A Geometric Approach to Factoring Bivariate Approximate
Polynomials

Andre Galligo*
Universite de Nice (and INRIA)
Laboratoire de Mathematiques
Parc Valrose 06108 Nice cedex 02, France
galligo@unice.fr

ABSTRACT

A geometric approach is presented for designing algorithms
to factor bivariate approximate polynomials over Clz, y].
Given a perturbed composite polynomial, stably square-free,
satisfying a genericity hypothesis (one that occurs often in
applications) two algorithms are described that construct
a nearby composite polynomial and its irreducible factors.
The time to produce the factors is polynomial in the degree
of the problem. A preliminary implementation in Maple is
illustrated by several examples with comments on efficiency
and numerical robustness. We also discuss on the possibility
to get rid of the hypothesis.

Categories and Subject Descriptors

J.2 [Mathematics]; 1.1.2 [Computing methodologies]:
Symbolic and Algebraic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords

Approximate Factorization, Algebraic Geometry, Algorithms,
Maple Code

1. INTRODUCTION
1.1 Theproblem

Over the past ten years symbolic-numeric algorithms for
approximate polynomials (computation of greatest common
divisors, functional decompositions, find zeros of multivari-
ate systems, test primality, factorization) have been stud-
ied by many authors (see e.g. the proceedings of the SNC
conferences and the references inside). The main common

*Supported by french ANR grant “GECKO”
fSupported by NSF grant 0511544

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSAC *07 Waterloo, Canada

Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Mark van Hoeijt
Department of Mathematics
Florida State University
Tallahassee, FL 32306-4510, USA
hoeij@math.fsu.edu

feature of the produced algorithms is to propose a strategy
to find a nearby object with required properties. This can
be often re-interpreted as a reverse engineering task: rec-
ognize a perturbed situation by a “small” distortion of a
representation. However, the size of this small distortion is
usually not easy to formalize and many authors present the
efficiency of their algorithms by their effectiveness on some
benchmarks.

An important problem of this family which meets a re-
newed interest is the factoring of approximate multivariate
polynomials, and the bivariate case captures its essential
issues. There exist several methods, algorithms and imple-
mentations for factoring multivariate polynomials in an ex-
act setting and most have a polynomial complexity. See e.g.
[2] or [10] or [4] and their bibliography. Here we are inter-
ested in the corresponding approximate problem (see e.g.
[16]) which can be stated as follows (for two factors):

Given f € Clz, y] of total degree n, and £ € R, find g and
h € Clz, y] such that g x h = f + Af, where deg g,degh >
0,||Af|| < € and || - || denotes an appropriate polynomial
norm.

This problem has been already addressed by several au-
thors as indicated below. The proposed methods find fac-
tors of an approximate polynomial if the given polynomial
is “sufficiently close” to being factorable.

Let us assume, in the sequel, that f is “approximately
square-free” | that is, all polynomials near f are square-free.
This can be determined in practice by taking a random com-
plex floating-point value for z and using a fast algorithm to
certify that the approximate GCD of f(z,y) and fy,(z,y)
is 1. If this is not the case, then an algorithm to remove
the multivariate approximate GCD such as described e.g.
in [19, 26] could be used.

1.2 Some previous works

For a history of early algorithms see [14], [15]. The paper
[1] is the first algorithmic paper using monodromy group
action (as in section 2 below). The paper [9] considers point
combinations, an exponential search, while the paper [12]
uses an optimization method exponential in the degree of
the factor recovered. The paper [13], is also of complex-
ity exponential in the degree of the input. The papers [22,
21, 20] discuss another interesting algorithm based on zero-
sum identities of power-series solutions of f(z,y) = 0. This
algorithm is numerically stable and of polynomial complex-
ity. The paper [5] presented a polynomial-time method and
adopted a backward error analysis point of view. Similarly
for the papers [17], [11] which applied Svd on the Ruppert-

Gao matrix.

In this paper we focus on a geometric variation of the
cited problem: control the size of the distance between f
and f + Af not only via their coefficients but also via dis-
crete geometric data, namely discriminant and critical loci
and the monodromy group attached to the polynomial (see
section 2). This point of view can be related to the computa-
tion of the approximate GCD of two univariate polynomials
f and g by pairing nearby (controlled by a distance) roots
of f and g which are merged. Here the situation is more
involved as the zero-sets are curves. We chose to rely on a
finite set of characteristic points: the critical locus of the
projection of the associated curve on the x-axis. Indeed this
characterizes an algebraic curve for a given degree n > 2.

Denote by X the (possibly singular) curve X = f~1(0) C
C?, by p its projection on the z-axis p : X — C and choose a
generic (i.e. random) fiber E = p~'(a), which has n points.
We denote by A € C the discriminant locus of p. The ac-
tion of the fundamental group #(C — A) on E defines the
monodromy group G, and can be explicitly calculated; the
algcurves package in Maple contains a monodromy program
that we will use and extend. For details on this program see
section 2.

When f is irreducible, G acts transitively on E, while
when f is composite: f = fi--- fs, the orbits of G provide
the s-partition of E by the subsets formed by the roots of the
factors f;. This is the key combinatorial information which
allows to recover the factorization of f by a continuation
method. See e.g. [6, 24, 2]. In the exact setting, an early
polynomial time algorithm for computing the absolute fac-
torization of a bivariate polynomial using the monodromy
was presented by [1], monodromy plays also an important
role in the factorization algorithms presented in [9, 7, 19,
24, 25, 2, 3.

