
PROBLEM SET 7:

INEQUALITIES

DUE: MARCH 3, 2004

HARM DERKSEN

1. Elementary Inequalities

Perhaps the most fundamental inequality for real numbers is

x

2

� 0; x 2 R:

Using this inequality one 
an dedu
e many more inequalities. For example, if we

take x = a� b with a; b 2 R we obtain:

a

2

� 2ab + b

2

= (a� b)

2

� 0:

It follows that

a

2

+ b

2

2

� ab:

This inequality is interesting by itself. If we now substitute a =

p

y and b =

p

z

we obtain

y + z

2

�

p

yz:

whenever y; z are nonnegative real numbers. Substitution is a very useful method

for proving inequalities.

Example 1. Prove that

a

2

+ b

2

+ 


2

� ab + a
+ b


for all a; b; 
 2 R. Also prove that equality holds if and only if a = b = 
.

Dis
ussion. We have to prove that

a

2

+ b

2

+ 


2

� ab� a
� b
 � 0

for all a; b; 
 2 R. Perhaps we 
an write a

2

+b

2

+


2

�ab�a
�b
 as a sum of squares.

Sin
e a

2

+ b

2

+ 


2

� ab � a
 � b
 = 0 for a = b = 
 = 0, one should 
onsider

squares of fun
tions that vanish whenever a = b = 
 = 0. For example, let's


onsider the fun
tions (a� b)

2

; (b� 
)

2

; (
�a)

2

. We have (a� b)

2

= a

2

�2ab+ b

2

,

(b� 
)

2

= b

2

� 2b
+ 


2

and (
� a)

2

= 


2

� 2a
+ a

2

. If we take the sum of these

three fun
tions we get

(a� b)

2

+ (b� 
)

2

+ (
� a)

2

= 2a

2

+ 2b

2

+ 2


2

� 2ab� 2b
� 2
a

1
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whi
h is exa
tly the double of the quantity we are interested in. The proof of the

inequality is now easy:

Proof. We have

a

2

+ b

2

+ 


2

� ab� a
� b
 =

1

2

((a� b)

2

+ (b� 
)

2

+ (
� a)

2

) � 0

and it is now obvious that equality holds if and only if a = b = 
 = 0.

Another obvious but important inequality is:

xy � 0; if x; y 2 R and x � 0 and y � 0.

This 
an be used in many ways. For example if 0 � x � 1 then

x � x

2

be
ause

x� x

2

= x(1� x) � 0

and both x and 1� x are nonnegative.

Example 2. Suppose that x

1

; x

2

; : : : ; x

n

are real numbers su
h that 0 � x

i

� 1

for all i. Prove that

x

1

+ x

2

+ � � �+ x

n

� x

1

x

2

+ x

2

x

3

+ x

3

x

4

+ � � �+ x

n

x

1

:

When do we have equality?

Dis
ussion. The inequality is not so hard to see, be
ause x

1

� x

1

x

2

, x

2

� x

2

x

3

,

et
. So the inequality is equivalent to

x

1

(1� x

2

) + x

2

(1� x

3

) + � � �+ x

n

(1� x

1

) � 0:

If we have equality then

x

1

= 0 or x

2

= 1; x

2

= 0 or x

3

= 1; : : : ; x

n

= 0 or x

1

= 1:

If x

1

6= 0 then x

2

= 1 and in parti
ular x

2

6= 0. From this it follows that

x

3

= 1. But then x

3

6= 0, so x

4

= 1, et
. This way we see that x

2

= x

3

=

x

4

= � � � = x

n

= x

1

= 1. In a similar way we see that if x

i

6= 0 for some i, then

x

1

= x

2

= x

3

= � � � = x

n

= 1. The only other 
ase where equality holds is when

x

1

= x

2

= � � � = x

n

= 0.

