PROBLEM SET 7:
INEQUALITIES
DUE: MARCH 3, 2004

HARM DERKSEN

1. ELEMENTARY INEQUALITIES

Perhaps the most fundamental inequality for real numbers is
2>0, v€R

Using this inequality one can deduce many more inequalities. For example, if we
take x = a — b with a,b € R we obtain:

a? — 2ab+ b = (a — b)* > 0.
It follows that .
a+b > ab.
2
This inequality is interesting by itself. If we now substitute a = \/y and b = /2
we obtain

Y+ z

5 = VYz

whenever y, z are nonnegative real numbers. Substitution is a very useful method
for proving inequalities.

Example 1. Prove that
a4+ 0%+ > ab+ ac+ be
for all a,b,c € R Also prove that equality holds if and only if a = b = c.

Discussion. We have to prove that
a2+ +c—ab—ac—bec>0

for all a, b, ¢ € R. Perhaps we can write a?+b*+c?—ab—ac—bc as a sum of squares.
Since a? + b* + ¢ —ab —ac — bec = 0 for a = b = ¢ = 0, one should consider
squares of functions that vanish whenever a = b = ¢ = 0. For example, let’s
consider the functions (a —b)?, (b—c)?, (c—a)?. We have (a —b)? = a* — 2ab+ ?,
(b—c)? =% —2bc+ ¢* and (c — a)? = * — 2ac + a*. If we take the sum of these
three functions we get
(a—b)2+ (b—c)’+ (c— a)® = 2a* + 2b* + 2¢* — 2ab — 2bc — 2ca
1
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which is exactly the double of the quantity we are interested in. The proof of the
inequality is now easy:
Proof. We have

A+ 0+ —ab—ac—bc=3((a—b)?+ (b—c)*+ (c—a)?) >0
0.

and it is now obvious that equality holds if and only if a =b=c¢ = ©
Another obvious but important inequality is:
2y >0, ifz,yeRandz>0andy>0.
This can be used in many ways. For example if 0 < z < 1 then
xr > z?
because
v—2’=z(1-2)>0
and both  and 1 — z are nonnegative.
Example 2. Suppose that x,zs,...,x, are real numbers such that 0 < z; <'1

for all 7. Prove that
J,‘1—|—.’172+"'+l'n Z $1$2+$2$3+$3$4+"'+$n$1.

When do we have equality?

Discussion. The inequality is not so hard to see, because x1 > x1x2, x9 > Tox3,
etc. So the inequality is equivalent to

.’171(1 —.’Eg)+l‘2(1 —.’173)+"'+.75n(1—.’171) Z 0.
If we have equality then
r1=0o0rzy =1, wz9=0o0raz3=1,... ,x,=0o0rxz =1.

If 1 # 0 then o = 1 and in particular x5 # 0. From this it follows that
x3 = 1. But then x3 # 0, so x4y = 1, etc. This way we see that o = x5 =

x4 =---=x, =2, = 1. In a similar way we see that if x; # 0 for some ¢, then
Ty =Xy =x3 =---=x, = 1. The only other case where equality holds is when
Ty =29 =---=x, =0.

Example 3. Suppose that x,z,...,x, are real numbers such that 0 < z; <1

for all 2. What is the maximum possible value of
n n
2D (wi—a)
i=1 j=1
Discussion. We are trying to maximalize the function

[z, e, ... 2y) = ZZ(:@ — :rj)2.

i=1 j=1
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(With some analysis one can see that f must have a maximum value, because f
is a continuous function on a compact set. Don’t worry if you do not understand
this. Perhaps we will discuss it later, but we will not use it now.) Let us fix
T9, T3, ..., %y, and consider f as a function of one variable x. Say f = ax?+bx;+c
where a = n? > 0 and b, ¢ are constants depending on w5, 23, ..., z,. Now f could
have a local extremum, but this would always be a local minimum because a > 0.
The maximum of f is therefore at x1 =0 or at z; = 1.

From this discussion it is clear that we can replace x; by 0 or by 1 without
decreasing the value of f(z1,x,...,2,). Similary, we can replace xs by 0 or by
1 without decreasing the value of f etc. So

f(.’El,.TQ,...,.’En) Sf(ylay%"'ayn)

for some choices y1,yo, ..., y, € {0,1}.
So we are looking for the maximum value of

f(y17y27 EE Jyn)
where y1,99,...,y, € {0,1}. By symmetry we may assume that y; =y, = --- =
Y = 0 and yg11 = Ypso = - = y, = 1. In that case, the value of f(yi,...,yn)

is k(n — k) + (n — k)k = 2k(n — k). The function 2k(n — k) is again a parabola
with the maximum at £ = . But k has to be an integer. It follows that the
maximum value of f(z1,z9,...,x,) is

n n n
2—(n——) = —
;=5 =5
if n is even and ,
—1 —1 —1
2n (n_n ):n

if n is odd.
Making the right substitutions can be very helpful as the following example
shows.