1.3 Our approach

Our work is still exploratory, we do not pretend to com-
pete with other strategies and implementations. Our aim is
to present another point of view of geometric nature which
can complement previous approaches and show some other
aspects of the hardness of the task. In this paper, we re-
strict our study to the following situation (which is the one
encountered in many application and most benchmark ex-
amples): The polynomial F' to be factored is a small per-
turbation of a product f = fi---fs such that the curves
X; = f;1(0) are all smooth and intersect transversally in
double points (nodes). The general idea is that the input
equation F' has been corrupted by some noise creating a rela-
tive error on the data of order a, estimated by the user, that
we can use in our program to estimate some threshold; but
we can do computations with rational numbers or bigfloats
with a higher precision. As we can start with a “generic”
change of coordinates, we can suppose that f and its pertur-
bation F' are monic in y of degree n and total degree n and
that the projections of the critical points on the z-axis are
all distinct, therefore we expect that the only singularities
of the discriminant are double roots corresponding to the
projections of intersections of two components.

The proposed factoring method is based on three main
ideas which leads to two procedures that we called algo-
rithms 1 and 2.

First, as the X; are smooth and cut transversally, the dis-
criminant points of f are either (simple) branching points

(of one X;) or double points (corresponding to projections
of intersection points of two components X; and X;). By a
(small) perturbation the double points give rise to a pair of
nearby branching points which generate the same transposi-
tion of the fiber E at a base point, i.e. there is a path looping
around only these two branching points which induces the
identity on E. This property allows a recognition process
that we call algorithm 1 (see section 3). We rely on the de-
scription of the generators of the monodromy group of the
input (approximate) polynomial F' given by the commands
in the package algcurves, and we diminish the number of
these generators iteratively (this corresponds geometrically
to decreasing the genus of the curve) until the monodromy
group does not act transitively on the fiber E.

Second, following the previous analysis, as long as we
don’t pass between any such cluster of branchpoints, the
monodromy induced by F' is similar to the monodromy in-
duced by f, then we can rely on the observation of [23]
that only several large loops suffice in general to determine
the orbits of the monodromy. So we compute all expected
clusters of two nearby approximate singular points of the
curve defined by F (i.e. approximate solutions of a system
of three equations in two unknowns). We project these clus-
ters on the z-axis on clusters of points of the discriminant,
and delimit zones that should not be crossed by the “large
loops”, so we adapt the cited strategy to our approximate
setting to get an early detection of the partition of E.

We observed that a main task in this second method is to
locate the clusters formed by the deformation of the nodes.
This led us to the third idea that an important preprocessing
for the approximate factorization can be achieved if we can
locate ”centers” for these clusters and ”project” F on the
subvariety (in a parameter space) of the polynomials with
the same terms than F' having singularities at these points.
We implemented that idea as algorithm 2 (see section4).

Once the partition is determined, we construct the ap-
proximate factors using interpolation. There are several
ways to do this, see section 6. Alternatively we can adapt
the algorithms from [5] for continuations and interpolation.

We discuss briefly the case when X may admit higher sin-
gularities and suggest some direction of research to address
these cases (section 5).

1.4 Anillustrative example

We will use throughout the paper the following illustrative
example: fi and f» are two random dense bivariate polyno-
mial of degree 3, f is their product divided by 100, so that
the coefficient are about 50 and F is a perturbation of f
with a relative error of 1072,

£1 1= 92%y~3+44xy " 2%x+40*y*x"2-67*x"3
+8%y~2+66*x*y+68*x"2-95%y-62%x-18:
£2 1= 68%y~3+39%y " 2%x+20*y*x"2+45%x"3

—65%y~2-67*y*x+93*x”2+43*y+8%x+6:
f:=f1%f2/100: F:=evalf(f,3):

The relative perturbation on the coefficients of the dis-
criminant of f is about 5 * 1072, The relative perturbation
on its roots is about 10~" for the double points and about
10~2 for the simple points.

2. MONODROMY GROUP

In this section, we briefly define our main tool, the mon-
odromy group: it is represented and its calculation is imple-
mented in the package algcurves of Maple that we will use.
More details can be found in [6].

Let f(z,y) be a polynomial of degree n in y, that we sup-
pose monic in y of degree n, this hypothesis simplifies the
presentation and is always satisfied after a generic (random)
change of coordinates. Let X = f~'(0) be the defined curve
in C* and p: X — C the projection on the z-axis. The dis-
criminant locus A of f is the zero-set of D := Resy(f, f;),
it contains the simple branching points which are the pro-
jections of the points with a vertical tangent and the pro-
jections of the singularities of X (which are the solutions of
f=fy=rf=0).

To define the monodromy, first select a base point z = a
in the complex z-plane minus the discriminant locus. Let
E be the fiber of p above a (i.e., the n distinct y-values
for which f(a,y) = 0). These y-values are now assigned an
order, (y1,¥2,.-.,¥yn). This ordering of the n y-values labels
the sheets of the covering X — p~'(A) of C — A.

