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MATHEMATICAL INDUCTION

DUE 1/14/2004

HARM DERKSEN

1. In(tro)du
tion

We will denote the set of integers by

Z = f: : : ;�2;�1; 0; 1; 2; : : :g:

This problem set is about a fundamental property of the set of positive integers

N = f1; 2; 3; 4; 5; : : :g:

Beware, some authors may use N for the nonnegative integers.

Suppose that we want to prove that

\P (n) is true for every positive integer n",

where P (n) is a proposition (statement) whi
h depends on a positive integer n.

Proving P (1), P (2), P (3), et
., would take an in�nite amount of time. Instead

we 
an use the so-
alled indu
tion prin
iple.

Axiom 1. Assume that k is an integer and for ea
h n � k, P (k) is a proposition.

(1) Suppose that P (k) is true, and

(2) for any integer m � k for whi
h P (m) is true, P (m+ 1) is true.

Then P (n) is true for all integers n � k.

The indu
tion prin
iple is often 
ompared to an in�nite sequen
e of dominos

tiles, numbered 1,2,3, et
.

1 2 3 4 5 6 7

If the m-th domino tile falls, it will hit the (m + 1)-th domino tile and the

(m + 1)-th domino tile will fall as well. If the �rst domino tile falls, then all

domino tiles will fall down. (Here P (n) is the statement:\the n-th domino tile

falls down")

1 2 3 4 5 6 7

Date: Winter 2004.
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2 INDUCTION

Sin
e the indu
tion prin
iple is intuitively 
lear, we will simply a

ept it with-

out proof. This is why it is 
alled an axiom. (We 
annot formally prove the

indu
tion prin
iple without making other, similar assumptions.)

A typi
al example of the indu
tion prin
iple is the following:

Example 1. Prove that

(1) 1 + 2 + 3 + � � �+ n =

n(n + 1)

2

:

for every positive integer n.

Dis
ussion. Sin
e (1) depends on a positive integer n, it is natural to try mathe-

mati
al indu
tion. Equation (1) is true for n = 1. Let us assume that (1) is true

for n = m:

(2) 1 + 2 + � � �+m =

m(m + 1)

2

:

Then we have to prove that

(3) 1 + 2 + � � �+m + (m+ 1) =

(m+ 1)(m+ 2)

2

:

We re
ognize that the left-hand side of (2) forms a substantial part of the left-

hand side of (3). If we assume (2), then (3) is equivalent to

m(m + 1)

2

+ (m + 1) =

(m+ 1)(m+ 2)

2

:

This is easy to 
he
k. We now write down a formal proof.

Proof. We prove (1) by indu
tion on n. For n = 1 we 
he
k that

1 =

1 � (1 + 1)

2

:

Suppose that (1) is true for n = m. Then

1 + 2 + � � �+m + (m+ 1) = (1 + 2 + � � �+m) + (m + 1) =

=

m(m+ 1)

2

+ (m + 1) =

(m+ 1)(m+ 2)

2

:

so (1) is true for n = m + 1. Now (1) is true for all positive integers n by the

indu
tion prin
iple.

Remark 1. When the German mathemati
ian Carl Friedri
h Gauss (1777{1855)

was 10 years old, his s
hool tea
her gave the 
lass an assignment to add all the

numbers from 1 to 100. Gauss gave the answer almost immediately: 5050. This
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is how (we think) he did it: Write the numbers from 1 to 100 from left to right.

Write under that the numbers from 1 to 100 in reverse order.

