / \mathbb{C})$ of order 2 (after all, every extension of degree 2 is Galois). The automorphisms of $\mathbb{C}(x)$ over \mathbb{C} are Möbius transformations:

$$
\begin{equation*}
x \mapsto \frac{a x+b}{c x+d} \tag{2}
\end{equation*}
$$

This paper treats 2 -descent, so we only consider σ of order 2 , which is equivalent to having $d=-a$ in (2).

Remark 6. Any $\sigma \in \operatorname{Aut}(\mathbb{C}(x) / \mathbb{C})$ extends to an automorphism of $\mathbb{C}(x)[\partial]$. If σ has finite order, and if $\mathbb{C}(f)$ is the fixed field of σ, and if $L \in \mathbb{C}(x)[\partial]$, then

$$
\begin{equation*}
L=\sigma(L) \Longleftrightarrow L \in \mathbb{C}(f)\left[\partial_{f}\right], \tag{3}
\end{equation*}
$$

in other words, $\mathbb{C}(f)\left[\partial_{f}\right]$ is the fixed ring of σ. Here $\partial_{f}:=\frac{d}{d f}=\frac{1}{f^{\prime}} \partial$, where ' is differentiation w.r.t. x.

Definition 7. Let $L \in \mathbb{C}(x)[\partial]$. We say that L has 2-descent if $\exists f \in \mathbb{C}(x)$ with $\operatorname{deg}(f)=2$ and $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ such that $L \sim_{p} \tilde{L}$.

One could instead use the term "projective 2-descent" for this (because we use projective equivalence \sim_{p}) but we opted to use the shorter term.

Main goal: Let $L \in K[\partial]$ be irreducible. The goal of this paper is to give an explicit algorithm that can decide if L has 2-descent, and if so, find it (i.e. find $\tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $L \sim_{p} \tilde{L}$ for some f of degree 2). Moreover, if L is defined over some field $C \subset \mathbb{C}$, we should only introduce algebraic extensions of C when necessary.

In the following sections, we limit L to be of order 2 , unless otherwise specified. We will divide our algorithm into several steps. The first step is to find candidates for $\mathbb{C}(f)$ with $\operatorname{deg}(f)=2$. Such a field is the fixed field of a Möbius transformation of order 2 .

3. Möbius transformations

Proposition 8. A Möbius transformation has order 2 if it is of the form $\sigma(x)=\frac{a x+b}{c x-a}$. Such σ has 2 fixed points in $\mathbb{C} \cup\{\infty\}$.

One could apply a transformation that moves the fixed points of σ to $0, \infty$, which reduces σ to the notationally convenient $x \mapsto-x$. Our algorithm does not do this because it can introduce an unnecessary algebraic extension of the constants.

3.1. The singularity structure

Definition 9. Let $L \in \mathcal{D}$ have order n. Assume p is a singularity of L. If there exists a basis of $V(L)$ of the form $e^{\int r} f_{1}, \ldots, e^{\int r} f_{n}$ where $r \in \mathbb{C}(x)$ and f_{1}, \ldots, f_{n} are analytic at $x=p$, then p is called a removable singularity (also called false singularity). Otherwise p is called a true singularity.

Suppose p is a singularity of L. If there exists a projectively equivalent \tilde{L} for which p is a regular point, then p is a removable singularity. The true singularities of L are precisely those p that stay singular when L is replaced by any projectively equivalent operator.

For a second order differential operator L, denote (as in (van Hoeij and Yuan, 2010), (Debeerst and van Hoeij, 2008)) the (generalized) exponent-difference as $\Delta(L, p)$.

Definition 10. For any true singularity p, denote

$$
\operatorname{type}(L, p):=\left\{\begin{array}{c}
" \text { irreg }^{\prime \prime} \text { if } \Delta(L, p) \notin \mathbb{C} \\
" \text { irrat }^{\prime \prime} \text { if } \Delta(L, p) \in \mathbb{C} \backslash \mathbb{Q} \\
e \in\left[0, \frac{1}{2}\right] \text { if } \Delta(L, p) \in \mathbb{Q}
\end{array}\right.
$$

Here, $e \in\left[0, \frac{1}{2}\right]$ such that $\Delta(L, p) \in(e+\mathbb{Z}) \cup(-e+\mathbb{Z})$.
Then we write the singularity structure of L as

$$
S^{\text {type }}:=\{(p, \operatorname{type}(L, p)) \mid p \text { true sing }\}
$$

Let π_{i} project on the i^{\prime} th entry of $S^{\text {type }}$, then $S:=\pi_{1}\left(S^{\text {type }}\right) \subseteq \mathbb{P}^{1}(\mathbb{C})$ denotes the set of true singularities of L.

Lemma 11. ((Debeerst and van Hoeij, 2008), (van Hoeij and Yuan, 2010)). If $L \sim_{p} \tilde{L} \in \mathcal{D}$ then L and \tilde{L} have the same singularity structure $S^{\text {type }}$.

If $L \in C(x)[\partial]$ for some field $C \subset \mathbb{C}$, we denote:

$$
\begin{aligned}
& M_{\mathbb{C}}:=\left\{\left.\sigma=\frac{a x+b}{c x-a} \right\rvert\, a, b, c \in \mathbb{C} \text { and } \sigma(S)=S\right\} \\
& M_{C}:=\left\{\left.\sigma=\frac{a x+b}{c x-a} \right\rvert\, a, b, c \in C \text { and } \sigma(S)=S\right\} \\
& M_{\mathbb{C}}^{\text {type }}:=\left\{\sigma \in M_{\mathbb{C}} \mid \sigma\left(S^{\text {type }}\right)=S^{\text {type }}\right\} \\
& M_{C}^{\text {type }}:=\left\{\sigma \in M_{C} \mid \sigma\left(S^{\text {type }}\right)=S^{\text {type }}\right\}
\end{aligned}
$$

places $(C):=\{f \in C[x] \mid f$ is monic and irreducible $\} \bigcup\{\infty\}$.
Remark 12. places $(\mathbb{C}) \cong \mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \bigcup\{\infty\}$
If $\sigma \in \operatorname{Aut}(C(x) / C)$ then σ acts on places (C) in a natural way, preserving degrees, which are defined as:

$$
\operatorname{deg}(p)=\left\{\begin{aligned}
1 & \text { if } p=\infty \\
\operatorname{deg}(p) & \text { if } p \text { is a polynomial }
\end{aligned}\right.
$$

If $L=a_{n} \partial^{n}+\cdots+a_{0} \partial^{0}$ with $a_{0}, \ldots, a_{n} \in C[x]$, then computing the singularities as a subset of $\mathbb{P}^{1}(\bar{C}) \subset \mathbb{P}^{1}(\mathbb{C})$ would mean computing all roots (the splitting field) of a_{n}. The algorithm does not compute this splitting field because it could have exponentially high degree over C. Instead, it uses irreducible factors of a_{n} in $C[x]$ (and the point ∞) to represent the singularities, then we have the notation $S_{C}^{\text {type }}$ and

$$
M_{C}^{\text {type }}:=\left\{\sigma \in M_{C} \mid \sigma\left(S_{C}^{\text {type }}\right)=S_{C}^{\text {type }}\right\}
$$

To ensure that S is invariant under \sim_{p} it is essential to discard all removable singularities.