Example 3. Suppose that x

1

; x

2

; : : : ; x

n

are real numbers su
h that 0 � x

i

� 1

for all i. What is the maximum possible value of

n

X

i=1

n

X

j=1

(x

i

� x

j

)

2

:

Dis
ussion. We are trying to maximalize the fun
tion

f(x

1

; x

2

; : : : ; x

n

) =

n

X

i=1

n

X

j=1

(x

i

� x

j

)

2

:
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(With some analysis one 
an see that f must have a maximum value, be
ause f

is a 
ontinuous fun
tion on a 
ompa
t set. Don't worry if you do not understand

this. Perhaps we will dis
uss it later, but we will not use it now.) Let us �x

x

2

; x

3

; : : : ; x

n

, and 
onsider f as a fun
tion of one variable x

1

. Say f = ax

2

1

+bx

1

+


where a = n

2

> 0 and b; 
 are 
onstants depending on x

2

; x

3

; : : : ; x

n

. Now f 
ould

have a lo
al extremum, but this would always be a lo
al minimum be
ause a > 0.

The maximum of f is therefore at x

1

= 0 or at x

1

= 1.

From this dis
ussion it is 
lear that we 
an repla
e x

1

by 0 or by 1 without

de
reasing the value of f(x

1

; x

2

; : : : ; x

n

). Similary, we 
an repla
e x

2

by 0 or by

1 without de
reasing the value of f et
. So

f(x

1

; x

2

; : : : ; x

n

) � f(y

1

; y

2

; : : : ; y

n

)

for some 
hoi
es y

1

; y

2

; : : : ; y

n

2 f0; 1g.

So we are looking for the maximum value of

f(y

1

; y

2

; : : : ; y

n

)

where y

1

; y

2

; : : : ; y

n

2 f0; 1g. By symmetry we may assume that y

1

= y

2

= � � � =

y

k

= 0 and y

k+1

= y

k+2

= � � � = y

n

= 1. In that 
ase, the value of f(y

1

; : : : ; y

n

)

is k(n� k) + (n� k)k = 2k(n� k). The fun
tion 2k(n� k) is again a parabola

with the maximum at k =

n

2

. But k has to be an integer. It follows that the

maximum value of f(x

1

; x

2

; : : : ; x

n

) is

2

n

2

(n�

n

2

) =

n

2

2

if n is even and

2

n� 1

2

(n�

n� 1

2

) =

n

2

� 1

2

if n is odd.

Making the right substitutions 
an be very helpful as the following example

shows.

Example 4. Suppose that a

1

; a

2

; : : : ; a

n

are real numbers su
h that a

i

� 1 for

all i. Prove the inequality

(1 + a

1

)(1 + a

2

) � � � (1 + a

n

) �

2

n

n + 1

(1 + a

1

+ a

2

+ � � �+ a

n

):

Dis
ussion. Let us write a

i

= x

i

+1. Then x

i

� 0 for all i. It is easier to deal with

the inequality x

i

� 0 than with the inequality a

i

� 1. The inequality transforms

to

(2 + x

1

)(2 + x

2

) � � � (2 + x

n

) �

2

n

n+ 1

(x

1

+ x

2

+ � � �+ x

n

+ (n+ 1)) =

= 2

n

+

2

n

n + 1

(x

1

+ x

2

+ � � �+ x

n

):
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This inequality follows already if we only look at the 
onstant and linear part of

the left-handside:

(2+x

1

)(2+x

2

) � � � (2+x

n

) � 2

n

+2

n�1

(x

1

+x

2

+� � �+x

n

) � 2

n

+

2

n

n+ 1

(x

1

+� � �+x

n

):

be
ause

2

n�1

�

2

n + 1

2

n�1

=

2

n

n + 1

:

Problem 1. ** Use the inequality

x+y

2

�

p

xy repeatedly to prove

x + y + z + w

4

�

4

p

xyzw

for all x; y; z; w � 0.

Problem 2. ** Prove that

x

2

1

+ x

2

2

+ � � �+ x

2

n

�

2

n� 1

X

1�i<j�n

x

i

x

j

for all positive integers n.