1 2 3 � � � 100

100 99 98 � � � 1

101 101 101 � � � 101

| {z }

100

Ea
h of the 100 
olumn sums is 101. This shows that

2 � (1 + 2 + � � �+ 100) = 100 � 101

and

1 + 2 + � � �+ 100 =

100 � 101

2

= 50 � 101 = 5050:

This easily generalizes to a proof of (1). Gauss' proof 
an be graphi
ally pre-

sented. For example, to see that

2 � (1 + 2 + � � �+ 10) = 10 � 11;

look at the following pi
ture:

1
2
3
4
5
6
7
8
9

10 1
2
3
4
5
6
7
8
9

10

10

11

Remark 2. One of the earliest uses of mathemati
al indu
tion appears in the

work of Fren
h mathemati
ian Blaise Pas
al (1623{1662). Some sour
es attribute

the invention of the roulette wheel to Pas
al (while he was attempting to 
reate a

perpetual motion ma
hine). (Another theory states that the roulette wheel was

brought to Europe from China.) The modern roulette wheel has the numbers 0

to 36. The sum of all the numbers on a roulette wheel is

1 + 2 + � � �+ 36 =

36 � 37

2

= 666:

This is the bibli
al \mark of the beast". Coin
iden
e?

A formula similar to (1) exists for the sums of squares, namely

(4) 1

2

+ 2

2

+ � � �+ n

2

=

n(n+ 1)(2n+ 1)

6

:

Example 2. Give and prove a formula for

1

3

+ 2

3

+ � � �+ n

3



4 INDUCTION

Dis
ussion. What would be the form of su
h a formula? We have seen similar

examples, namely (1) and (4). We 
an also add the formula

1

0

+ 2

0

+ 3

0

+ � � �+ n

0

= n:

Let

p

k

(n) = 1

k

+ 2

k

+ 3

k

+ � � �+ n

k

where k 2 N . The examples so far suggest that p

k

(n) is a polynomial of degree

k + 1 (and that the leading 
oeÆ
ient is

1

k+1

). Let us assume that

p

3

(n) = 1

3

+ 2

3

+ 3

3

+ � � �+ n

3

is a polynomial of degree 4. Sin
e p

3

(0) is an empty sum, we have that p

3

(0) = 0.

We 
an write

(5) 1

3

+ 2

3

+ � � �+ n

3

= an

4

+ bn

3

+ 
n

2

+ dn

for 
ertain real numbers a; b; 
; d. Suppose that for some �xed values of a; b; 
; d,

(5) is true for all n 2 N . How would we prove su
h a formula? Of 
ourse we use

indu
tion. Let Q(n) be the proposition \(5) is true". We know that Q(0) is true.

We want to show that Q(m) implies Q(m + 1), or equivalently that Q(m � 1)

implies Q(m). So

(6) 1

3

+ 2

3

+ � � �+ (m� 1)

3

= a(m� 1)

4

+ b(m� 1)

3

+ 
(m� 1)

2

+ d(m� 1)

should imply

(7) 1

3

+ 2

3

+ � � �+ (m� 1)

3

+m

3

= am

4

+ bm

3

+ 
m

2

+ dm:

The left-hand sides of (6) and (7) look very similar. If we subtra
t (6) from (7)

we obtain

(8)

m

3

= a(m

4

�(m�1)

4

)+b(m

3

�(m�1)

3

)+
(m

2

�(m�1)

2

)+d(m�(m�1)) =

= a(4m

3

� 6m

2

+ 4m� 1) + b(3m

2

� 3m + 1) + 
(2m� 1) + d =

= m

3

(4a) +m

2

(�6a + 3b) +m(4a� 3b+ 2
) + (�a + b� 
+ d)

If (8) is true for all m, then (6) indeed would imply (7). Perhaps we 
an 
hoose

a; b; 
; d in su
h way that (8) always holds. Comparing 
oeÆ
ients in (8) gives us

the linear equations:

1 = 4a(9)

0 = �6a+ 3b(10)

0 = 4a� 3b+ 2
(11)

0 = �a + b� 
+ d(12)
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We solve the system of equations. We �nd a =

1

4

. Then we get 3b = 6a =

3

2

, so

b =

1

2

. Then we have 2
 = �4a + 3b = �1 +

3

2

=

1

2

so 
 =

1

4

. Finally we get

d = a� b+ 
 =

1

4

�

1

2

+

1

4

= 0. We now should 
onje
ture the following formula:

1

3

+ 2

3

+ � � �+ n

3

=

1

4

n

4

+

1

2

n

3

+

1

4

n

2

:

Finding this formula was the hard part. It is now not so hard to prove this formula

by indu
tion. If we write down the proof, we do not really have to explain how

we obtained the formula. We just \drop the formula out of the sky" and give a

(short) proof by indu
tion. Here we go:

Proof. We will prove that

(13) 1

3

+ 2

3

+ � � �+ n

3

=

1

4

n

4

+

1

2

n

3

+

1

4

n

2

:

by indu
tion on n. The 
ase n = 0 is 
lear, be
ause both sides of the equation

are equal to 0. If (13) is true for n = m� 1, then

1

3

+ 2

3

+ � � �+ (m� 1)

3

=

1

4

(m� 1)

4

+

1

2

(m� 1)

3

+

1

4

(m� 1)

2

:

From this follows that

1

3

+ 2

3

+ � � �+ (m� 1)

3

+m

3

=

1

4

(m� 1)

4

+

1

2

(m� 1)

3

+

1

4

(m� 1)

2

+m

3

=

=

1

4

(m

4

�4m

3

+6m

2

�4m+1)+

1

2

(m

3

�3m

2

+3m�1)+

1

4

(m

2

�2m+1)+m

3

=

=

1

4

m

4

+

1

2

m

3

+

1

4

m

2

;

so (13) is true for n = m. By indu
tion follows that (13) is true for all n 2 N .

Noti
e that

1

4

m

4

+

1

2

m

3

+

1

4

m

2

= (

1

2

n(n + 1))

2

whi
h leads to the following esteti
 formula:

1

3

+ 2

3

+ � � �+ n

3

= (1 + 2 + � � �+ n)

2

:

Example 3. What is the value of

1

1 � 2

+

1

2 � 3

+

1

3 � 4

+ � � �?

Dis
ussion. Let us 
ompute the partial sums. Perhaps we will �nd a pattern.

1

1 � 2

+

1

2 � 3

=

2

6

+

4

6

=

2

3

;

1

1 � 2

+

1

2 � 3

+

1

3 � 4

=

2

3

+

1

12

=

8

12

+

1

12

=

9

12

=

3

4

;

1

1 � 2

+

1

2 � 3

+

1

3 � 4

+

1

4 � 5

=

3

4

+

1

20

=

15

20

+

1

20

=

16

20

=

4

5

:

A pattern emerges. Namely, it seems that

(14)

1

1 � 2

+

1

2 � 3

+ � � �+

1

n(n + 1)

= 1�

1

n+ 1

:
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The form of the formula suggests that we 
an prove it by indu
tion. Besides


he
king (14) for n = 1, we have to prove that

(15)

1

1 � 2

+

1

2 � 3

+ � � �+

1

m(m + 1)

= 1�

1

m + 1

implies

(16)

1

1 � 2

+

1

2 � 3

+ � � �+

1

(m + 1)(m+ 2)

= 1�

1

m + 2

:

Let us assume (15). We re
ognize that the left-hand side of (15) forms a sub-

stantial part of the left-hand side of (16). We 
an use this:

�

1

1 � 2

+

1

2 � 3

+ � � �+

1

m(m + 1)

�

+

1

(m+ 1)(m+ 2)

=

�

1�

1

m + 1

�

+

1

(m + 1)(m+ 2)

:

Now (16) follows be
ause

1

(m+ 1)(m+ 2)

=

1

m + 1

�

1

m+ 2

:

After proving (14) we 
an take the limit n!1 to �nd the the series 
onverges

to 1. We are ready to write down a formal proof now.