Example 13. Let $C=\mathbb{Q}$, and

$$
L:=\partial^{2}+\frac{12 x^{4}+1}{x\left(2 x^{2}-1\right)\left(2 x^{2}+1\right)} \partial-\frac{8}{\left(2 x^{2}-1\right)^{2}}
$$

For this example we find

$$
S^{\text {type }}:=\left\{(\infty, 0),(0,0),\left(\frac{-1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{2}}, 0\right),\left(\frac{-1}{\sqrt{-2}}, 0\right),\left(\frac{1}{\sqrt{-2}}, 0\right)\right\}
$$

The set of true singularities is

$$
S=\pi_{1}\left(S^{\mathrm{type}}\right)=\left\{\infty, 0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{-2}}, \frac{-1}{\sqrt{-2}}\right\}
$$

Written in terms of places (\mathbb{Q}) it becomes

$$
\begin{aligned}
S_{C} & :=\left\{\infty, x, x^{2}+\frac{1}{2}, x^{2}-\frac{1}{2}\right\} \subset \operatorname{places}(\mathbb{Q}), \\
S_{C}^{\text {type }} & :=\left\{(\infty, 0),(x, 0),\left(x^{2}+\frac{1}{2}, 0\right),\left(x^{2}-\frac{1}{2}, 0\right)\right\}
\end{aligned}
$$

and

$$
M_{C}^{\text {type }}=\left\{-x, \frac{1}{2 x}, \frac{-1}{2 x}\right\}
$$

This example was quite easy because it has obvious 2-descent. Moreover, all singularities were true singularities with type $(L, p)=0$. Removable singularities are common in larger examples, such as Example 3 in Section 7. Using S instead of S_{C} would have introduced an extension of $C=\mathbb{Q}$ of degree 4 in this example, however, such an extension could have been much larger (e.g. if $x^{5}-x-1$ had appeared in the denominator of L, which has a splitting field of degree 120).

3.2. Finding candidates for σ

For $i=1,2, \ldots$, let S_{i} denote the set of all $p \in S_{C}$ with $\operatorname{deg}(p)=i$.
Algorithm: Compute Möbius transformations.
Input: The singularity structure $S_{C}^{\text {type }}$.
Output: The set $M_{C}^{\text {type }}$, i.e., the set of all $\sigma \in \operatorname{Aut}(C(x) / C)$ of order 2 that fix $S_{C}^{\text {type }}$. (In this paper we omit 2-descent for σ 's that are not defined over C because in that case is better to compute a larger descent, of type $C_{2} \times C_{2}, D_{n}, A_{4}, S_{4}$, or A_{5}).
Step 1: Compute S_{i} from $S_{C}^{\text {type }}$ and let n_{i} denote the number of elements of S_{i}.
Step 2: Let $n_{\text {sing }}:=\sum i n_{i}$ (the total number of true singularities when counted in $\left.\mathbb{P}^{1}(\bar{C})\right)$.
Step 3: If $n_{\text {sing }}<3$ then return "With <3 singularities, descent is not necessary nor implemented" and stop.
Step 4: Now $n_{\text {sing }} \geq 3$.
(i) If $n_{1} \geq 3$, then call Case 1
(ii) If $n_{1}=1, n_{2}=1$, then call Case2
(iii) If $n_{1}=2, n_{2}=1$, then call Case3
(iv) If $n_{2} \geq 2$, then call Case 4
(v) If $n_{i} \geq 1$ for some $i \geq 3$, then call Case5

Algorithm: Case1.
Input: $S_{C}^{\text {type }}$ with S_{1} having ≥ 3 elements.
Output: The set $M_{C}^{\text {type }}$.
Before describing Algorithm Case1, first some remarks. In general $\sigma=\frac{a x+b}{c x+d}$ is determined by the image of three points $\sigma\left(p_{1}\right), \sigma\left(p_{2}\right), \sigma\left(p_{3}\right)$. Since we assume $|\sigma|=2$, we can write $\sigma=\frac{a x+b}{c x-a}$. In general, such σ is determined by two points $\sigma\left(p_{1}\right), \sigma\left(p_{2}\right)$ except in one case: when $\sigma\left(p_{1}\right)=p_{2}, \sigma\left(p_{2}\right)=p_{1}$. In that case one more point is needed to determine $\sigma=\frac{a x+b}{c x-a}$.

Algorithm Case1 will choose a pair $p_{1}, p_{2} \in S_{1}\left(p_{1} \neq p_{2}\right)$ and loops over all $n(n-1)$ pairs $q_{1}, q_{2} \in S_{1}\left(q_{1} \neq q_{2}\right)$. If the types of q_{1}, q_{2} match those of p_{1}, p_{2}, the algorithm will compute the σ that maps p_{1}, p_{2} to q_{1}, q_{2}. In the one case that $q_{1}, q_{2}=p_{2}, p_{1}$, a third point p_{3} is used to determine σ. There are $n-2$ choices for $\sigma\left(p_{3}\right)$, namely from $S_{1}-\left\{p_{1}, p_{2}\right\}$. The number of computed σ 's is then $\leq n(n-1)-1+(n-2)$ (equality if they all have the same type). Then we remove those σ for which $S_{C}^{\text {type }}$ is not σ-invariant (That means remove all σ 's that send a true singularity to a non-singular point or to a false singularity (Definition 9), and, remove all σ 's that send a singularity to a singularity of a different type).

Algorithm: Case2

Input: $S_{C}^{\text {type }}$ with S_{1} having 1 element and S_{2} having 1 element.
Output: The set $M_{C}^{\text {type }}$.
Step 1: Let the polynomial in S_{2} be $x^{2}+c_{1} x+c_{0}$.
Step 2: Write $\sigma_{1}=-\frac{c_{1} x+2 c_{0}}{2 x+c_{1}}$ and $\sigma_{2}=\frac{a x+c_{0} c+c_{1} a}{c x-a}$.
Remark 14. σ_{1} is the unique Möbius transformation of order 2 that fixes the roots of $x^{2}+c_{1} x+c_{0} ; \sigma_{2}$ is the parameterized family of all σ of order 2 that swap the roots of $x^{2}+c_{1} x+c_{0}$.

Step 3: Let p_{1} be the one element of S_{1}. Equating $\sigma\left(p_{1}\right)$ to p_{1} gives a linear equation that determines the values of the homogeneous parameters a, c in σ_{2}.
Step 4: Check which (if any) of σ_{1}, σ_{2} fix $S_{C}^{\text {type }}$ and return those.
Algorithm Case3 is similar to Algorithm Case2.