Example 4. Suppose that a,as,...,a, are real numbers such that a; > 1 for
all 2. Prove the inequality

n

2
1+a)(l+a)---(1+a,) > " (1+a+ax+---+ay,).

+1
Discussion. Let us write a; = x;+1. Then x; > 0 for all ¢. It is easier to deal with
the inequality x; > 0 than with the inequality a; > 1. The inequality transforms
to

n

+1

24x1)2+xz2)--(2+z,) > - (X +x2+--+x,+(n+1)) =

n

2
:2”+n (21 + 224+ xp).

+1
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This inequality follows already if we only look at the constant and linear part of
the left-handside:

2n
(24+21) (24m3) - - - (242y,) > 2" 42" Yoy +ao+- - +ay,) > 2”+n 1 (w14 - +xy).
because
-1 2 -1 2"
gn-l> 2 gn-l_ .
n+1 n+1
Problem 1. ** Use the inequality “3¥ > /7y repeatedly to prove

r+y+z+w

1 > 4\/xyzw
for all z,y, z,w > 0.
Problem 2. ** Prove that

2
2, 2 2
ity ety 2 — Z Tk
1<i<j<n
for all positive integers n.
Problem 3. * If <y < z and y > 0, prove that

Tz
rT+z—y=>—
y

2. CONVEXITY

Let f be a real-valued function on an interval I C R. Now f is said to be
conver if

flta+(1—=1)b) < tf(a)+ (1 —1)f(b)
for all t € [0,1] and all a,b € I (the chord between (a, f(a)) and (b, f(b)) lies
above the graph of f). The function f is said to be concave if

fta+ (L —1)b) > tf(a)+ (1 —1t)f(b)
for all t € [0,1] and all a,b € I (the chord between (a, f(a)) and (b, f(b)) lies
below the graph of f).

concave convex
(You may well be used to a different terminology, for example “concave up”
and “concave down” instead of “convex” and “concave”.)
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Theorem 1. Suppose that f is a real-valued function on I C R, x1,29,...,x, €
I, and ty,ty, ..., t, €[0,1] with t; +to +---+t, = 1. If f is convez, then

(1) fltiry +towy + -+ tpwn) <t f(2r) +tof(@2) + -+t f2n).

If f is concave, then

(2) [tz +toxy + -+ tpan) > i f(21) +taf (2) + -+t f(20).
Proof. Suppose that f is convex. We will prove the statement by induction on
n, the case n = 1 being trivial. Suppose that we already have proven that
fltiry +towy + -+ tpan) <t f(2r) +tof(@2) + -+t f2n).
for all 1, xz9,...,2, € [ and all ty,1,,...,t, € [0,1] with t; +to+---+1¢, = 1.
Suppose now that xy, z9, ..., 2,1 € Tand ty, ..., t,41 € [0,1] with t;+t5+- - -+
tnt1 = 1. Define s; = t;/(1—t,41) fori =1,2,...,n. Note that s; +so+---+s, =
1. Take a = s1x1+Sow0+- - -+5,2p, b = x4y and t = 1—1,, ;. From the definition
of convexity and the induction hypothesis follows that
fltiwr + -+ tppap) = f(ta+ (1 =1)b) <tf(a) + (1 —1)f(0) =
= (L = tas) f(s121 + -+ + $p@n) + tni1 f(@n11) <
< (L= taa)(sif(21) + s2f(22) + -+ suf(2n)) + o [ (@ns1) =
=t f(@1) + -+ o f (@ns)-
To prove the second statement, observe that f is concave if and only if —f is
convex. Then apply the first statement to —f. O
In particular the case t; =ty = --- = t, = 1/n is interesting.
Corollary 1. If f is convex on I, then

f

forall xy,...,x, € 1.
If f is concave on I, then

f

for all x1,...,x, € 1.

Theorem 2. Suppose that [ is a real-valued function on an interval I C R with
a second derivative. If f"(x) > 0 for all x € I, then f is convex. If f"(x) <0 for
all v € I, then f is concave. (The converse of these statements are also true).