Proof. By indu
tion on n we prove:

(17)

1

1 � 2

+

1

2 � 3

+ � � �+

1

n(n + 1)

= 1�

1

n+ 1

:

For n = 1 we 
he
k

1

1 � 2

= 1�

1

2

:

If (17) is true for n = m, then

1

1 � 2

+

1

2 � 3

+ � � �+

1

m(m + 1)

+

1

(m+ 1)(m+ 2)

=

=

�

1�

1

m + 1

�

+ (

1

m + 1

�

1

m + 2

) = 1�

1

m + 2

:

Hen
e (17) is true for n = m+1. By indu
tion, (17) is true for all integers n � 1.

We have

1

1 � 2

+

1

2 � 3

+

1

3 � 4

+ � � � = lim

n!1

�

1�

1

n+ 1

�

= 1:

Example 4 (UMUMC, 1988). Let S

n

be the set of all pairs (x; y) with integral


oordinates su
h that x � 0, y � 0 and x + y � n. Show that S

n


annot be


overed by the union of n straight lines.
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Dis
ussion. First we should try a few small 
ases, say n = 0; 1; 2; 3; 4:

n=0 n=1 n=2 n=3 n=4

How 
an we use indu
tion here? Noti
e that S

n

is a subset of S

n+1

. Suppose

that we already have proven that one needs at least n + 1 lines to 
over S

n

.

Obviously, one will need at least n + 1 to 
over S

n+1

be
ause S

n

is a subset of

S

n+1

. Suppose that n + 1 lines `

1

; `

2

; : : : ; `

n+1


over S

n

. Could these lines in

fa
t 
over the whole of S

n+1

? We should 
on
entrate on C := S

n+1

n S

n

, the


omplement of S

n

in S

n+1

. We have

C

n+1

= f(0; n+ 1); (1; n); : : : ; (n+ 1; 0)g:

This is a set of n + 2 points lying on the line x + y = n + 1. Is it possible that

`

1

; `

2

; : : : ; `

n+1


over C

n+1

? For every i we have that `

i

\C

n+1


onsists of at most

1 point unless `

i

is equal to the line x+ y = n+1. If none of the lines `

i

is equal

to the line x + y = n + 1 then `

1

; `

2

; : : : ; `

n+1


over at most n + 1 of the n + 2

points of C

n+1

. So `

1

; : : : ; `

n+1

do not 
over S

n+1

. If `

i

is the line x + y = n + 1

for some i then `

1

; `

2

; : : :

b

`

i

; : : : ; `

n+1

(we omit `

i

) 
over S

n

. This 
ontradi
ts the

assumption that we need at least n + 1 lines to 
over S

n

. We 
on
lude that we

need at least n+ 2 lines to 
over S

n+1

.

We now write down the proof. Noti
e that it is not really ne
essary to use a

proof by 
ontradi
tion. A proof is usually more elegant if one avoids reasoning

by 
ontradi
tion.

Proof. We prove the statement by indu
tion on n, the 
ase n = 0 being trivial.

Suppose that one needs at least n+1 lines to 
over S

n

. De�ne C

n+1

= S

n+1

nS

n

.

The set C

n+1


onsists of n+ 2 points on the line x + y = n+ 1. Suppose that k

lines `

1

; `

2

; : : : ; `

k


over S

n+1

.


ase 1: One of the lines is equal to the line x + y = n + 1. Without loss of

generality we may assume that `

k

is equal to the line x + y = n + 1. Then

`

1

; `

2

; : : : ; `

k�1


over S

n

be
ause `

k

\ S

n

= ;. From the indu
tion hypothesis

follows that k � 1 � n+ 1, so k � n+ 2.


ase 2: None of the lines are equal to the line x + y = n + 1. Then ea
h of

the lines interse
ts the line x + y = n + 1 in at most one point, and therefore

it interse
ts the set C

n+1

in at most one point. Sin
e C

n+1

has n + 2 elements,

there must be at least n + 2 lines.

So in both 
ases we 
on
lude that one needs at least n+2 lines to 
over S

n+1

.
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Problem 1. *

(a) Prove that

1 + x + x

2

+ � � �+ x

n

=

x

n+1

� 1

x� 1

:

for every real number x and every positive integer n.