Algorithm: Case4

Input: $S_{C}^{\text {type }}$ with S_{2} having ≥ 2 elements.
Output: The set $M_{C}^{\text {type }}$.
Step 1: Choose one polynomial from S_{2}. Denote it as $f_{1}=x^{2}+c_{1} x+c_{0}$.
Step 2: Do the following substeps $1-4$ to get the set T_{1} :
(1) Write $\sigma_{1}=-\frac{c_{1} x+2 c_{0}}{2 x+c_{1}}$ and $\sigma_{2}=\frac{a x+c_{0} c+c_{1} a}{c x-a}$ (See the Remark in Algorithm Case2).
(2) Choose another polynomial in S_{2}, and denote it as $f_{2}=x^{2}+d_{1} x+d_{0}$.
(3) Write $\sigma_{3}=-\frac{d_{1} x+2 d_{0}}{2 x+d_{1}}$ and $\sigma_{4}=\frac{a x+d_{0} c+d_{1} a}{c x-a}$.
(4) Let $a:=d_{0}-c_{0}, c:=c_{1}-d_{1}$, then $\sigma_{2}=\sigma_{4}$ swaps the roots of f_{1} as well as the roots of f_{2}.

$$
T_{1}:=\left\{\sigma \in\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \mid \sigma \text { fixes } S_{C}^{\text {type }}\right\}
$$

Step 3: Denote the polynomials in S_{2} as f_{i}, then $T_{2}:=\bigcup_{i=2}^{n_{2}} \operatorname{FindMaps}\left(f_{1}, f_{i}\right)$
(See below for the subalgorithm FindMaps)
Step 4: $T_{3}:=\bigcup_{i=3}^{n_{2}} \operatorname{FindMaps}\left(f_{2}, f_{i}\right)$.
Step 5: $T_{1} \bigcup T_{2} \bigcup T_{3}$.
Remark. Taking a set union means removing duplicates. The duplicates are the elements of T_{3} that do not swap the roots of f_{1}, and σ_{3} might also be duplicate (it could be in T_{2} if $n_{2}>2$).

Subalgorithm: FindMaps
Input: Two irreducible polynomials $f, g \in C[x]$ of equal degree.
Output: All $\sigma \in M_{C}^{\text {type }}$ that map roots of f to roots of g.
(1) Compute the roots of g in $C(\alpha) \cong C[x] /(f)$.
(2) For each root β_{j}, compute $a, b, c \in C$ (not all 0) with $\frac{a \alpha+b}{c \alpha-a}=\beta_{j}$.

This is done by computing coefficients (w.r.t α) of $a \alpha+b-\beta_{j}(c \alpha-a)$ and equating them to 0 .
(3) For each $\frac{a x+b}{c x-a}$ found in step 2 check if it fixes $S_{C}^{\text {type }}$, if so, include it in the output.

Algorithm: Case5

Input: $S_{C}^{\text {type }}$ with S_{i} having ≥ 1 elements and $i \geq 3$.
Output: The set $M_{C}^{\text {type }}$.
Step 1: Find S_{i} for an $i \geq 3$ with $n_{i}>0$.
Step 2: Choose a polynomial f in S_{i}. Denote $C(\alpha) \cong C[x] /(f)$, with $f(\alpha)=0$.
Step 3: For each polynomial $g \in S_{i}$, call FindMaps (f, g). Then $M_{C}^{\text {type }}$ would be $\bigcup_{\in_{i}} \operatorname{FindMaps}(f, g)$.

4. Computing 2-descent, Case A

Notations: Let $L \in C(x)[\partial]$ have order 2 , and be irreducible (even in $\mathbb{C}(x)[\partial]$). Let $\sigma \in \operatorname{Aut}(C(x) / C)$ have order 2 and fixed field $C(f) \subset C(x)$.

Lemma 15. If $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $L{\sim_{p}}^{L}$, then $L \sim_{p} \sigma(L)$.

Proof. $L \sim_{p} \tilde{L}=\sigma(\tilde{L}) \sim_{p} \sigma(L)$.

So if not $L \sim_{p} \sigma(L)$ then $L \in C(x)[\partial] \subset \mathbb{C}(x)[\partial]$ does not descend to $\mathbb{C}(f)$. If $L \sim_{p} \sigma(L)$ then we will consider two cases:

Notation 1. Case A is when there exists $G=r_{0}+r_{1} \partial \in \mathbb{C}(x)[\partial]$ such that $G(V(L))=$ $V(\sigma(L))$, i.e. $L \sim_{g} \sigma(L)$.

Case B is when there exists $G=e^{\int r} \cdot\left(r_{0}+r_{1} \partial\right)$ such that $G(V(L))=$ $V(\sigma(L))$, i.e. $L \sim_{p} \sigma(L)$.
(Note: Case $A \Rightarrow$ Case B.)
This section treats only Case A. Section 5 will reduce Case B to Case A.
In Case $\underset{\tilde{L}}{\mathbf{A}}$, when $L \sim_{g} \sigma(L)$, it is known in (van Hoeij and van der Put, 2006) that there exists $\tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $\tilde{L} \sim_{g} L$. Then we have the following diagram:

Diagram 1

Here, $A, \sigma(A)$, and \tilde{L} are unknown. Whether or not such a diagram commutes is studied in Theorem 17 below.

Remark 16. A gauge transformation is a bijective map $A: V(L) \rightarrow V(\tilde{L})$ that can be represented by a differential operator in $\mathbb{C}(x)[\partial]$. So we can define $\sigma(A)$ simply by applying σ to the operator that represents the map A.

Theorem 17. Let L and σ be as before, and $G: V(L) \rightarrow V(\sigma(L))$ be a gauge transformation. Suppose $\tilde{L_{1}}, \tilde{L_{2}} \in \mathbb{C}(f)\left[\partial_{f}\right]$ and $A_{i}: V(L) \rightarrow V\left(\tilde{L_{i}}\right)$ are gauge transformations. Then:
(1) For each $i=1,2$, there is exactly one $\lambda_{i} \in \mathbb{C}^{*}$ such that the following diagram commutes.
Diagram 2

(2) If $\tilde{L}_{1} \sim_{g} \tilde{L}_{2}$ over $\mathbb{C}(f)$, then $\lambda_{1}=\lambda_{2}$; Otherwise, $\lambda_{1}=-\lambda_{2}$.
(3) In particular, $\left\{\lambda_{1},-\lambda_{1}\right\}$ depends only on (L, σ, G).

Proof.

First consider the diagram without λ_{i} in it. In it we find two gauge transformations $V(L) \rightarrow V\left(\tilde{L}_{i}\right)$, namely A_{i} and $\sigma\left(A_{i}\right) G$. After choosing bases of $V(L)$ and $V\left(\tilde{L}_{i}\right)$, we can view these gauge transformations as bijections: $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. Then by linear algebra, there is a constant $\lambda_{i} \in \mathbb{C}^{*}$ such that the map:

$$
\begin{equation*}
A_{i}-\lambda_{i} \sigma\left(A_{i}\right) G: V(L) \rightarrow V\left(\tilde{L}_{i}\right) \tag{4}
\end{equation*}
$$

has a non-zero kernel. The kernel of (4) corresponds to a right hand factor of L, namely, the GCRD of L and the operator in (4). However, L is irreducible so this kernel must be $V(L)$ itself. That means Diagram 2 commutes. That λ_{i} is unique follows from linear algebra: there can be at most one λ_{i} for which (4) is the zero map. Item 1 follows.