(xl—i-xg—l----—l-xn) < flzy)+ -+ flx,)
n - n

(xl—i-xg—l----—l-xn) flzy)+ -+ flx,)
n n

v

Proof. If f"(x) > 0 for all # € I then f'(x) is weakly increasing on the interval
I. Suppose that a,b € I and t € [0,1]. Define ¢ = ta + (1 — ¢)b. By the Mean
Value Theorem, there exist a € (a,c) and f € (¢, b) such that
fle) = fla f(b) — flc
oy L LO=I@ e F0 -0

c—a b—c
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Since a <  and f’ is weakly increasing, we have

flta+ (1 =1)b) = f(a) _ f(c) = fla) _
(1—1t)(b—a) c—a

Multiplying out gives

flta+ (1 —=1)b) < tf(a)+ (1 —1)f(b).

This shows that f is convex.
The second statement follows from the first statement, applied to —f. OJ

Example 5. Suppose that «, £, are the angles of a triangle. Prove that

Ry

sin(a) + sin(3) + sin(7)

Proof. The function sin(z) is concave on the interval [0, 7], because its second
derivative is —sin(z) < 0. Thus we have

si + si + si . + 0+ . 3
n(o) +sin(9) +sint) _ ok Abay L VS
3 s 2
©
Problem 4. ** For nonnegative real uy,...,u,, prove that
Su <y
i=1 i=1
(use that 2? is convex for z > 0).
Problem 5. *** Suppose that p;,p,...,p, are nonnegative real numbers such

that > " p; = 1. Prove that

> " —pilogp; <logn.

1=1

(This inequality comes from information theorsy.)
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3. ARITHMETICS, GEOMETRIC AND HARMONIC MEAN

Theorem 3. Let xq,x2,x3,...,2, > 0. We define the Arithmetic Mean by

A(l‘l;x27"'axn):x1+x2n xna

the Geometric Mean by
G(z1, 9, ..., 0,) = V1129 - Ty,

and the Harmonic Mean by

H(zy,x9,...,0p) =

Then we have
H(zy, ... x,) < G(xy,.. ., 2,) < Az, ..oy 2p).

Proof. Let f(x) =log(x). Then f"(x) = —1/z* < 0 for z > 0 so f is concave on
the interval (0, 00). It follows that

(& +ay+ - +:vn) S log(@) + log(@y) + - - - + log(xn)

log

n n
Applying the exponential function (which is an increasing function) to both sides

yields
1 +To+--+x,

n
If we now take y; = xi then we get

>N/x1T9 - Ty,

1 1 1
w et 1

n T RUiY2 Un

Taking the reciprocal yields

n
T 1 - < NVUiyz - Yn
Y1 Y2 Yn

0
Example 6. Suppose that xy,xs,...,x, are positive real numbers. Prove that

x x T x
_1_|__2_|_..._|_ n 1_|__n2n_
T2 T3 Tn T

Proof. Put y; = x;/x;y; for all i. We assume that the index is cyclic, so that
Tne1 = 1. Comparing the arithmetic and geometric average gives:

Yty t ot
LT o2 > " yiYs Yo = L.

n
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Problem 6. ** For positive real a, b, ¢ prove that
e + Ead + a®b® > 362

Problem 7. *** Let

SIS
T ETYTS n
Prove that
Dr—1)<s, < n—1

(Hint: use the geometric and arithmetic mean for 1+ 1,1 + %, o

1—2,1—3%,,1—2)

n

4. THE SCHWARZ INEQUALITY

-,1+%andfor

Another important inequality is the Schwarz inequality. For vectors z =

(x1,...,2,) and y = (y1,...,Yn) in R™ one defines
T-Yy=oT1y1 + -+ TnYn.

Note that v -y =y -z, (t+y)-2=x-2z+y-zand (tx) -y =

and z,y, 2z € R".
The norm of the vector x is defined by

|z|| = Voo =/22 4+ + 2.

Theorem 4. Suppose that x = (x1,%9,...,%,), ¥y = (Y1, Y2, - - -

t(z-y) fort € R

,Un) € R", then

[Z1y1 + -+ Ty < \/x%+---+x§\/y%+---+y,%

or in short form:
|-y < [yl

Proof. For any vector a -a > 0. In particular, if we take a = x + ty we get
(z+ty) - (w+ty)=a-x+2(x-y)+t2(y-y) >0

for all t > 0. Viewed as a quadratic polynomial in ¢, this polynomial has a

nonpositive discriminant. The discriminant is

Az y)* —A(z-2)(y-y) <0
In particular we have
(@-9)* < (z-2)(y-y)
and taking square roots gives us

lz-y| <Vz-zyy-y=|lz]|ly]-
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The Schwarz inequality is important in Euclidean geometry in dimension 2, 3
or higher. In particular, one often defines the angle ¢ between two vectors x,y
by

-y

jz[ly|’
The Schwarz inequality tells us that this definition makes sense, since the right-
hand side has absolute value at most 1.