Problem 3. * If x � y � z and y > 0, prove that

x+ z � y �

xz

y

2. Convexity

Let f be a real-valued fun
tion on an interval I � R. Now f is said to be


onvex if

f(ta+ (1� t)b) � tf(a) + (1� t)f(b)

for all t 2 [0; 1℄ and all a; b 2 I (the 
hord between (a; f(a)) and (b; f(b)) lies

above the graph of f). The fun
tion f is said to be 
on
ave if

f(ta+ (1� t)b) � tf(a) + (1� t)f(b)

for all t 2 [0; 1℄ and all a; b 2 I (the 
hord between (a; f(a)) and (b; f(b)) lies

below the graph of f).

concave convex
(You may well be used to a di�erent terminology, for example \
on
ave up"

and \
on
ave down" instead of \
onvex" and \
on
ave".)
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Theorem 1. Suppose that f is a real-valued fun
tion on I � R, x

1

; x

2

; : : : ; x

n

2

I, and t

1

; t

2

; : : : ; t

n

2 [0; 1℄ with t

1

+ t

2

+ � � �+ t

n

= 1. If f is 
onvex, then

(1) f(t

1

x

1

+ t

2

x

2

+ � � �+ t

n

x

n

) � t

1

f(x

1

) + t

2

f(x

2

) + � � �+ t

n

f(x

n

):

If f is 
on
ave, then

(2) f(t

1

x

1

+ t

2

x

2

+ � � �+ t

n

x

n

) � t

1

f(x

1

) + t

2

f(x

2

) + � � �+ t

n

f(x

n

):

Proof. Suppose that f is 
onvex. We will prove the statement by indu
tion on

n, the 
ase n = 1 being trivial. Suppose that we already have proven that

f(t

1

x

1

+ t

2

x

2

+ � � �+ t

n

x

n

) � t

1

f(x

1

) + t

2

f(x

2

) + � � �+ t

n

f(x

n

):

for all x

1

; x

2

; : : : ; x

n

2 I and all t

1

; t

2

; : : : ; t

n

2 [0; 1℄ with t

1

+ t

2

+ � � �+ t

n

= 1.

Suppose now that x

1

; x

2

; : : : ; x

n+1

2 I and t

1

; : : : ; t

n+1

2 [0; 1℄ with t

1

+t

2

+� � �+

t

n+1

= 1. De�ne s

i

= t

i

=(1�t

n+1

) for i = 1; 2; : : : ; n. Note that s

1

+s

2

+� � �+s

n

=

1. Take a = s

1

x

1

+s

2

x

2

+� � �+s

n

x

n

, b = x

n+1

and t = 1�t

n+1

. From the de�nition

of 
onvexity and the indu
tion hypothesis follows that

f(t

1

x

1

+ � � �+ t

n+1

x

n+1

) = f(ta+ (1� t)b) � tf(a) + (1� t)f(b) =

= (1� t

n+1

)f(s

1

x

1

+ � � �+ s

n

x

n

) + t

n+1

f(x

n+1

) �

� (1� t

n+1

)(s

1

f(x

1

) + s

2

f(x

2

) + � � �+ s

n

f(x

n

)) + t

n+1

f(x

n+1

) =

= t

1

f(x

1

) + � � �+ t

n+1

f(x

n+1

):

To prove the se
ond statement, observe that f is 
on
ave if and only if �f is


onvex. Then apply the �rst statement to �f . �

In parti
ular the 
ase t

1

= t

2

= � � � = t

n

= 1=n is interesting.

Corollary 1. If f is 
onvex on I, then

f

�

x

1

+ x

2

+ � � �+ x

n

n

�

�

f(x

1

) + � � �+ f(x

n

)

n

for all x

1

; : : : ; x

n

2 I.

If f is 
on
ave on I, then

f

�

x

1

+ x

2

+ � � �+ x

n

n

�

�

f(x

1

) + � � �+ f(x

n

)

n

for all x

1

; : : : ; x

n

2 I.

Theorem 2. Suppose that f is a real-valued fun
tion on an interval I � R with

a se
ond derivative. If f

00

(x) � 0 for all x 2 I, then f is 
onvex. If f

00

(x) � 0 for

all x 2 I, then f is 
on
ave. (The 
onverse of these statements are also true).