For item 2, since $\tilde{L}_{1} \sim_{g} L \sim_{g} \tilde{L}_{2}$, there exists a gauge transformation $B: V\left(\tilde{L}_{1}\right) \rightarrow$ $V\left(\tilde{L}_{2}\right)$. This B is unique up to multiplying by a constant that we choose in such a way that the composition $B A_{1}: V(L) \rightarrow V\left(\tilde{L}_{2}\right)$ coincides with A_{2}. Since $\sigma\left(\tilde{L}_{1}\right)=\tilde{L}_{1}$, $\sigma\left(\tilde{L}_{2}\right)=\tilde{L}_{2}$ one sees that $\sigma(B)$ maps $V\left(\tilde{L}_{1}\right)$ to $V\left(\tilde{L}_{2}\right)$ as well. So $\sigma(B)$ must be $c \cdot B$ for some $c \in \mathbb{C}^{*}$. Then $|\sigma|=2$ implies that $c= \pm 1$. Now $c=1$ iff $\sigma(B)=B$ iff $B \in \mathbb{C}(f)\left[\partial_{f}\right]$ iff $\tilde{L}_{1}, \tilde{L}_{2}$ are gauge-equivalent over $\mathbb{C}(f)$. Otherwise, if $c=-1$, then $B \notin \mathbb{C}(f)\left[\partial_{f}\right]$ and $\tilde{L}_{1}, \tilde{L}_{2}$ are gauge-equivalent over $\mathbb{C}(x)$ but not over $\mathbb{C}(f)$. To prove item 2 we now have to show that $\lambda_{2}=c \lambda_{1}$.

If λ_{i} is such that Diagram 2 commutes (for $i=1,2$) then the following diagram commutes:

Diagram 3

The composed map $B A_{1}$ at the left of Diagram 3 coincides with the map A_{2} in Diagram 2 for $i=2$. Applying σ to $B A_{1}$ and A_{2}, we see that the composed map at the right of Diagram 3 coincides with the map $\sigma\left(A_{2}\right)$ in Diagram 2 for $i=2$. Then the maps at the top of Diagram 3 and Diagram 2 for $i=2$ must coincide as well, i.e., $\lambda_{2} G=c \lambda_{1} G$. Hence $\lambda_{2}=c \lambda_{1}$. Item 2 (and hence item 3) follow.

4.1. Algorithm for finding 2-descent in Case A

Notations L, C, G, σ, A are as in Section 4. Our goal is to compute 2-descent: $L \sim_{p} \tilde{L} \in$ $\mathbb{C}(f)\left[\partial_{f}\right]$. Here f is determined from σ as in Remark 5 . We will compute $A: V(L) \rightarrow V(\tilde{L})$ first, then use A to find \tilde{L}.

Algorithm: Case A for computing a 2-descent \tilde{L} for L.
Input: L, G, σ and C.
Output: \tilde{L} and A, defined over an optimal extension of C.
Step 1: Write $A=\left(a_{00}+a_{01} x\right) \partial+\left(a_{10}+a_{11} x\right)$, with $a_{00}, a_{01}, a_{10}, a_{11}$ unknowns (which will take values in $\mathbb{C}(f))$.
Step 2: The operator $A-\lambda \sigma(A) G$ in (4) should vanish on $V(L)$, so the remainder of $A-\sigma(A) \lambda G$ right divided by L must be 0 . This remainder is of the form $\left(R_{00}+\right.$ $\left.R_{01} x\right) \partial^{0}+\left(R_{10}+R_{11} x\right) \partial$, where the $R_{i j}$ are $C(\lambda, f)$-linear combinations of $a_{i j}$. This produces a system of 4 equations $R_{i j}=0$ in 4 unknowns $a_{i j}$.
Step 3: To have a nontrivial solution, the corresponding 4×4 matrix M must have determinant 0 . Equating $\operatorname{det}(M)$ to 0 gives a degree 4 equation for λ. Solve for λ.
Remark. The equation for λ is of the form $\left(\lambda^{2}-a\right)^{2}=0$, where $a=\lambda_{1}^{2}=\lambda_{2}^{2}$ with λ_{1}, λ_{2} as in Theorem 17. If L and σ are defined over a field $C \subseteq \mathbb{C}$ then L and A are defined over $C(\sqrt{a})$.
If $\sqrt{a} \notin C$ then it follows from Theorem 17 that the extension by $\lambda_{i}= \pm \sqrt{a}$ is necessary.
Step 4: Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in $C(\sqrt{a}, f)$.
Step 5: Compute LCLM (A, L) to obtain $\tilde{L} A$. Right divide by A to find $\tilde{L} \in C(\sqrt{a}, f)\left[\partial_{f}\right]$.
Step 6: (optional) Introduce a new variable, say x_{1}, and compute an operator $L_{x_{1}} \in$ $C\left(\sqrt{a}, x_{1}\right)\left[\partial_{x_{1}}\right]$ that corresponds to \tilde{L} under the change of variables $x_{1} \mapsto f$.

5. Computing 2-descent, Case B

Definition 18. Let $L_{1}, L_{2} \in \mathcal{D}=K[\partial]$. The symmetric product $L_{1}(\Im) L_{2}$ is defined as the monic differential operator in \mathcal{D} with minimal order for which $y_{1} y_{2} \in V\left(L_{1}(S) L_{2}\right)$ for all $y_{1} \in V\left(L_{1}\right), y_{2} \in V\left(L_{2}\right)$.

Lemma 19. If $L=\partial^{2}+c_{0} \in C(x)[\partial]$, and $G:=e^{\int r} \cdot\left(r_{0}+r_{1} \partial\right)$ is a bijection from $V(L)$ to $V(\sigma(L))$, then $\left(e^{\int r}\right)^{2}$ is a rational function. If $L:=\partial^{2}+a_{1} \partial+a_{0} \in \mathbb{C}(x)[\partial]$, then $L_{1}:=L(S)\left(\partial-\frac{1}{2} a_{1}\right)$ is of the form $\partial^{2}+c_{0}$ (with $\left.c_{0}=a_{0}-\frac{1}{4} a_{1}^{2}-\frac{1}{2} a_{1}^{\prime}\right)$.

The proof of the lemma follows by computing the effect of G on the Wronskian, and the fact that the Wronskians of $\partial^{2}+c_{0}$ and $\sigma\left(\partial^{2}+c_{0}\right)$ are rational functions (1 and $\sigma(x)^{\prime}$ respectively).