(b) If x is a real number with jxj < 1 then

1 + x + x

2

+ � � � =

1

1� x

:

Problem 2. ** Show that

1�

1

2

+

1

3

� � � �+

1

2n� 1

�

1

2n

=

1

n+ 1

+

1

n+ 2

+ � � �+

1

2n

for all n 2 N.

Problem 3. *** Cut out a 1�1 
orner of a 2

n

�2

n


hess board (n � 1). Show that

the remainder of the 
hess board 
an be 
overed with L-shaped tiles (see pi
ture).

2

2

1

1

1

1

The 
ase n = 2 is shown below.

Problem 4. *** Suppose that we have n lines in the plane su
h that (i) no two

lines are parallel and, (ii) no three lines go through 1 point. In how many regions

do these lines divide the plane? Prove your formula.

2. Strong Indu
tion

The following example illustrates that sometimes one has to make a statement

stronger in order to be able to prove it by indu
tion.

Example 5. Prove that

1

2

�

3

4

�

5

6

� � �

999; 999

1; 000; 000

<

1

1000

:
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Dis
ussion. Sin
e 1000 =

p

1; 000; 000 one might suggest that

(18)

1

2

�

3

4

�

5

6

� � �

2n� 1

2n

<

1

p

2n

for all n � 1. Let us try to prove (18). We 
an 
he
k (18) for small n (whi
h

gives some validity to our 
onje
ture that this inequality holds). Suppose that

(18) holds for n = m:

(19)

1

2

�

3

4

�

5

6

� � �

2m� 1

2m

<

1

p

2m

We have to prove (18) for n = m + 1:

(20)

1

2

�

3

4

�

5

6

� � �

2m+ 1

2m+ 2

<

1

p

2m+ 2

:

If we divide (20) by (19) we obtain

(21)

2m+ 1

2m+ 2

�

r

2m

2m+ 2

:

If (19) and (21) are true, then (20) is true. By squaring (21) we see that (21) is

equivalent to

�

2m+ 1

2m+ 2

�

2

�

2m

2m + 2

and to

(22) (2m+ 1)

2

� (2m+ 2)(2m)

So if (22) is true then our indu
tion proof is 
omplete. Unfortunately (22) is not

true and we are stu
k.

Apparently we 
annot easily prove (18) by indu
tion. Sometimes it is easier to

prove a stronger statement by indu
tion. We want to prove an inequality of the

form

(23)

1

2

�

3

4

�

5

6

� � �

2n� 1

2n

<

1

f(n)

for some fun
tion f(n) by indu
tion on n. We want f(500; 000) > 1000 so that

(23) would imply the original problem. (Perhaps we want also that f(n) >

p

2n

for all n so that (23) implies (18)). For the indu
tion to work, we need that

f(1) < 2 and

2m+ 1

2m+ 2

�

f(m)

f(m + 1)

for all m � 1. With some puzzling we see that f(m) =

p

2m+ 1 works. This

means that the inequality

(24)

1

2

�

3

4

�

5

6

� � �

2n� 1

2n

<

1

p

2n+ 1
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an easily be proven by indu
tion.

Proof. We prove

(25)

1

2

�

3

4

� � �

2n� 1

2n

<

1

p

2n+ 1

by indu
tion on n. The 
ase n = 1 is 
lear be
ause

1

2

<

1

p

3

:

Suppose that (25) is true for n = m:

(26)

1

2

�

3

4

� � �

2m� 1

2m

<

1

p

2m + 1

Sin
e

(2m+ 1)(2m+ 3) = (2m+ 2)

2

� 1 < (2m + 2)

2

we have that

�

2m+ 1

2m+ 2

�

2

<

2m+ 1

2m+ 3

and

(27)

2m+ 1

2m+ 2

<

r

2m+ 1

2m+ 3

:

Multiplying (26) by (27) yields

(28)

1

2

3

4

� � �

2m+ 1

2m+ 2

<

1

p

2m+ 3

;

so (25) is true for n = m+1. This shows that (25) is true for all positive integers

n. In parti
ular, for n = 500; 000 we get

1

2

�

3

4

� � �

999; 999

1; 000; 000

<

1

p

1; 000; 001

<

1

1000

:

What we did in the previous example is the following. Instead of proving a

statement P (n) for all n 2 N , we formulated a stronger statement Q(n), su
h

that Q(n) implies P (n) for any given positive integer n. We 
hose Q(n) su
h that

Q(n) was easy to prove by indu
tion on n.