For each point b € A, one chooses a path 4, in the complex
z-plane which starts and ends at x = a, encircles only ¢ = b
counterclockwise and avoids all points of A. The n-tuple

(y1,92,--.,yn) is then analytically continued around this
path . When one returns to £ = a, a new n-tuple is
found, which has the same entries as (yi1,y2,...,Yn), but

ordered differently: (yy,(1);Yo,(2))-- -» You(n))> Where oy is a
permutation acting on the set of labels {1,2,...,n}. We
will say that the permutation o}, is attached to the path
~s. Note that for different choices of 7y, we obtain different
permutations. We will see later, how they can be compared.

Here are some typical situations. If x = b is a simple
branching point, then o is a transposition. If x = b is the
projection of a simple double point (a node), then o is the
identity. If x = b is the projection of a cusp singularity like
the one with local equation 22 —y® = 0, then o is the cyclic
permutation of order 3.

For the effective calculation of the monodromy some la-
beling and ordering should be done. The Maple implemen-
tation (algcurves) that we will use (see [6]) and complete
with new procedures, made the following choices.

1. Base point and circles: With every discriminant
point b;, a radius r(b;) is associated: (p denotes the
distance)

r(bi) = 2p(i, (b1, b2, b} = {BiD),

Let C(bi, r(b;)) denote the circle with center b; and ra-
dius r(b;). Then the circles C(b;, r(b;)) do not intersect
each other.

Now a base point @ is chosen, such that the real part
of @ is smaller than the real parts of any of the b;. By
this choice, the arguments of b; — a are between —m/2
and /2.

2. Labeling of the sheets: At the base point z = a
there are n distinct finite y-values, they form the fiber
E of p. These are determined numerically as the solu-
tions of f(a,y) = 0. Let these n y-values be assigned
an order (y1,y2,--.,Yn), this labels the corresponding
sheet of the covering y(z) which contains ;.

3. Ordering of the discriminant points: We order
these points according to their argument with respect

to the base point: if arg(b; — a) < arg(b; — a), then b;
precedes b; in the ordering, where arg(-) denotes the
argument function. If arg(b; — a) = arg(b; — a), then
b; precedes b; if |b; — a| < |b; — a|. For example:

10

. Choice of the paths: The simplest path L(b;) around

b; consists of one line segment from a to b; —r(b;). This
is followed by C(b;, r(b;)), starting at b; — r(b;). Suc-
cessively, a line segment is followed from b; — r(b;),
back to a. The algorithm chooses a path that is com-
posed of line segments and semi-circles, and that is
equivalent to the simplest path.

. Analytic continuation: The path - is discretized in

small segments x;x;41 so that when a path is followed
in the complex z-plane from z1 to x2, the n entries
of f~'(z1) i.e. the roots of f(x1,y) = 0, follow paths
on the Riemann surface to the roots of f(z2,y) = 0,
by a numerical integration of a vector field defined by
derivatives of f (see [6] or [5] for more details) . This
gives rise to an n-tuple, whose ordering is induced by
the ordering of f~'(z1). The accepted size of |z;+1 —
;| depends on the separation of the entries of ' (z:).

. Monodromy group: Consider a closed path starting

from £ = a and returning there after encircling one
branch point z = b. After analytic continuation of E
along this path, the entries of E are recovered, but
they are shuffled by the permutation oy.

The collection of all o}, generates the monodromy group,
which is represented here as a subgroup of S, the
group of permutations of {1,2,...,n}. Note that this
representation depends on the choice of the labeling
of the y-values at * = a, so it is only unique up to
conjugation.

The point £ = co might also be a branch point. The
corresponding permutation oo does not need to be
computed by analytic continuation, since it can be de-
termined from the other oy.

. Example: We apply the procedure monodromy to the

perturbation F' of f in our illustrative example.
with(algcurves) :

m := monodromy(convert(F,rational),x,y);

The output is a list with three entries. The first entry
m[1] is the basepoint x = a that the algorithm chose.
The second entry m[2] is the fiber above a (i.e. our
list E), it consists of n complex numbers. The third
entry m[3] is a list, each entry contains a branchpoint b;
with its permutation op; (given as a product of disjoint
cycles).

3. ALGORITHM 1

In this section, given a polynomial F' supposed a small
perturbation of a composite polynomial f, and a “generic”
base point a in C, we propose an algorithm to recover the
partition of the fiber of f above a. We denote by X the
curve defined by f and by Y the “perturbed” curve defined
by F. We first analyze the situation.

3.1 Effect of aperturbation

With the hypothesis on f described in the introduction,
the discriminant A of f admits only a subset of simple roots
s1, and a subset of double roots s2. By a small deformation
F of f, each element of s» is deformed into a “cluster” of
2 roots of the discriminant A, of F', while each element of
s1 deforms to a root of Ap,. Our task is thus to separate in
these two categories the elements of A, as they all appear
as simple roots of the discriminant of F. The ones in the
first category come in pairs and form a set of clusters. So
we will look for nearby points of A,.

This is done as follows. The user specifies a level of dis-
tortion of the coefficients of f, that we use to estimate prob-
abilistically a level of deformation for each type of roots, as
follows. Let the level of relative approximation for the co-
efficients of f be . Then the expectation for the level of
relative error for D, B, is about 2na. The expectation for
the level for the simple roots is also about 3, while the one
for the double roots is about /8. In our illustrative example
a = 5% 1072, so we roughly expect perturbations of order
1072 for the points in s; and perturbation of order 10~! for
the points in ss.