Let $L \in C(x)[\partial]$ irreducible (even over \mathbb{C}) and of order 2, and $\sigma \in \operatorname{Aut}(C(x) / C)$ of order 2. The implementation equiv (van Hoeij, 2001) can check if $L \sim_{p} \sigma(L)$, and if so, find $r, r_{0}, r_{1} \in C(x)$ for which $G:=e^{\int r} \cdot\left(r_{0}+r_{1} \partial\right)$ is a bijection from $V(L)$ to $V(\sigma(L))$. Assume that such σ and G are given. After the simple transformation in the lemma above, we may assume that $\left(e^{\int r}\right)^{2}$ is a rational function.

If $e^{\int r}$ itself is a rational function, then we are in Case A. Otherwise, we can write $e^{\int r}=p(x) \sqrt{f(x)}$ for some square-free polynomial $f(x)$, and some $p(x) \in C(x)$.

Definition 20. The branch points of G are the roots of $f(x)$, and ∞ if $f(x)$ has odd degree.

To reduce Case B to Case A, we have to eliminate the branch points. Our algorithm will first eliminate all branch points that can be eliminated without a field extension of C. It will only extend C if there is no descent w.r.t. σ defined over C.

5.1. Branch points

It is convenient to view the set of branch points as a subset of $\mathbb{P}^{1}(\bar{C})$. However, to avoid splitting fields, the algorithm represents the branch points with a set $B \subset \operatorname{places}(C)$ instead. This B is the set of irreducible factors of $f(x)$ in $C[x]$, as well as ∞ if $f(x)$ has odd degree. The goal is to eliminate branch points until we reach $B=\emptyset$, i.e., Case A.

Definition 21. If $\sigma(\infty)=\infty$, then denote Inf $:=\{\infty\}$, otherwise Inf $:=\{\infty, x-\sigma(\infty)\}$. Denote $B_{I}=B \bigcap \operatorname{Inf}$ and $B_{N}=B \backslash B_{I}$.
Let $f_{1}(x), f_{2}(x) \in B_{N}$. We say that $f_{1}(x)$ matches $f_{2}(x)$ when the roots of $f_{2}(x)$ are the same as the roots of $f_{1}(\sigma(x))$ (i.e. the numerator of $f_{1}(\sigma(x))$ is f_{2}).
If $\sigma(\infty) \neq \infty$, then we say that the polynomial $x-\sigma(\infty)$ matches ∞.
Lemma 22. If $f_{1}(x) \neq f_{2}(x) \in B_{N}$ and $f_{1}(x)$ matches $f_{2}(x)$, then B_{N} turns into $B_{N} \backslash\left\{f_{1}, f_{2}\right\}$ when we replace L by $L_{\text {new }}:=L\left(S\left(\partial-\frac{1}{2} \cdot \frac{f_{1}(x) \prime}{f_{1}(x)}\right)\right.$.

Proof. The composed transformation

$$
V\left(L_{\text {new }}\right) \rightarrow V(L) \rightarrow V(\sigma(L)) \rightarrow V\left(\sigma\left(L_{\text {new }}\right)\right)
$$

is

$$
\sqrt{\sigma\left(f_{1}\right)} \cdot G \cdot \frac{1}{\sqrt{f_{1}}}
$$

The polynomial f equals $f_{1} f_{2} \cdots$ where the \cdots refer to the other factors of f in $B \backslash\{\infty\}$. The transformation G is of the form $\sqrt{f_{1} f_{2} \cdots} \cdot\left(r_{0}+r_{1} \partial\right)$. Factors can be removed from the square-root in G either by division or by multiplication by a square-root (factors in $C(x)$ can be moved to $\left.r_{0}, r_{1}\right)$. So in the composed transformation, the factors f_{1} and f_{2} will disappear from the square-root in G (note: this uses the assumption $f_{1} \neq f_{2}$ (which implies that their gcd is 1 since they are monic irreducible polynomials)).
A subtlety is that if $\sigma(\infty) \neq \infty$, then $\sigma\left(f_{1}\right)$ is not f_{2} but $c f_{2} /(x-\sigma(\infty))^{d}$, for some
$c \in C$, where d is the degree of f_{1} and f_{2}. This means that if $\sigma(\infty) \neq \infty$ and d is odd, then the set B_{I} will change when we replace L by $L_{\text {new }}\left(B_{I}=\emptyset\right.$ will change to Inf, and $B_{I}=\operatorname{Inf}$ will change to \emptyset).

Lemma 23. If $\sigma(\infty) \neq \infty$, and $B_{I}=\left\{\infty, f_{1}\right\}$ (here $f_{1}=x-\sigma(\infty)$) then the factor f_{1} inside the square root in G will cancel out (i.e. B_{I} will become \emptyset) if we replace L by $L_{\text {new }}:=L(S)\left(\partial-\frac{1}{4} \cdot \frac{1}{f_{1}}\right)$.

Proof. The solutions of $L_{\text {new }}$ differ a factor $\sqrt[4]{f_{1}}$ from the solutions of L. The lemma follows from a similar computation as the proof of Lemma 22, except that this time $\sigma\left(f_{1}\right)$ is of the form c / f_{1} for some constant c. Thus, the composed map is of the form $\sqrt[4]{c / f_{1}} \cdot G \cdot 1 / \sqrt[4]{f_{1}}$, and $\sqrt{f_{1}}$ is canceled from the square root in G.

In the following algorithm, L and σ are as in Section 4, and $G=e^{\int r} \cdot\left(r_{0}+r_{1} \partial\right)$ with $r, r_{0}, r_{1} \in C(x)$.

Algorithm: Case B for computing a 2-descent \tilde{L} for L.
Input: L, G, σ and C.
Output: \tilde{L} and A (defined over C whenever possible).
Step 1 Initialization: If $\left(e^{\int r}\right)^{2}$ is not a rational function, then replace L by $L S(\partial-$ $\left.\frac{1}{2} \cdot \frac{a_{1}}{a_{2}}\right)$ as in Lemma 19 and update G accordingly.
Rewrite G as $\sqrt{f(x)}\left(r_{0}+r_{1} \partial\right)$ with $f(x)$ monic and square-free (updating $r_{0}, r_{1} \in C(x)$ to move any rational factor from $e^{\int r}$ to $\left.r_{0}, r_{1}\right)$.
If $f(x)=1$ then call Case \mathbf{A} and stop.
Step 2: Factor $f(x)$ in $C[x]$ to find $B, B_{I}, B_{N} \subset \operatorname{places}(C)$.
Step 3: $g:=\operatorname{Findg}\left(B_{N}, \sigma, C\right)$.
(See below for the subalgorithm Findg)
Step 4: Let $h:=\frac{1}{2} \cdot \frac{g^{\prime}}{g}$. Replace L by $L(S)(\partial-h)$ and update G, B, B_{I}, B_{N} accordingly. Now B_{N} should be \emptyset.
Step 5: If $B_{I} \neq \emptyset$ then let $h:=\frac{1}{4} \cdot \frac{1}{f_{1}}$ with f_{1} as in Lemma 23. Replace L by $L(S)(\partial-h)$ and update G, B accordingly. Now B should be \emptyset.
Step 6: Call Case A.
Subalgorithm: Findg.
Input: B_{N}, σ, C.
Output: g.
Step 1: If $B_{N}=\emptyset$, return 1 and stop.
Step 2: Else, for each $P_{i} \in B_{N}$,
(1) Find its matched (Def. 21) element $P_{j} \in B_{N}$.
(2) If $P_{i} \neq P_{j}$ then $g:=\operatorname{Findg}\left(B_{N} \backslash\left\{P_{i}, P_{j}\right\}, \sigma, C\right)$, return $g \cdot P_{i}$ and stop.