Below is a tri
kier proof of Example 5.

Proof. Let

A =

1 � 3 � 5 � � �999; 999

2 � 4 � 6 � � � 1; 000; 000

and

B =

2 � 4 � 6 � � �1; 000; 000

3 � 5 � 7 � � �1; 000; 001

:
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Clearly A < B be
ause

1

2

<

2

3

;

3

4

<

4

5

; : : : ;

999; 999

1; 000; 000

<

1; 000; 000

1; 000; 001

:

It follows that

A

2

< AB =

1

1; 000; 001

<

1

1; 000; 000

and A < 1000

�1

.

Example 6. Prove that every integer n � 2 is a produ
t of prime numbers.

Dis
ussion. Re
all that a positive integer p is a prime number if it has exa
tly two

positive divisors, namely 1 and p itself. For example, 2; 3; 5; 7; 11; 13 are prime

numbers. Other numbers are produ
ts of primes, for example 4 = 2 � 2, 6 = 2 � 3,

8 = 2 � 2 � 2, 9 = 3 � 3, 10 = 2 � 5 and 12 = 2 � 2 � 3. The statement seems plausible.

Perhaps we 
an prove the statement by indu
tion. Let P (n) be the statement:

\n is a produ
t of prime numbers". Clearly P (2) is true. We have to prove that

P (m) implies P (m+1). It seems that we are in a dead end. It is not 
lear at all

how the fa
t that m is a produ
t of prime numbers 
an help us prove that m+1

is a produ
t of prime numbers.

How 
an we prove that m + 1 is a produ
t of prime numbers? If m + 1 were

a prime number itself, then we are done. Otherwise m+ 1 will have a nontrivial

de
omposition m+1 = ab with a; b � m. If we would know that all integers � m

are produ
ts of primes, then we would know that m + 1 is a produ
t of primes.

It therefore seems natural to prove a slightly di�erent statement by indu
tion.

Let Q(n) be the statement:\every integer r with 2 � r � n is a produ
t of prime

numbers". The statement Q(n) 
an now be proven by indu
tion without too

mu
h e�ort. Instead of proving P (n) by indu
tion, we prove the statement \P (r)

is true for all r � n" by indu
tion. This idea is 
alled strong indu
tion. Here is

the proof.

Proof. Let Q(n) be the statement:\every integer r with 2 � r � n is a produ
t of

prime numbers." We use indu
tion on n to prove that Q(n) holds for all integers

n � 2.

For n = 2 the statement is true be
ause 2 is a prime number. Suppose that

Q(m) is true. We will prove Q(m + 1). Suppose that 2 � r � m + 1. If

r � m then r is a produ
t of prime numbers be
ause Q(m) is true. Suppose

that r = m + 1. If m + 1 is a prime number, then m + 1 is a produ
t of prime

numbers and we are done. Otherwise, m+1 
an be written as a produ
t ab with

1 � a; b � m. Be
ause Q(m) is true, both a and b are produ
ts of prime numbers.

Hen
e m+ 1 = ab is a produ
t of prime numbers.

We have shown that Q(n) holds for all n � 2. In parti
ular, every integer r � 2

is a produ
t of prime numbers be
ause Q(r) is true.
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Example 7. Use the indu
tion prin
iple to show that every nonempty subset of

N has a smallest element.

Dis
ussion. It is not immediately 
lear how to set up an indu
tion here. There is

no \n" on whi
h we 
an base the indu
tion. Suppose that S is a nonempty set.