We note that each point in s2 is the projection of a dou-
ble point of X which is also deformed in a cluster of two
critical points of the projection of Y. So we can improve
the previous estimation of vicinity by considering not only
the distance between two points of A, but also the distance
between the corresponding critical points in Y. They should
be in the same level of magnitude.

As these estimation of levels are not precise, we will use
them only as a guide for starting iterations.

A next observation is the following “conservation law”.
The monodromy (on any generic fiber of f) defined by a
small circle looping only around a double point of A is the
identity; because each path in the Riemann surface above
the circles remains in the same layer (as for two crossing
lines in C?). This feature is conserved by deformation: the
monodromy defined by a path < looping only around a pair
of two roots of A,, obtained by deformation of a double
point of D, is the identity (the simplest example is a couple
of crossing lines deformed in an hyperbola).

If we are able to recognize all the pairs of roots of A,
obtained by deformation of an element of sz, we can merge
the two points of each such pair by creating “cuts” in the
complex plane. Then we require that the paths v used to
calculate the monodromy do not cross these cuts. Once this
is done, the remaining roots of A, define (a large number of)
permutations of the fiber E whose s orbits give the target
partition of E. The classes of this partition are subsets of
cardinal n; with Y n; = n and) ,_.n;n; should be the
number of merged elements.

Finally, together with the partition into layers, this pro-
cess provides the coordinates (z,y) of many points in each
layer. So we can interpolate each F;, 1 < ¢ < s (see next
section 6 for more on this) and we expect that F — Fy - -« F}

i<j

is small.

Here are some easy enumerative data. If f admits two
factors of degree n/2, then there are n’/4 double points in
the discriminant. The extreme cases are when f admits a
factor of degree 1 and one of degree n — 1, then there are
n—1 double points; while when f admits n factors of degree
1, there are n(n — 1)/2 double points.

3.2 Recognition process

In order to detect the pairs of roots (p, ¢) to be merged, we
could perform analytic continuation over the shortest path
around p and g for every pair of roots of the discriminant.
However, that would be O(n*) paths. To reduce the number
of paths over which we perform analytic continuation, we
order the points as described in the previous section 2, and
for each point, compute a path around it and the basepoint.
This requires O(n?) paths. Then we use two procedures
given below to detect which pairs may be merged.

Take the triangle: basepoint - p - q. Consider all the
points inside that triangle, in the order in which they appear
in the output M of algcurves[monodromy] (see in section 2
the subsection on the sorting of discriminant points). The
only points that could be inside that triangle have ordering
between p and ¢, and must appear on the same side of L as
the basepoint, where L is the line through p and ¢g. Finding
these points is done with this Maple procedure:

PointsInTriangle := proc(M,p,q) local L,t,i;
{L | t in R} is the line through p and q:
L :=t * M[3,p,1] + (1-t) * M[3,q,1];
Now {L | t in C} = C. Two points in C are on
the same side of line {L | t in R} iff the
imaginary parts of their corresponding t-values
are either both positive, or both negative.
This lists i’s for which M[3,i,1] (point #i)
is on the same side as M[1] (the basepoint):
[seq(¢if ‘ (Im(solve (L=M[1] ,t)) *

Im(solve(L=M[3,i,1],t)) > O,

i, NULL), i=p+1..q-1)]

end

Then we multiply the permutations corresponding to the
points inside that triangle, to get a permutation g. Now, in
order to compare the permutation of point p with that of
point ¢, we first have to conjugate with g, and then multiply
and check for identity. See the Maple code below for more
details.

We start with the relatively closest pair of points with
matching permutations. We make a cut in the complex
plane joining the two points of the pair. Then we proceed
iteratively, up to some threshold for the distance, we should
replace a path crossing a cut (and producing a permutation
v) by a path avoiding that cut. However, we don’t com-
pute any new analytic continuations, we just calculate the
appropriate conjugate of v and obtain the same resulting
permutation.

When the deformation is small enough, we should find
the clusters corresponding to the intersections between the
components.

We choose to start with a subset of pairs of roots of A,
for which the distance between the two points of the pairs
is smaller than the threshold provided by the estimation
described in the previous subsection. Then we apply the
procedure MatchingPermutations to see which pairs should

be merged. Then we perform the merging and check if the
monodromy action is no longer transitive.

Remark that if we remove more points and create more
cuts than necessary, it is likely that there remain enough
points and paths to recover the targeted partition of F (the
fiber over the base point).

3.3 Mapleprocedures

Here are some Maple procedure that implement the pre-
vious approach.

“mp” computes the product of (several) permutations,
“invperm” inverses a permutation and “orbit” computes the
orbits of a subgroup of permutations.

With the previous notations, the following procedures re-
turns true if the shortest path around points p,q has trivial
permutation = [].

MatchingPermutations := proc(M,p,q) local g,i;
g := [1;
for i in PointsInTriangle(M,p,q) do
mp = multiply permutations
g := mp(M[3,i,2], g)
od;
evalb([] = mp(invperm(g), M[3,q,2], g, M[3,p,2]1))
end:

Then let us denote by S the set of pairs that we discard and
by P the subset of discriminant points 1,2,...,nops(M[3])
that we keep.