Step 3: Now each $P \in B_{N}$ matches itself, and hence has even degree. Choose $P \in B_{N}$ with minimal degree, and let $\alpha \in \bar{C}$ be one root of P, so $C(\alpha) \cong C[x] /(P)$. Let B_{N}^{α} be the set of all irreducible factors in $C(\alpha)[x]$ of all elements of B_{N}. Return Findg $\left(B_{N}^{\alpha}\right.$, $\sigma, C(\alpha))$.

6. Main Algorithm

Algorithm 2-descent.

Input: A second order irreducible differential operator $L \in C(x)[\partial]$ and the field C.
Output: descent, if it exists for some $\sigma \in \operatorname{Aut}(C(x) / C)$ of order 2 .
Step 1: Compute the set of true singularities, and the singularity structure $S_{C}^{\text {type }}$.
Step 2: Call Compute Möbius transformations in Section 3.2 to compute the set $M_{C}^{\text {type }}$.
Step 3: For each $\sigma \in M_{C}^{\text {type }}$, call (van Hoeij, 2001) to check if $L \sim_{p} \sigma(L)$, and if so, to find $G: V(L) \rightarrow V(\sigma(L))$.
If we find σ with $L \sim_{p} \sigma(L)$, then call algorithm Case B in Section 5.1 and stop.

7. Examples

We give two examples. The first example is easy (it has $G=r_{0}+r_{1} \partial$ with $r_{1}=0$). The second one is less trivial ${ }^{3}$. The first example is in Case \mathbf{A} as in Section 4, the second example involves both Case A and Case B.

Example 24. Let

$$
L=\partial^{2}+\frac{28 x-5}{x(4 x-1)} \partial+\frac{144 x^{2}+20 x-3}{x^{2}(4 x-1)(4 x+1)}
$$

Step 1: Compute the singularity structure of L

$$
S_{C}^{\text {type }}:=\left\{(x, 0),(\infty, 0),\left(x-\frac{1}{4}, 0\right),\left(x+\frac{1}{4}, 0\right)\right\}
$$

Step 2: Compute Möbius transformations. Since S_{1} has $n_{1}=4$ elements, we end up in algorithm Case1 of Section 3.2 which produces:

$$
\left\{-x, \frac{-1}{16 x}, \frac{1}{16 x}, \frac{-1}{4} \frac{4 x-1}{4 x+1}, \frac{1}{4} \frac{4 x+1}{4 x-1}\right\}
$$

Step 3: There are 5 choices for σ. The first one is $x \mapsto-x$ corresponding to the subfield $C(f)=C\left(x^{2}\right)$. The equiv (van Hoeij, 2001) program finds $G=\frac{4 x-1}{4 x+1}$. Next we compute $A:=-4 x^{2}+x$, and then \tilde{L}. After applying a change of variable $x \mapsto \sqrt{x_{1}}$ the result reads

$$
L_{x_{1}}:=\left(16 x_{1}-1\right) x_{1} \partial^{2}+\left(32 x_{1}-2\right) \partial+4
$$

which has 3 true singularities and is easy to solve.
Example 25. Consider the operator:

$$
\begin{aligned}
L & :=\partial^{2}+\frac{4\left(1296 x^{5}+576 x^{4}-144 x^{3}-72 x^{2}+x+1\right)}{x(6 x-1)(2 x+1)(6 x+1)\left(12 x^{2}-1\right)} \partial+ \\
& \frac{2\left(5184 x^{6}-864 x^{5}-1656 x^{4}+48 x^{3}+162 x^{2}+6 x-1\right)}{(-1+2 x) x^{2}(6 x-1)(2 x+1)(6 x+1)\left(12 x^{2}-1\right)}
\end{aligned}
$$

[^2]Step 1: Compute the singularity structure of L

$$
S_{C}^{\text {type }}:=\left\{(x, 0),(\infty, 0),\left(x-\frac{1}{2}, 0\right),\left(x+\frac{1}{2}, 0\right),\left(x-\frac{1}{6}, 0\right),\left(x+\frac{1}{6}, 0\right)\right\}
$$

$\left(12 x^{2}-1\right.$ is a removable singularity, Definition 9).
Step 2: Compute Möbius transformations. Since S_{1} has $n_{1}=6$ elements, we are again in Case1, and find:

$$
\left\{-x, \frac{-1}{12 x}, \frac{1}{12 x}, \frac{-1}{2} \frac{2 x-1}{6 x+1}, \frac{1}{2} \frac{2 x+1}{6 x-1}, \frac{-1}{6} \frac{6 x-1}{2 x+1}, \frac{1}{6} \frac{6 x+1}{2 x-1}\right\}
$$

Step 3: The first σ we try is $x \mapsto-x$. The equiv program finds

$$
G:=\frac{x\left(12 x^{2}+4 x-1\right)}{12 x^{2}-1} \partial+\frac{3}{2} \frac{(2 x+1)(10 x-1)}{12 x^{2}-1}
$$

so $G(V(L))=V(\sigma(L))$. Then compute a 4 by 4 matrix from the linear equations for the $a_{i j}$, equate the determinant to 0 and find $\lambda= \pm 2$. We choose $\lambda=2$ and find

$$
A:=\left(-36 x^{4}-\frac{1}{4}+10 x^{2}\right) \partial+1-\frac{1}{4} \frac{\left(288 x^{4}+1-84 x^{2}\right)}{x} .
$$

