PROBLEM SET 6: MORE RANDOM PROBLEMS DUE: FEBRUARY 18

HARM DERKSEN

Problem 1. * What is

$$(x-a)(x-b)(x-c)\cdots(x-z)?$$

Problem 2. **** Let a_1, a_2, \ldots, a_n be nonzero real numbers, and let b_1, b_2, \ldots, b_n be real numbers with $b_1 < b_2 < \cdots < b_n$.

(a) Show that

$$f(x) = a_1 e^{b_1 x} + a_2 e^{b_2 x} + \dots + a_n e^{b_n x}$$

has at most n-1 real zeroes.

(b) Let m be the number of sign changes, which is the number of i for with $1 \le i < n$ and $a_i a_{i+1} < 0$. Prove that f(x) has at most m real zeroes.

Problem 3. * Prove that the product of four consecutive terms of an arithmetic progression of integers, plus the fourth power of the common difference, is a perfect square. (An arithmetic progression is a sequence of integers of the form $a, a + d, a + 2d, a + 3d, \ldots$)

Problem 4. *** Find all solutions of nonzero positive integers x, y for which

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{10}$$

Problem 5. ** Let S be a set with 75 elements. Let A, B, C, D be subsets each having at least 25 elements. Prove that some two of these have at least 5 elements in common.

Problem 6. *** Let a, b, c be integers with $a^6 + 2b^6 = 4c^6$. Show that a = b = c = 0.

Problem 7. ** Prove that

$$\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}} = \sqrt{6}.$$

Problem 8. *** Let $S \subseteq [0, 1]$ be a union of finitely many disjoint closed intervals of total length greater than 4/5. Prove that the equation 2x + 3y = 1 has a solution with $x, y \in S$.

Problem 9. *** Find all nonnegative integers n such that $1 + \lfloor \sqrt{2n} \rfloor$ divides 2n.

HARM DERKSEN

Problem 10. ***** Suppose that α, β are angles with $0 < \alpha, \beta < \pi$. There is a round pie on the table. Bob applies the following algorithm: He cuts out a piece with angle α . He take this piece out and turns it upside down. Then he puts this piece back into the cake. Now he turns the whole pie over the angle β (counterclockwise). He cuts out again an α -piece, puts it upside down and moves it back into the pie. He turns the pie again over an angle of β . He keeps repeating this. Show that after a finite number of times, the pie is in its original condition (for example, all the frosting will be on top of the cake again).

Problem 11. ****** For two points $x, y \in \mathbb{R}^2$, let d(x, y) be the Euclidean distance between these two points. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a map that preserves distance 1. This means that for all $x, y \in \mathbb{R}^2$, if d(x, y) = 1 then d(f(x), f(y)) = 1. Prove that f is an isometrie (d(f(x), f(y)) = d(x, y) for all $x, y \in \mathbb{R}^2$).