S := NULL;
for p to nops(M[3])-1 do
for q from p+l to nops(M[3]) do
d := abs(M[3,p,11-M[3,q,1]);
if d > 0.3 then next fi;
if MatchingPermutations(M,p,q) then
S :=8, [p,q, dl
fi
od
od:

The number 0.3 was used as a threshold, if no such threshold
is available then that line should be deleted. To check if the
monodromy is transitive for a set of points P, we use the
following procedure.

TransitiveGroup := proc(M, P) local G,i;

G := permgroup(n, {seq(M[3,i,2]1, i=P)});

output true if the curve is still irreducible:
evalb(nops (orbit(G, 1)) = nops(M[2]))

end:

Instead of deleting all pairs with distance below a certain
threshold, we can also work without a threshold and simply
start deleting grouped branchpoints (starting with the rela-
tively closest pair, then the next closest, and so on) and stop
as soon as the group becomes reducible (i.e. not transitive).
If the distance of the last pair was d, then we see that merg-
ing only pairs with distance < d does not suffice to reach a
reducible polynomial. One can now try to compute a num-
ber § such that no §-perturbation of F' can bring a pair of
distance d together. Such § would then be a lower bound for
the distance from F' to the nearest reducible polynomial. In
the final version of this paper we hope to compute a lower
bound in this way and compare it to alternatives like [17] or
the paragraph at the end of section 5.

3.4 [lllustrative example

If a pair p,q of discriminant points of F' comes from a
double point of f, then we assume that the path around
p,q corresponds to a path around that double point (and
hence has trivial monodromy). The above program Match-
ingPermutations is based on this assumption. However, it
is possible that this assumption fails; during the deforma-
tion, the points p,g move away from each other, starting at
the double point. However, if during this process a third
branchpoint » moves between p,q, then the effect of that
will be that o, (or oq) will be conjugated by o, after which
0p0q 1o longer needs to be trivial.

This seemingly unlikely situation actually happened in
one of our examples, the example from section 1.4, because
of a coincidence that happens with the projection on the
z-axis. As a result, the code only finds 8 out of the 9 pairs
that should have been matched. An easy fix is that switch-
ing to another projection will likely make the problem go
away. Another fix would be to check op,04 and o, when-
ever a pair p,q is so close to another branchpoint r that
this situation may have occurred (for additional robustness
this could be combined with the computation of the pseudo
singular points in section 4.2, because such a point should
be found near the center between p,q if p,q originated from
a double point). For this example we simply switched to
another projection by exchanging the roles of = and y.

We order the 30 roots of A, as said before, and take the
set S of the pairs under the threshold 0.3 that satisfy the
previous matching test. Then we get 9 elements:

S := [[15, 16,.037], [18, 19, .075], [12, 13, .075], [23, 25, .12],

[6,8,.12],[28,29,.13], 2, 3, .13], [21, 26, .26], [5, 10, .26]]

So 30 — 9 - 2 = 12 permutations remain. The generated
subgroup is not transitive and provides the partition in two
subsets (with 3 elements each) of the fiber E. The corre-
sponding factors will be computed by interpolation.

4. ALGORITHM 2

In this section we present a new method, based on a geo-
metric analysis, for diminishing the distance between a per-
turbed composite polynomial satisfying our genericity hy-
pothesis and the set of composite polynomials. Then the
“preprocessed” input can be treated by various factoriza-
tion algorithms including the following one that we may call
an “early detection” of the monodromy.

4.1 Early detection

In this subsection, we sketch a probabilistic method to
reach by an early detection the targeted partition of the
fiber E.

In the previous section, algorithm 1 explores all points of
the discriminant set A, and determines iteratively a set of
pairs of points of A, which should be discarded together
with their associated permutations of E. Thus the set of
generators of the monodromy group decreases. The process
stops when the orbit of the monodromy group splits, hence
provides a partition of E.

Here we will proceed in the opposite direction: we start
with an empty set of generators of the monodromy group
and iteratively enlarge it, so we will coagulate the orbits to
get the partition.

4.2 Pseudo singular points

We first need to locate the clusters of points on ¥ =
F~1(0) created by the deformation of the singular points
of X = f71(0). We can call them pseudo singular points.
They are the solutions of a system of three ”approximate
equations” (F, F,, F,) in (z,y). We expect the same order
of magnitude e for the derivatives of f as for f. By a de-
formation of f, a common solution A to the three equations
(f, fz» fy) produces a cluster of three points (A12, A3, A2s).
A1z (respectively Ais, and Ajg) is the common solution of
(F, Fy), respectively of (F, F,) and (Fy, F,). We expect that
the order of magnitude of the distance between A and Aia,
or Aj3 is about /e while the order of magnitude of the dis-
tance between A and Ass is only about e. A practical way
for locating such clusters is as follows.

1. Compute approximately the set A of the (n—1)? com-
mon solutions of (Fj, F,) in C*. This can be done via
resultants of a rational approximation of F.

2. Take the subset B C A consisting of those P € A for
which F'(P) is close to 0 (tolerance O(e)).

If we know the desired degrees of the factors, then we can
work without a threshold. For example, if f should have
two factors of degree n/2 then we can sort the points P in B
(where the P for which F(P) is relatively closest to 0 come
first) and take the first n”>/4 elements.