We get

$$
\begin{aligned}
L_{x_{1}}:= & 4 x_{1}^{2}\left(-1+36 x_{1}\right)\left(4 x_{1}-1\right)\left(12 x_{1}-1\right)^{2} \partial^{2}+ \\
& 8 x_{1}\left(12 x_{1}-1\right)\left(4 x_{1}-1\right)\left(216 x_{1}^{2}-54 x_{1}+1\right) \partial- \\
& 3-2544 x_{1}^{2}+10368 x_{1}^{3}+48 x_{1}
\end{aligned}
$$

which is $\tilde{L} \in C\left(x^{2}\right)\left[\partial_{x^{2}}\right]$ rewritten with $x \mapsto \sqrt{x_{1}}$. This $L_{x_{1}}$ has 4 true singularities, and allows a further 2-descent. Applying steps (1)(2)(3) to $L_{x_{1}}$ again, we are actually in Case \mathbf{B} as in Section 5, applying the algorithm (details are given in a Maple worksheet (Fang, 2011)) we find a new operator $\tilde{L_{1}} \sim_{p} L_{x_{1}}$ defined over the subfield $\mathbb{C}\left(f_{1}\right)$ where $f_{1}:=$ $x_{1}+\frac{1}{144 x_{1}}$. Replacing f_{1} by a new variable x_{2} we get:

$$
\begin{aligned}
L_{x_{2}}:= & 4\left(36 x_{2}+11\right)\left(18 x_{2}-5\right)\left(6 x_{2}+1\right)\left(6 x_{2}-1\right)^{2} \partial^{2}+ \\
& 36\left(6 x_{2}-1\right)\left(1296 x_{2}^{3}+1620 x_{2}^{2}+20 x_{2}-9\right) \partial+ \\
& 34992 x_{2}^{3}-207036 x_{2}^{2}-2331+3456 x_{2}
\end{aligned}
$$

which has 3 true regular singularities (as well as a few removable singularities). That means that $L_{x_{2}}$ (and hence L) has closed form solutions (see (Fang, 2011)) in terms of hypergeometric ${ }_{2} F_{1}$ functions.

8. 2-descent for Fourth Order Linear Differential Equation

2-descent is not limited to second order linear differential equations. It can also be applied to higher order linear differential equations.

For higher order equation, one can still define the type of a singularity, but it will involve more than just one exponent-difference.

The following example comes from (Assis, et al, 2011).

$$
\begin{aligned}
L:= & \partial^{4}+\frac{\left(7 x^{4}-68 x^{3}-114 x^{2}+52 x-5\right)}{(x+1)\left(x^{2}-10 x+1\right)(x-1) x} \partial^{3}+ \\
& \frac{2\left(5 x^{5}-55 x^{4}-169 x^{3}+149 x^{2}-28 x+2\right)}{\left(x^{2}-1\right) x^{2}\left(x^{2}-10 x+1\right)(x-1)} \partial^{2}+ \\
& \frac{2\left(x^{4}-13 x^{3}-129 x^{2}+49 x-4\right)}{\left(x^{2}-1\right) x^{2}\left(x^{2}-10 x+1\right)(x-1)} \partial- \\
& \frac{3(x+1)^{2}}{(x-1)^{2} x^{3}\left(x^{2}-10 x+1\right)}
\end{aligned}
$$

L has 4 regular true singularities:

$$
p=0, \infty, 1,-1
$$

Among these 4 singularities, $0, \infty$ have the same type (at both points, the formal solutions involve the cube of a logarithm). At the singularities $1,-1$, the solutions also have a logarithm (but not a square or a cube of a logarithm). Hence $\sigma(\{0, \infty\})$ must be $\{0, \infty\}$ and $\sigma(\{-1,1\})$ must be $\{-1,1\}$. Then we find the set of Möbius transformations with order 2 as follows:

$$
M_{C}^{\text {type }}=\left\{-x, \frac{1}{x}, \frac{-1}{x}\right\}
$$

Here, $C=\mathbb{Q}$. For these 3 Möbius transformations, we find 3 subfields $\mathbb{Q}\left(x^{2}\right), \mathbb{Q}\left(x+\frac{1}{x}\right)$ and $\mathbb{Q}\left(x-\frac{1}{x}\right)$ of index 2 respectively.
The possible 2-descent reductions for L :

Diagram 4

Next, take $\sigma=-x$ for example, we will show how to find \tilde{L} defined over $\mathbb{Q}\left(x^{2}\right)$. we compute the gauge transformation between L and $\sigma(L)$:

$$
\begin{aligned}
G:= & \frac{x^{3}(x-1)^{2}\left(x^{4}+24 x^{3}-18 x^{2}+24 x+1\right)}{(x+1)^{4}\left(x^{2}-10 x+1\right)} \partial^{3}+ \\
& \frac{3 x^{2}(x-1)\left(x^{5}+39 x^{4}-26 x^{3}+58 x^{2}-7 x-1\right)}{(x+1)^{4}\left(x^{2}-10 x+1\right)} \partial^{2}+ \\
& \frac{\left.x^{6}+88 x^{5}-65 x^{4}+240 x^{3}-65 x^{2}-8 x+1\right) x}{\left(x^{4}-8 x^{3}-18 x^{2}-8 x+1\right)(x+1)^{2}} \partial+ \\
& \frac{x^{3}+9 x^{2}-9 x-1}{2\left(x^{3}-9 x^{2}-9 x+1\right)}
\end{aligned}
$$

Then, we follow the steps of the algorithm in Section 4.1.
Step 1, set $A:=\left(a_{30}+a_{31} x\right) \partial^{3}+\left(a_{20}+a_{21} x\right) \partial^{2}+\left(a_{10}+a_{11} x\right) \partial+a_{00}+a_{01} x$.
Step 2 , compute $A-\sigma(A) \lambda G$ right divided by L, set the remainder to be 0 , we get 8 equations in 8 unknowns $a_{i j}$. Let M be the corresponding 8×8 matrix.
Step 3, compute the determinant of M, we find an equation of $\lambda:(\lambda-2)^{4}(\lambda+2)^{4} R\left(x^{2}\right)$, here $R\left(x^{2}\right) \in \mathbb{Q}\left(x^{2}\right)$. We solve for λ and find $\lambda= \pm 2$. We choose $\lambda=2$ and find

$$
\begin{aligned}
A:= & \frac{\left(3+3 x^{8}-12 x^{6}+18 x^{4}-12 x^{2}\right)}{6\left(5 x^{4}+10 x^{2}+1\right)\left(x^{2}+3\right)} \partial^{3}+\left(1+\frac{1+3 x^{8}-42 x^{6}-52 x^{4}-38 x^{2}}{2 x\left(5 x^{4}+10 x^{2}+1\right)\left(x^{2}+3\right)}\right) \partial^{2}+ \\
& \left(\frac{3 x^{10}-135+414 x^{6}-273 x^{2}+90 x^{4}-99 x^{8}}{6\left(x^{4}+2 x^{2}-3\right)\left(5 x^{6}+5 x^{4}-9 x^{2}-1\right)}-\frac{-27 x^{8}+132 x^{6}+6 x^{4}-108 x^{2}-3}{6 x\left(5 x^{8}-14 x^{4}+8 x^{2}+1\right)}\right) \partial
\end{aligned}
$$

Note 1. A is not unique. The kernel of $M-\lambda$ is a 4-dimensional $\mathbb{Q}(x)$-vector space, and any nonzero element in it provides an equally valid A.