Problem 8. **** Prove the Holder inequality: If 1/p+1/¢g =1 and z,y € R"
then

cos(yp) 0<p <.

-yl < lzllpllylly

where [|z|l, = (|z1]P + |zoP + -+ + |2, [P)Y/P. (Hint: Use that log(x) is convex
and prove z;y; < a¥ /p+ y?/q. Then prove the inequality in the special case that
lz]|, = lly|ls = 1. Reduce the general case to this special case.)

5. THE TRIANGLE INEQUALITY
Another famous geometric inequality is the triangle inequality. If a, b, ¢ are the
lengths of the sides of a triangle, then a+b > ¢ (and also a+¢ > b and b+c¢ > a).

Problem 9. * Let () be a convex quadrilateral (i.e., the diagonals lie inside
the figure). Let S be the sum of the lengths of the diagonals and let P be the
perimeter. Prove

1

Problem 10. ** Suppose that we have an triangle with sides a, b, ¢ such that
for every positive integer n there exists a triangle with sides a™, b™ and ¢". Prove
that the triangle must be equilateral.

6. ONE MORE USEFUL INEQUALITY

Theorem 5. Suppose that x1, o, ..., Tn, Y1, Y2, ..., Yn are real numbers such that
vy < wp < oo < xpoand yy < yo < -0 < y,. Suppose that zy, 2o, ..., 2z, are the
same as Yy, Y2, - - - Yn, but possibly in a different order. Then we have

T1Yp + ToYp—1+ -+ Tpln S 121 F B2+ F T2y < Tl F Ty A Tpln.

Proof. Suppose that zy, z3,..., 2, is a rearrangement of yy, vy, ..., y,. Let m be
the number of displacements of the sequence z1, 2o, ..., 2,,, S0 m is the number of
pairs (z,7) with ¢ < j and z; > z;. We prove the right inequality by induction on
m. If m =0 then z; = y; for all 7 and we have inequality. Suppose m > 0. Then
2; > 241 for some 7. Note that the sequence

K1y Ry v e vy Ri—1yRitly Riy Ri4+25 -+ y on



10 PROBLEM SET 7

(exchange z; and z;1;) has only m — 1 displacements, so by induction
T121 + Tozg + 0 TiZip1 + Tip12i o+ Tp2Zy 2 Ty + Toya + 00+ T2y,
We have
(2ip1 — 23) (2 — 2ip1) >0,
SO
Ti%Zi + Tiy1%i41 2 TiZit1 T Tiv1 %
and
X121+ Tozp + -+ X2 + X1 %1 oo X2 2
2 T2 + Tz + o+ TiZip1 + T Zi o+ TnZp 2 1Y + ToY2 + 0+ TpYn.
The left inequality in the Theorem follows from the right inequality. Note

that —y, < -y, 1+--- < —y; and that —z;, —25,..., —2, is a rearrangement of
—Y1, —Y2, - -y —Yn. S0 we have
r1(=21) + 2o(—22) ++ + Tu(—20) < 21(=Yn) + T2(=Yn-1) + - + 20 (—y1).
©

Problem 11. ** Suppose that xi,z»,..., 2, are positive real numbers. Prove
that

v | 73 Thoi | Ty

—+ =+ + +—2x1+ 22+ Ty

i) I3 Tn T

Problem 12. *** Prove that
a®bbc > abhee®

for all positive real numbers a, b, c.

7. EXTRA PROBLEMS

Problem 13. * Prove that

Xy + 4] + Tp—1 Tp >1
T1+T9 To+ I3 Tp1+xTyp Tp+x1

Problem 14. **** Prove or disprove: If # and y are real numbers with y > 0
and y(y +1) < (x +1)?, then y(y — 1) < 22
Problem 15. **** Let a, b, ¢ be positive real numbers such that abc = 1. Prove

that
1 1 1 3

= > —.
a®(b+c) * b (c+a) N Ala+b) — 2
Problem 16. **** Let p{, ps, ..., p, be any n points on the sphere
{(z,9,2) | 2* +9° + 22 =1}

Prove that the sum of the squares of the distances between them is at most n?.
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Problem 17. ***# [USSR olympiad] Suppose that 1, zs, ..., x, are positive

real numbers. Prove that
T o) Tn

n
+...+ 2_
To + T3 T3+ Ty X1+ T2 4

(indices go cyclic).