4.3 Forbidden zones

We project B on the z-axis, and consider the set of m
small disks (or squares) centered at the m projected points
and of radius about /€, in such a way that each of them
contains at least two points of the discriminant set A. Let
U denote the union of these disks.

Then we choose a base point a outside of U and of A, and
consider a set of random paths 7; starting and ending at a
avoiding U and of A and encircling about a third or half of
the points of A. The paths are constructed iteratively and
are concatenations of lines and portions of circles. To each
such paths 7; we associate via continuation, as explained in
section 2, a permutation o; of the fiber E above a.

Let G be the group generated by a family {o;;j € J}
of such permutations. When we increase J, the orbits of
G coagulate and eventually they converge to the targeted
partition of E.

4.4 Other strategies

If we already computed the monodromy as explained in
section 2, we can use this information. Indeed we don’t
need to compute new continuations, but we can use a con-
catenation of the already computed paths in order to get the
permutations associated to homotopic paths that avoid the
forbidden zones. So we fully control the choice of the paths.
We can also consider a mix of the two algorithms.

An opposite strategy would be to travel blind and con-
struct the loops without computing in advance all the pseudo
singular points: The forbidden zones are constructed dy-
namically when the path detects a nearby potential pseudo
singular point via the size of a normalized gradient of F.
Such a continuation algorithm was presented in [5].

45 Example

We applied the procedure of computation of the pseudo
singular points to our illustrative example. With a threshold
equal to 0.1 or to 0.2, we obtain 11 pseudo singular points,
(X has only 9 singular points). However, one of the pseudo
singular point of Y very near to a singular point of X is
obtained with distance larger than the two “extra” onmes.
This shows that we may have to accept more pseudo singular
points of Y than singular points of X in order not to miss
one. For the lucky case that we do have the correct number
of pseudo singular points we implemented a TrivialFactoring
program [8] that simply interpolates those points to find
factors (see also section 6).

5. WHAT HAPPENS WITH HIGHER SIN-
GULARITIES

In the previous sections we made the important hypoth-
esis that F' was a small deformation of a composite poly-
nomial f = fi--- f, such that X; = f;'(0) are all smooth.
Therefore the only singularities of f are a fixed number of
nodes (double points).

In this section, we discuss some issues and sketch some
possibilities of solutions when f has more complicated sin-
gularities.

First of all let us recall the classical results on perturbation
of multiple roots of an univariate polynomial: the typical
behavior is the one of ¢ — € with € small, so the root 0 is
perturbed at a distance of d**-root of e.

This extends to systems of two bivariate polynomials: the
more complicated the singularity is, the further the roots
move away. Indeed, it suffices to analyze the projections on
two lines, and clusters of several roots are not easy to locate.

One strategy used in one variable, and which can be gen-
eralized in two (or more) variables to locate the clusters of
d-roots of a polynomial P is the following. First compute
the zeros of P, P', P*, ..., P9 Then for each zero z1
of P such that PtV (z;) is big enough, there are two
zeros of P41 at a distance about /€, then three zeros of
P@=2) at a distance about the third root of ¢, and so on
till d zeros of P at a distance about the d**-root of €. The
situation is more complicated in two variables because one
has to consider not the totally ordered iterations of deriva-
tions of P but the the only partially ordered iteration of the
partial derivations of F'(x,y). This was studied by several
authors including T. Ojika, and more recently G. Lecerf see
references in e.g. [18].

In our setting such singularities may show up in three
different ways: For one or more 4, X; = f; *(0) admits sin-
gularities, but

o We still have the property that for any two 4 and j,
X; and X intersect transversally (and their small de-
formations also intersect transversally) and form only
nodes at these intersections. Then the strategy pre-
sented in the previous sections can be adapted and
re-used with small changes, because we focus on the
intersections.

e We still have the property that for any two 4 and j,
the intersection point of X; and X is a smooth point
of X; and a smooth point of X;, but they are tangent.
Then we can try to adapt the previous strategy but the
analysis and the algorithm will be a bit more intricate.

e For two 7 and j, the intersection point of X; and X is
not a smooth point of X;. Then the situation is even
more complicated.

In all cases, a general strategy for obtaining an approx-
imate factorization of F' is to first approximate F' by the
nearby more singular polynomial.

Let us illustrate this paradigm on a case that we encoun-
tered when we experimented our algorithms. We created
a benchmark of small degree polynomial with two factors,
choosing two random polynomials f; and f> of degree 4 and
5 via the Maple command randpoly, and then deforming f
into F'. However, one such pair represented two curves Xi
and X, almost tangent at a point. Instead of finding the
expected 4 x 5 = 20 common solutions to F, and Fy, on
which F' almost vanishes, we found 21 even for quite small
perturbations.

This can be explained as follows: to simplify the nota-
tions, let suppose that the tangent point correspond to two
parabolas and is represented by the two equations fi :=
y— 22 and fo := y + 222, so f = y? + z?y — 2z*. By a
small deformation, the nearby composite curve is formed
by the union of two parabolas intersecting (transversally)
at two points nearby 0. However, the partial derivatives F,
and Fy, of the deformed polynomial F have 3 common roots
nearby 0, (because f; = 2y +2” and f; = 22y — 8z° have a
root in 0 of multiplicity 3) and F' almost vanishes at these 3
points, so we can hardly distinguish 2 out of these 3 points.