Proof. If f

00

(x) � 0 for all x 2 I then f

0

(x) is weakly in
reasing on the interval

I. Suppose that a; b 2 I and t 2 [0; 1℄. De�ne 
 = ta + (1 � t)b. By the Mean

Value Theorem, there exist � 2 (a; 
) and � 2 (
; b) su
h that

f

0

(�) =

f(
)� f(a)


� a

and f

0

(�) =

f(b)� f(
)

b� 


:
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Sin
e � < � and f

0

is weakly in
reasing, we have

f(ta+ (1� t)b)� f(a)

(1� t)(b� a)

=

f(
)� f(a)


� a

= f

0

(�) �

� f

0

(�) =

f(b)� f(
)

b� 


=

f(b)� f(ta+ (1� t)b)

t(b� a)

Multiplying out gives

f(ta + (1� t)b) � tf(a) + (1� t)f(b):

This shows that f is 
onvex.

The se
ond statement follows from the �rst statement, applied to �f . �

Example 5. Suppose that �; �; 
 are the angles of a triangle. Prove that

sin(�) + sin(�) + sin(
) �

3

p

3

2

Proof. The fun
tion sin(x) is 
on
ave on the interval [0; �℄, be
ause its se
ond

derivative is � sin(x) � 0. Thus we have

sin(�) + sin(�) + sin(
)

3

� sin

�

�+ � + 


�

�

= sin(

1

3

�) =

p

3

2

:

Problem 4. ** For nonnegative real u

1

; : : : ; u

n

, prove that

(

n

X

i=1

u

i

)

3

� n

2

n

X

i=1

u

3

i

:

(use that x

3

is 
onvex for x � 0).

Problem 5. *** Suppose that p

1

; p

2

; : : : ; p

n

are nonnegative real numbers su
h

that

P

n

i=1

p

i

= 1. Prove that

n

X

i=1

�p

i

log p

i

� logn:

(This inequality 
omes from information theory.)
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3. Arithmeti
s, Geometri
 and Harmoni
 mean

Theorem 3. Let x

1

; x

2

; x

3

; : : : ; x

n

> 0. We de�ne the Arithmeti
 Mean by

A(x

1

; x

2

; : : : ; x

n

) =

x

1

+ x

2

+ � � �+ x

n

n

;

the Geometri
 Mean by

G(x

1

; x

2

; : : : ; x

n

) =

n

p

x

1

x

2

� � �x

n

and the Harmoni
 Mean by

H(x

1

; x

2

; : : : ; x

n

) =

n

1

x

1

+

1

x

2

+ � � �+

1

x

n

:

Then we have

H(x

1

; : : : ; x

n

) � G(x

1

; : : : ; x

n

) � A(x

1

; : : : ; x

n

):

Proof. Let f(x) = log(x). Then f

00

(x) = �1=x

2

< 0 for x > 0 so f is 
on
ave on

the interval (0;1). It follows that

log

�

x

1

+ x

2

+ � � �+ x

n

n

�

�

log(x

1

) + log(x

2

) + � � �+ log(x

n

)

n

:

Applying the exponential fun
tion (whi
h is an in
reasing fun
tion) to both sides

yields

x

1

+ x

2

+ � � �+ x

n

n

�

n

p

x

1

x

2

� � �x

n

:

If we now take y

i

=

1

x

i

then we get

1

y

1

+

1

y

2

+ � � �+

1

y

n

n

�

1

n

p

y

1

y

2

� � � y

n

:

Taking the re
ipro
al yields

n

1

y

1

+

1

y

2

+ � � �+

1

y

n

�

n

p

y

1

y

2

� � � y

n

:

�

Example 6. Suppose that x

1

; x

2

; : : : ; x

n

are positive real numbers. Prove that

x

1

x

2

+

x

2

x

3

+ � � �+

x

n�1

x

n

+

x

n

x

1

� n:

Proof. Put y

i

= x

i

=x

i+1

for all i. We assume that the index is 
y
li
, so that

x

n+1

= x

1

. Comparing the arithmeti
 and geometri
 average gives:

y

1

+ y

2

+ � � �+ y

n

n

�

n

p

y

1

y

2

� � � y

n

= 1:
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Problem 6. ** For positive real a; b; 
 prove that

b

3




3

+ 


3

a

3

+ a

3

b

3

� 3a

2

b

2




2

:

Problem 7. *** Let

s

n

= 1 +

1

2

+

1

3

+ � � �+

1

n

:

Prove that

n((n+ 1)

1

n

� 1) � s

n

� n�

n� 1

n

1=(n�1)

:

(Hint: use the geometri
 and arithmeti
 mean for 1 + 1; 1 +

1

2

; � � � ; 1 +

1

n

and for

1�

1

2

; 1�

1

3

; � � � ; 1�

1

n

.)

4. The S
hwarz Inequality

Another important inequality is the S
hwarz inequality. For ve
tors x =

(x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

) in R

n

one de�nes

x � y = x

1

y

1

+ � � �+ x

n

y

n

:

Note that x � y = y � x, (x + y) � z = x � z + y � z and (tx) � y = t(x � y) for t 2 R

and x; y; z 2 R

n

.

The norm of the ve
tor x is de�ned by

kxk =

p

x � x =

q

x

2

1

+ � � �+ x

2

n

:

Theorem 4. Suppose that x = (x

1

; x

2

; : : : ; x

n

), y = (y

1

; y

2

; : : : ; y

n

) 2 R

n

, then

jx

1

y

1

+ � � �+ x

n

y

n

j �

q

x

2

1

+ � � �+ x

2

n

q

y

2

1

+ � � �+ y

2

n

or in short form:

jx � yj � kxkkyk:

Proof. For any ve
tor a � a � 0. In parti
ular, if we take a = x+ ty we get

(x+ ty) � (x + ty) = x � x+ 2t(x � y) + t

2

(y � y) � 0

for all t � 0. Viewed as a quadrati
 polynomial in t, this polynomial has a

nonpositive dis
riminant. The dis
riminant is

4(x � y)

2

� 4(x � x)(y � y) � 0

In parti
ular we have

(x � y)

2

� (x � x)(y � y)

and taking square roots gives us

jx � yj �

p

x � x

p

y � y = kxkkyk:

�
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The S
hwarz inequality is important in Eu
lidean geometry in dimension 2; 3

or higher. In parti
ular, one often de�nes the angle � between two ve
tors x; y

by


os(') =

x � y

jxjjyj

; 0 � ' � �:

The S
hwarz inequality tells us that this de�nition makes sense, sin
e the right-

hand side has absolute value at most 1.

Problem 8. **** Prove the H�older inequality: If 1=p + 1=q = 1 and x; y 2 R

n

then

jx � yj � kxk

p

kyk

q

where kxk

p

= (jx

1

j

p

+ jx

2

j

p

+ � � � + jx

n

j

p

)

1=p

. (Hint: Use that log(x) is 
onvex

and prove x

i

y

i

� x

p

i

=p+ y

q

i

=q. Then prove the inequality in the spe
ial 
ase that

kxk

p

= kyk

q

= 1. Redu
e the general 
ase to this spe
ial 
ase.)

5. The triangle inequality

Another famous geometri
 inequality is the triangle inequality. If a; b; 
 are the

lengths of the sides of a triangle, then a+b � 
 (and also a+
 � b and b+
 � a).

Problem 9. * Let Q be a 
onvex quadrilateral (i.e., the diagonals lie inside

the �gure). Let S be the sum of the lengths of the diagonals and let P be the

perimeter. Prove

1

2

P < S < P:

Problem 10. ** Suppose that we have an triangle with sides a; b; 
 su
h that

for every positive integer n there exists a triangle with sides a

n

, b

n

and 


n

. Prove

that the triangle must be equilateral.