Finally, we found 2-descent \tilde{L} of L in $\mathbb{Q}\left(x^{2}\right)[\partial]$, which is written by new variable x_{1} with $x_{1}=x^{2}$:

$$
\begin{aligned}
\tilde{L}_{x_{1}}:= & 16 x_{1}^{4}\left(x_{1}+3\right)\left(5 x_{1}^{2}+10 x_{1}+1\right)\left(9 x_{1}^{8}+1008 x_{1}^{7}-31820 x_{1}^{6}+264480 x_{1}^{5}\right. \\
& \left.-14194 x_{1}^{4}+162992 x_{1}^{3}-8156 x_{1}^{2}+18368 x_{1}+529\right)\left(x_{1}-1\right)^{4} \partial^{4} \\
& +32 x_{1}^{3}\left(-7935-358000 x_{1}-3502550 x_{1}^{2}-24264785 x_{1}^{4}-1520720 x_{1}^{3}\right. \\
& -12737440 x_{1}^{5}-13562976 x_{1}^{7}-20800372 x_{1}^{6}-905046 x_{1}^{10}+20706063 x_{1}^{8} \\
& \left.+28080 x_{1}^{11}+6593808 x_{1}^{9}+225 x_{1}^{12}\right)\left(x_{1}-1\right)^{3} \partial^{3} \\
& +8 x_{1}^{2}\left(2250 x_{1}^{13}+312135 x_{1}^{12}-12439492 x_{1}^{11}+134614866 x_{1}^{10}\right. \\
& -42449802 x_{1}^{9}-470021643 x_{1}^{8}+267358792 x_{1}^{7}-102361428 x_{1}^{6}+163767350 x_{1}^{5} \\
& \left.+221768417 x_{1}^{4}-11134724 x_{1}^{3}+48114210 x_{1}^{2}+3717898 x_{1}+77763\right)\left(x_{1}-1\right)^{2} \partial^{2} \\
& +8 x_{1}\left(x_{1}-1\right)\left(1350 x_{1}^{14}+230355 x_{1}^{13}-10741153 x_{1}^{12}+169118578 x_{1}^{11}\right. \\
& -503407892 x_{1}^{10}+340703465 x_{1}^{9}+768939585 x_{1}^{8}-411403540 x_{1}^{7} \\
& +839007558 x_{1}^{6}-333028107 x_{1}^{5}-52500447 x_{1}^{4}+44391810 x_{1}^{3}-43359960 x_{1}^{2} \\
& \left.-2602385 x_{1}-42849\right) \partial \\
& +720 x_{1}^{15}+210495 x_{1}^{14}-9498286 x_{1}^{13}+240224513 x_{1}^{12}-1412138412 x_{1}^{11} \\
& +4365382207 x_{1}^{10}-7520009378 x_{1}^{9}-2959167271 x_{1}^{8}-2667880856 x_{1}^{7} \\
& -5367819659 x_{1}^{6}-136668050 x_{1}^{5}-365681445 x_{1}^{4}-305688780 x_{1}^{3}+30068365 x_{1}^{2} \\
& +2524194 x_{1}+14283
\end{aligned}
$$

Note that $\tilde{L}_{x_{1}}$ is not unique. It depends on the choice for A (See Note 1).
By intersecting the set of singularities of $\tilde{L}_{x_{1}}$ and of $\operatorname{LCLM}\left(\tilde{L}_{x_{1}}, \partial_{x_{1}}\right)$, we see that the set of true singularities of $\tilde{L}_{x_{1}}$ is $\{0,1, \infty\}$. By observing the exponents at these 3 points, we can guess that $\tilde{L}_{x_{1}}$ has ${ }_{4} F_{3}$ type solutions. We check this guess with DEtools[Homomorphisms] and also get the ${ }_{4} F_{3}$ type solution of L in this way, see (Fang, 2011) for details.

9. Future work

At the moment, we only consider σ 's that are defined over the same field of constants C over which L is defined. We can modify the Compute Möbius transformations algorithm to also find σ 's defined over an extension of C. However, for such σ we do not plan to compute 2-descent because if there exists descent w.r.t. a σ that is not defined over C, then a larger descent should exist as well.

References

Assis, M., Boukraa, S., Hassani, S., van Hoeij, M., Maillard, J-M., McCoy, B.M., 2011. Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations. http://arxiv.org/abs/1110.1705.
Barkatou, M. A., Pflügel, E., 1998. On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems. In ISSAC 1998, 268-275.
Bronstein, M., 1994. An improved algorithm for factoring linear ordinary differential operators. In ISSAC 1994, 336-340.
Compoint, E., van der Put, M., Weil, J-A., 2010. Effective descent for differential operators. J. Algebra. 324, 146-158.
Debeerst, R., van Hoeij, M., Koepf, W., 2008. Solving Differential Equations in Terms of Bessel Functions. In ISSAC 2008, 39-46.
Fang, T., 2011. Implementation and examples for 2-descent. www.math.fsu.edu/~tfang/2descentprogram/.
van Hoeij, M., Vidunas, R., 2011. All non-Liouvillian ${ }_{2} F_{1}$-solvable Heun equations with pullbacks in $\mathbb{C}(x)$. www.math.fsu.edu/~hoeij/Heun/overview.html.
van Hoeij, M., 1996. Factorization of Linear Differential Operators. PhD thesis, Universiteit Nijmegen.
van Hoeij, M., 2001. Implementation for finding equivalence map. www.math.fsu.edu/~hoeij/files/equiv.
van Hoeij, M., 2007. Solving Third Order Linear Differential Equations in Terms of Second Order Equations. In ISSAC 2007, 355-360. Implementation at: www.math.fsu.edu/~hoeij/files/ReduceOrder.
van Hoeij, M., Cremona, J., 2006. Solving conics over function fields. J. de Theories des Nombres de Bordeaux.18, 595-606.
van Hoeij, M., van der Put, M., 2006. Descent for differential modules and skew fields. J. Algebra. 296, 18-55.
van Hoeij, M., Yuan, Q., 2010. Finding all Bessel type solutions for Linear Differential Equations with Rational Function Coefficients. In ISSAC 2010, 37-44.
van der Hoeven, J., 2007. Around the Numeric-Symbolic Computation of Differential Galois Groups. J. Symb. Comp. 42, 236-264.
Nguyen, A. K., 2008. A modern perspective on Fano's approach to linear differential equations. PhD thesis.
van der Put, M., Singer, M. F., 2003. Galois Theory of Linear Differential Equations, vol. 328 of A Series of Comprehensive Studies in Mathematics. Springer, Berlin.

[^0]: * This research was supported by NSF grant 1017880.

 Email addresses: tfang@math.fsu.edu (Tingting Fang), hoeij@math.fsu.edu (Mark van Hoeij).
 $U R L s$: www.math.fsu.edu/~tfang (Tingting Fang), www.math.fsu.edu/~hoeij (Mark van Hoeij).

[^1]: ${ }^{1}$ the number of removable singularities (Def. 9) is irrelevant
 2 for the irregular singular case, finding closed form solutions if they exist can be done with (van Hoeij and Yuan, 2010), (Debeerst and van Hoeij, 2008)

[^2]: 3 it was e-mailed to one of us to find its closed form solutions. There have been many such requests, which motivates us to develop these algorithms.