The suggestion is to consider the second derivatives: f”,, =

2, f’ 2y = 2z and f;, = 2y — 242” and observe that 2, —
faxfyy vanishes at 0 and that f”4y and f” 4, have a common
simple solution in 0. This last property is conserved by a
small deformation and give a good estimate of the location
of the cluster.

If among the pseudo singular points we correctly selected
the subset B coming from true singularities, then we can ap-
ply a Newton iteration to bring those points closer to true
singularities, as follows: Consider the space of polynomials
that vanish at all P € B, and then replace F' by the pro-
jection of F' on that space. We implemented this, see Near-
estNpoly on [8]. If the initial errors were sufficiently small,
say of size O(e), then this process has quadratic convergence
and should lead to an output that is no further than O(e?)
away from an optimal output f (assuming transversal inter-
sections, the distance from a P € B to a singularity of f is
O(e), and hence f(P) = O(e?). Note that this gives another
potential way to determine a lower bound for the distance
from F to a nearest reducible polynomial. We hope to com-
pute such a lower bound and compare to other approaches
in the final version of this paper).

6. INTERPOLATION

The previous procedures “recognize” the partition of the
fiber E = p~'(a), above the base point a, into s disjoint
subsets I; with 1 < j < s of {1,...,n} and identify several
points M; = (z;,y;) on the corresponding layer. Then it
remains to compute, by interpolation at these points, can-
didate factors F;. Then this factorization can be improved
further by one or more Newton steps.

The general method is to find the coeflicients of each Fj,
e.g. in the monomial basis of dense polynomials of degree
n;, by imposing a family of linear conditions on these coef-
ficients. These conditions express the vanishing of F; at the

M; corresponding to I;. Then one solves approximately the
(overdetermined) linear system using QR or Svd techniques.
There are several ways to choose the points M;.

1. Take any subset of the points M; used during the an-
alytic continuations in the monodromy computation.

2. Take m points z; in the complementary of the dis-
criminant locus and all n points M;; above each z;
organized in a grid.

3. Take all double points.

4. Take for each j, the nj(n; — 1) critical points M; of
F corresponding to the branching points producing I;,
as well as the conditions coming from Fj (M;) = 0.

The second possibility with m = 2n points widely spread
in the z-axis gives satisfactory results. However, it seems
that the distance (defined by the difference of the coeffi-
cients) between each candidate factor F; to the correspond-
ing f; is smaller than the distance from their product to
F. So Newton step(s) can improve the result. If s = 2 a
Newton step amounts to solving approximately (Svd) in the
coefficients of (§Fy,dF>) the overdetermined linear system

F—F1*F2—F1*6F2—F2*5F1=0.

The third and the fourth possibility have the advantage
of focusing on the discriminant and critical loci. So the
candidate F; will have discriminant and a critical loci near
a subset of the loci of F'. This is more in the spirit of a
geometric approach to the factoring problem.

Remark When the polynomial F' is monic in y, the sec-
ond possibility has the advantage that, for each triple of
z-values (x1,x2,%3), we can check the zero-sum condition
for each set of points corresponding to a given j, then re-
turn to the main loop if it fails, or simply if needed deform
the points in a fiber (as done e.g. in [25]) before the inter-
polation.

6.1 Illustrative example

With our illustrative example, we took 12 points in the
rectangle [—2..1, —1.5..1.5] included in the z-axis and the
points above them (in the corresponding fibers) divided in
two sets U and V. therefore, U defines 36 homogeneous lin-
ear conditions on the ten coefficients of F1; and respectively
for F>. Once normalized by letting F; and F» to be monic
in y. We have that the (normalized) maximal difference be-
tween the coefficients of f and its perturbation F' is 0.01.
We obtain two candidate factors F; and F» with a maximal
difference with the coefficients of f; and f2 of 0.02 and 0.03
while the maximal difference between the coefficients of F'
and Fi * F» is 0.03. This can be improved with only one
Newton step and we get new candidate factors F; and F»
such that the maximal difference between the coefficients of
F and F1F> is 0.003 which seems satisfactory.

7. CONCLUDING REMARKS

We presented a new geometric approach and two algo-
rithms for factoring bivariate approximate polynomials. A
draft implementation and some test files with examples are
available at [8]. The algorithms work for bivariate approxi-
mate polynomials that are close enough to exactly factorable
polynomials. The presented algorithm assumes that the

input polynomial approximates a product of polynomials
defining smooth curves that intersect transversally. In sec-
tion 5 we discussed the effect of more complicated singular-
ities. In the near future we will try to extend our algorithm
to this more general case. We can also incorporate in our
algorithm, the zero-sums tests in order to speed up the it-
eration step before going to the interpolation step. We will
also implement the use of orbits of the monodromy attached
to chosen large paths including several branching points, to
speed up the computation of the targeted partition, adapt-
ing to our setting the observation of [24]. Another interest-
ing direction of research is to compare our approach with
the one using the Ruppert-Gao matrix developed in [11].