It 
ontains at least one nonnegative integer n. Perhaps we 
ould base the indu
-

tion on this positive integer. So let P (n) be the statement:\if S is a subset of N


ontaining n then S must have a smallest element". Proving P (n) by indu
tion

is perhaps possible. However, it is easier to use strong indu
tion in this example.

The proof then goes without any diÆ
ulties.

Proof. Let Q(n) be the statement:\If S is a subset of N 
ontaining an integer

r with r � n, then S has a smallest element." We are going to prove Q(n) by

indu
tion on n. The 
ase n = 1 is 
lear. Any set S 
ontaining 1 has a smallest

element, namely 1. Suppose that Q(m) is true. We will prove Q(m + 1). Let S

be a set 
ontaining an element r with r � m+1. If S 
ontains an element s with

s � m then S has a smallest element be
ause Q(m) is true. Otherwise, every

element of S is � m + 1. We must have r = m + 1 and r must be the smallest

element of S. So in any 
ase, S has a smallest element.

Problem 5. *** Suppose that we have an m � n 
ho
olate bar. We break the


ho
olate bar into two pie
es. Then we take one pie
e and break it into two. We

keep repeating this until we are only left with mn pie
es of size 1� 1. How many

times do we have to break the 
ho
olate bar? Prove your formula. (In parti
ular,

show that the number of breaks needed does not depend on how you pro
eed.)

Problem 6. *** Suppose that A

1

; A

2

; A

3

; : : : is a sequen
e of positive integers

su
h that A

1

= 1 and A

i

< A

i+1

� 2A

i

for all positive integers i. Prove that

every positive integer n 
an be written as a sum of distin
t A

i

's.

3. Indu
tion in Definitions

We 
an also use indu
tion in a de�nition. For example, the Fibona

i numbers

is a sequen
e of numbers F

0

; F

1

; F

2

; : : : de�ned by F

0

= F

1

= 1 and

F

n+1

= F

n

+ F

n�1

; n � 1:

By (strong) indu
tion on n we 
an prove that F

n

is well-de�ned for all integers

n � 0. The �rst few Fibona

i numbers are:

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; : : :

The sum notation is an example of a re
ursive de�nition. Suppose that f(n)

is some fun
tion. If a; b are integers and a � b + 1 then we de�ne

b

X

n=a

f(n)
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as follows.

a�1

X

n=a

f(n) = 0

and

(29)

b

X

n=a

f(n) = f(b) +

b�1

X

n=a

f(n)

if b � a.

One 
an then formally prove by indu
tion that




X

n=a

f(n) =

b

X

n=a

f(n) +




X

n=b+1

f(n):

if a; b; 
 2 Z and a� 1 � b � 
. (Indu
tion on 
. Start with 
 = b.)

Similarly we have the produ
t notation.

a�1

Y

n=a

f(n) = 1

and

b

Y

n=a

f(n) = f(b)

b�1

Y

n=a

f(n):

if b � a.

Example 8. A triangulation of a 
onvex n-gon is a partition of the area of the

n-gon into triangles su
h that the verti
es of ea
h triangle is a vertex of the n-gon.

How many distin
t triangulations does a 
onvex 10-gon have?

Dis
ussion. Let A

n

be the number of triangulations of an n-gon. Let us �nd the

value of A

n

for small n.

We have A

3

= 1 and A

4

= 2:

A

5

= 5:

I

A

6

= 14:
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It be
omes more and more 
lear that it may not be feasible to write down all

triangulations of an 10-gon. As n gets larger, we need a more systemati
 way of


ounting the possibilities to make sure that we are not forgetting any 
ase.