6. One more useful inequality

Theorem 5. Suppose that x

1

; x

2

; : : : ; x

n

; y

1

; y

2

; : : : ; y

n

are real numbers su
h that

x

1

� x

2

� � � � � x

n

and y

1

� y

2

� � � � � y

n

. Suppose that z

1

; z

2

; : : : ; z

n

are the

same as y

1

; y

2

; : : : ; y

n

, but possibly in a di�erent order. Then we have

x

1

y

n

+ x

2

y

n�1

+ � � �+ x

n

y

n

� x

1

z

1

+ x

2

z

2

+ � � �+ x

n

z

n

� x

1

y

1

+ x

2

y

2

+ � � �+ x

n

y

n

:

Proof. Suppose that z

1

; z

2

; : : : ; z

n

is a rearrangement of y

1

; y

2

; : : : ; y

n

. Let m be

the number of displa
ements of the sequen
e z

1

; z

2

; : : : ; z

n

, so m is the number of

pairs (i; j) with i < j and z

i

> z

j

. We prove the right inequality by indu
tion on

m. If m = 0 then z

i

= y

i

for all i and we have inequality. Suppose m > 0. Then

z

i

> z

i+1

for some i. Note that the sequen
e

z

1

; z

2

; : : : ; z

i�1

; z

i+1

; z

i

; z

i+2

; : : : ; z

n
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(ex
hange z

i

and z

i+1

) has only m� 1 displa
ements, so by indu
tion

x

1

z

1

+ x

2

z

2

+ � � �x

i

z

i+1

+ x

i+1

z

i

+ � � �+ x

n

z

n

� x

1

y

1

+ x

2

y

2

+ � � �+ x

n

z

n

:

We have

(x

i+1

� x

i

)(z

i

� z

i+1

) � 0;

so

x

i

z

i

+ x

i+1

z

i+1

� x

i

z

i+1

+ x

i+1

z

i

and

x

1

z

1

+ x

2

z

2

+ � � �+ x

i

z

i

+ x

i+1

z

i+1

+ � � �+ x

n

z

n

�

� x

1

z

1

+ x

2

z

2

+ � � �+ x

i

z

i+1

+ x

i+1

z

i

+ � � �+ x

n

z

n

� x

1

y

1

+ x

2

y

2

+ � � �+ x

n

y

n

:

The left inequality in the Theorem follows from the right inequality. Note

that �y

n

� �y

n�1

+ � � � � �y

1

and that �z

1

;�z

2

; : : : ;�z

n

is a rearrangement of

�y

1

;�y

2

; : : : ;�y

n

. So we have

x

1

(�z

1

) + x

2

(�z

2

) + � � �+ x

n

(�z

n

) � x

1

(�y

n

) + x

2

(�y

n�1

) + � � �+ x

n

(�y

1

):

Problem 11. ** Suppose that x

1

; x

2

; : : : ; x

n

are positive real numbers. Prove

that

x

2

1

x

2

+

x

2

2

x

3

+ � � �+

x

2

n�1

x

n

+

x

2

n

x

1

� x

1

+ x

2

+ � � �+ x

n

:

Problem 12. *** Prove that

a

a

b

b







� a

b

b







a

for all positive real numbers a; b; 
.

7. extra problems

Problem 13. * Prove that

x

1

x

1

+ x

2

+

x

2

x

2

+ x

3

+ � � �+

x

n�1

x

n�1

+ x

n

+

x

n

x

n

+ x

1

� 1

Problem 14. **** Prove or disprove: If x and y are real numbers with y � 0

and y(y + 1) � (x+ 1)

2

, then y(y � 1) � x

2

.

Problem 15. **** Let a; b; 
 be positive real numbers su
h that ab
 = 1. Prove

that

=

1

a

3

(b+ 
)

+

1

b

3

(
+ a)

+

1




3

(a+ b)

�

3

2

:

Problem 16. **** Let p

1

; p

2

; : : : ; p

n

be any n points on the sphere

f(x; y; z) j x

2

+ y

2

+ z

2

= 1g:

Prove that the sum of the squares of the distan
es between them is at most n

2

.
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Problem 17. ****** [USSR olympiad℄ Suppose that x

1

; x

2

; : : : ; x

n

are positive

real numbers. Prove that

x

1

x

2

+ x

3

+

x

2

x

3

+ x

4

+ � � �+

x

n

x

1

+ x

2

�

n

4

(indi
es go 
y
li
).