8.
[1]

2]

[3]

[4]

[5]

[12]

REFERENCES

C. Bajaj, J. Canny, T. Garrity, and J. Warren.
Factoring rational polynomials over the complex
numbers. SIAM J. Comput., 22(2):318-331, 1993.

G. Chéze and A. Galligo. Four lectures on polynomial
absolute factorization. In Solving polynomial
equations, volume 14 of Algorithms Comput. Math.,
pages 339-392. Springer, Berlin, 2005.

G. Cheze and A. Galligo. From an approximate to an
exact absolute polynomial factorization. J. Symbolic
Comput., 41(6):682-696, 2006.

G. Cheze and G. Lecerf. Lifting and recombination
techniques for absolute factorization. Accepted for
publication in Journal of Complexity, 2006.

R. Corless, M. Giesbrecht, I. K. M. van Hoeij, and

S. Watt. Towards factoring bivariate approximate
polynomials. In B. Mourrain, editor, Proceedings of
the 2001 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2001). ACM, 2001.

B. Deconinck and M. van Hoeij. Computing riemann
matrices of algebraic curves. PhysicaD, 152:28-46,
2001.

A. Galligo. Real factorization of multivariate
polynomials with integer coefficients. Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
258(Teor. Predst. Din. Sist. Komb. i Algoritm.
Metody. 4):60-70, 355, 1999.

A. Galligo and M. van Hoeij. Implementation:
http://www.math.fsu.edu/~hoeij/files/approxfact.

A. Galligo and S. Watt. A numerical absolute
primality test for bivariate polynomials. In
Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation, pages 217-224
(electronic), New York, 1997. ACM.

S. Gao. Factoring multivariate polynomials via partial
differential equations. Math. Comp., 72(242):801-822
(electronic), 2003.

S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi.
Approximate factorization of multivariate polynomials
via differential equations. In ISSAC ’04: Proceedings
of the 2004 international symposium on Symbolic and
algebraic computation, pages 167-174, New York, NY,
USA, 2004. ACM Press.

M. Hitz, E. Kaltofen, and Y. N. Lakshman. Efficient
algorithms for computing the nearest polynomial with
a real root and related problems. In Proceedings of the
1999 International Symposium on Symbolic and
Algebraic Computation, pages 205—212, New York,

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

(21]

[22]

23]

[24]

25]

26]

1999. ACM.

W. Huang, Y.and Wu, H. J. Stetter, and L. Zhi.
Pseudofactors of multivariate polynomials. In
Proceedings of the 2000 International Symposium on
Symbolic and Algebraic Computation, pages 161-168,
New York, 2000. ACM.

E. Kaltofen. Polynomial factorization 1982-1986. In
Computers in mathematics (Stanford, CA, 1986),
volume 125 of Lecture Notes in Pure and Appl. Math.,
pages 285-309. Dekker, New York, 1990.

E. Kaltofen. Polynomial factorization 1987-1991. In
Proc. LATIN ’92, volume 583 of Lect. Notes Comput.
Sci, pages 294-313, New York, 1992. Springer Verlag.
E. Kaltofen. Challenges of symbolic computation: My
favourite open problems. JSC, 29(6):891-919, 2000.
E. Kaltofen and J. May. On approximate irreducibility
of polynomials in several variables. In ProcISSAC03,
pages 161-168, 2003.

A. Leykin, J. Verschelde, and A. Zhao. Newton’s
method with deflation for isolated singularities of
polynomial systems. Theor. Comput. Sci.,
359(1):111-122, 2006.

D. Rupprecht. Elements de gomtrie algbrique
approche: Etude du pged et de la factorisation. PhD
thesis, Univ. Nice Sophia Antipolis, 2000.

T. Sasaki. Approximate multivariate polynomial
factorization based on zero-sum relations. In
Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2001),
pages 284-291. ACM, 2001.

T. Sasaki and M. Sasaki. A unified method for
multivariate polynomial factorizations. Japan J.
Indust. Appl. Math., 10(1):21-39, 1993.

T. Sasaki, M. Suzuki, M. Kolaf, and M. Sasaki.
Approximate factorization of multivariate polynomials
and absolute irreducibility testing. Japan J. Indust.
Appl. Math., 8(3):357-375, 1991.

A. Sommese, J. Verschelde, and C. Wampler.
Numerical irreducible decomposition using projections
from points on the components. In Symbolic
Computation: Solving Equations in Algebra,
Geometry, and Engineering, volume 286 of
Contemporary Mathematics, pages 37-51. AMS, 2001.
A. Sommese, J. Verschelde, and C. Wampler. Using
monodromy to decompose solution sets of polynomial
systems into irreducible components. In Application of
Algebraic Geometry to Coding Theory, Physics and
Computation, pages 297-315. Kluwer Academic
Publishers, 2001. Proceedings of a NATO Conference,
February 25 - March 1, 2001, Eilat, Israel.

A. Sommese, J. Verschelde, and C. Wampler.
Symmetric functions applied to decomposing solution
sets of polynomial systems. STAM J. Numer. Anal.,
40(6):2026-2046, 2002.

Z. Zeng and B. H. Dayton. The approximate gcd of
inexact polynomials. In ISSAC ’04: Proceedings of the
2004 international symposium on Symbolic and
algebraic computation, pages 320-327, New York, NY,
USA, 2004. ACM Press.