Let P andQ be two �xed adja
ent verti
es of the n-gon. For ea
h triangulation,

there is a unique vertex R of the n-gon (R 6= P;Q) su
h that PQR is a triangle

in the triangulation. For example, for n = 8 there are the following 
ases:

Q

R

PP Q Q

QQQ

P

PPP

R

R

R

R

R

For �xed R, the 
omplement of the triangle PQR within the n-gon is a union

of an m-gon and a (n + 1�m)-gon. The m-gon has A

m

triangulations, and the

(n+1�m)-gon has A

n+1�m

triangulations. This gives A

m

A

n+1�m

triangulations

for this parti
ular 
hoi
e of R. From this we see the equation:

A

n

= A

2

A

n�1

+ A

3

A

n�2

+ � � �+ A

n�1

A

2

:

where we de�ne A

2

= 1. In parti
ular,

A

7

= 1 � 14 + 1 � 5 + 2 � 2 + 5 � 1 + 14 � 1 = 42

A

8

= 1 � 42 + 1 � 14 + 2 � 5 + 5 � 2 + 14 � 1 + 42 � 1 = 132

A

9

= 1 � 132 + 1 � 42 + 2 � 14 + 5 � 5 + 14 � 2 + 42 � 1 + 132 � 1 = 429

A

10

= 1 � 429 + 1 � 132 + 2 � 42 + 5 � 14 + 14 � 5 + 42 � 2 + 132 � 1 + 429 � 1 = 1430:
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By the way, if one de�nes C

n

= A

n+2

for all n � 2, then C

n

are the so-
alled

Catalan numbers. The Catalan numbers have many interesting interpretations

(whi
h we will not dis
uss now). It is known that

C

n

=

�

2n

n

�

n+ 1

:

So for example A

10

= C

8

=

�

16

8

�

=9 = 1430.

Problem 7. ** Show that the sum of the squares of two 
onse
utive Fibona

i

numbers is again a Fibona

i number.

Problem 8. **** [Putnam 1985℄ De�ne polynomials f

n

(x) for n � 0 by f

0

(x) =

1, f

n

(0) = 0 for n � 1, and

d

dx

(f

n+1

(x)) = (n+ 1)f

n

(x+ 1)

for n � 0. Find, with proof, the expli
it fa
torization of f

100

(1) into powers of

distin
t primes.

Problem 9. *** [Putnam 1990℄ Let

T

0

= 2; T

1

= 3; T

2

= 6;

and for n � 3,

T

n

= (n+ 4)T

n�1

� 4nT

n�2

+ (4n� 8)T

n�3

:

The �rst few terms are,

2; 3; 6; 14; 40; 152; 784; 5168; 40576:

Find, with proof, a formula for T

n

of the form T

n

= A

n

+ B

n

, where fA

n

g and

fB

n

g are well-known sequen
es.

Problem 10. *** [Putnam 1993℄ Let fx

n

g

n�0

be a sequen
e of nonzero real

numbers su
h that x

2

n

� x

n�1

x

n+1

= 1 for n = 1; 2; 3; : : : . Prove that there exists

a real number a su
h that x

n+1

= ax

n

� x

n�1

for all n � 1.

4. Extra Problems

Problem 11. * Prove that

1

2

+ 2

2

+ � � �+ n

2

=

n(n + 1)(2n+ 1)

6

for all positive integers n.

Problem 12. ** Find and prove a formula for

1

4

+ 2

4

+ � � �+ n

4

:
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Problem 13. ******* Suppose that d and m are nonnegative integers. Prove

that

m

X

n=0

n

d

=

d

X

j=0

(

j

X

i=0

(�1)

i+j

�

j

i

�

i

d

)

�

m + 1

j + 1

�

:

Problem 14. **** [Putnam 1985℄ Let d be a real number. For ea
h integer

m � 0, de�ne a sequen
e fa

m

(j)g, j = 0; 1; 2; : : : by the 
ondition

a

m

(0) = d=2

m

; and a

m

(j + 1) = (a

m

(j))

2

+ 2a

m

(j); j � 0:

Evaluate lim

n!1

a

n

(n).

Problem 15. * Show that the Fibona

i numbers satisfy

F

n+1

F

n�1

� F

2

n

= (�1)

n+1

for all positive integers n.


