MATH 289, PROBLEM SET 1
MATHEMATICAL INDUCTION
DUE 1/14/2004

HARM DERKSEN

1. IN(TRO)DUCTION
We will denote the set of integers by
Z={...,—2,-1,0,1,2,...}.
This problem set is about a fundamental property of the set of positive integers
N=1{1,2,3,4,5,... }.

Beware, some authors may use N for the nonnegative integers.
Suppose that we want to prove that
“P(n) is true for every positive integer n”,
where P(n) is a proposition (statement) which depends on a positive integer n.
Proving P(1), P(2), P(3), etc., would take an infinite amount of time. Instead
we can use the so-called induction principle.

Axiom 1. Assume that k is an integer and for each n > k, P(k) is a proposition.
(1) Suppose that P(k) is true, and
(2) for any integer m > k for which P(m) is true, P(m + 1) is true.

Then P(n) is true for all integers n > k.

The induction principle is often compared to an infinite sequence of dominos
tiles, numbered 1,2,3, etc.

L

1 2 3 4 5 6 7
If the m-th domino tile falls, it will hit the (m + 1)-th domino tile and the
(m + 1)-th domino tile will fall as well. If the first domino tile falls, then all
domino tiles will fall down. (Here P(n) is the statement:“the n-th domino tile
falls down”)

Date: Winter 2004.



2 INDUCTION

Since the induction principle is intuitively clear, we will simply accept it with-
out proof. This is why it is called an axiom. (We cannot formally prove the
induction principle without making other, similar assumptions.)

A typical example of the induction principle is the following:

Example 1. Prove that

n(n+1)'

(1) L2434 4n=——

for every positive integer n.

Discussion. Since (1) depends on a positive integer n, it is natural to try mathe-
matical induction. Equation (1) is true for n = 1. Let us assume that (1) is true

for n =m:
1
(2) 1+2+---+m:%.

Then we have to prove that

+1)(m+2
(3) 1+2+---+m+(m+1):(m )2(m )
We recognize that the left-hand side of (2) forms a substantial part of the left-

hand side of (3). If we assume (2), then (3) is equivalent to

m(m+1)+(m+1): (m—i—l)(m—i—?)'

2 2

This is easy to check. We now write down a formal proof.
Proof. We prove (1) by induction on n. For n =1 we check that

L1+
-

Suppose that (1) is true for n = m. Then

L+24-4+m+m+1)=0+2+--+m)+(m+1)=

m(m + 1 m+1)(m+2
2 2
so (1) is true for n = m 4+ 1. Now (1) is true for all positive integers n by the
induction principle. ©

Remark 1. When the German mathematician Carl Friedrich Gauss (1777-1855)
was 10 years old, his school teacher gave the class an assignment to add all the
numbers from 1 to 100. Gauss gave the answer almost immediately: 5050. This
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is how (we think) he did it: Write the numbers from 1 to 100 from left to right.
Write under that the numbers from 1 to 100 in reverse order.

1 2 3 -+ 100
100 99 98 --- 1
101 101 101 --- 101

100

Each of the 100 column sums is 101. This shows that
2-(142+---4100) =100-101

and
100 - 101
1+2+---+100:T:50-101:5050.

This easily generalizes to a proof of (1). Gauss’ proof can be graphically pre-
sented. For example, to see that

2-(1+2+4---+10)=10-11,

look at the following picture:

11
1 10
2 9
3 8
|4 7
|5 6
103 6 5
7 4
8 3
9 2
10 1

Remark 2. One of the earliest uses of mathematical induction appears in the
work of French mathematician Blaise Pascal (1623-1662). Some sources attribute
the invention of the roulette wheel to Pascal (while he was attempting to create a
perpetual motion machine). (Another theory states that the roulette wheel was
brought to Europe from China.) The modern roulette wheel has the numbers 0
to 36. The sum of all the numbers on a roulette wheel is
36 - 37

14+2+---436= —5 = 666.

This is the biblical “mark of the beast”. Coincidence?
A formula similar to (1) exists for the sums of squares, namely

1)(2n + 1
(4) 1249z M0 )6("+ ),

Example 2. Give and prove a formula for

1P +2°+.- 4+ 0n
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Discussion. What would be the form of such a formula? We have seen similar
examples, namely (1) and (4). We can also add the formula

10942043+ +n’ =n,

Let

pe(n) =1F 428 438 ... 4 n¥
where k& € N. The examples so far suggest that p(n) is a polynomial of degree
k41 (and that the leading coefficient is k+r1) Let us assume that

ps(n) =1°+2°+ 3%+ ... 4 n’
is a polynomial of degree 4. Since p3(0) is an empty sum, we have that ps;(0) = 0.
We can write

(5) P4 22+ 4 n® =an* + n® 4+ cn® + dn

for certain real numbers a, b, ¢, d. Suppose that for some fixed values of a, b, ¢, d,
(5) is true for all n € N. How would we prove such a formula? Of course we use
induction. Let Q(n) be the proposition “(5) is true”. We know that Q(0) is true.
We want to show that QQ(m) implies Q(m + 1), or equivalently that Q(m — 1)
implies Q(m). So

6) *+2°+--+(m—1)>=a(m—1"+b(m—1)°+c(m—1)>+d(m—1)
should imply

(7) P22 4o (m— 1%+ m® = am® + bm® + em? + dm.

The left-hand sides of (6) and (7) look very similar. If we subtract (6) from (7)
we obtain

m?® = a(m*—(m—=1)*"+b(m* — (m—1)*) +c(m?— (m—1)*)+d(m—(m—1)) =
=a(4m® —6m* +4m — 1) +b(3m* —3m + 1) +c(2m —1) +d =
= m*(4a) + m*(—6a + 3b) + m(4a — 3b+ 2¢) + (—a + b — ¢ + d)
If (8) is true for all m, then (6) indeed would imply (7). Perhaps we can choose

a,b,c,d in such way that (8) always holds. Comparing coefficients in (8) gives us
the linear equations:

9) 1 = 4a

(10) 0 = —6a+3b

(11) 0 = 4a—-3b+2c
(12) 0 = —a+b—c+d
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We solve the system of equations. We find a = i. Then we get 3b = 6a = %, SO

b= % Then we have 2¢ = —4a 4+ 3b = —1 + % = % SO ¢ = i. Finally we get

d=a—b+c= i — % + i = 0. We now should conjecture the following formula:
P+ 28+ 40 = n 4+ Ind 4+ 102

Finding this formula was the hard part. It is now not so hard to prove this formula

by induction. If we write down the proof, we do not really have to explain how

we obtained the formula. We just “drop the formula out of the sky” and give a

(short) proof by induction. Here we go:

Proof. We will prove that

(13) P42+ 40’ =1nt+ 1nd 4+ In2

by induction on n. The case n = 0 is clear, because both sides of the equation
are equal to 0. If (13) is true for n = m — 1, then

P28t (m = 1) = g(m = 1)+ 5(m = 1)° + §0m — 1),
From this follows that

P+2+ 4 (m=1°2+m*=(m -1 +i(m -1+ 1(m-1)? +m?® =

= 1(m*—4m® +6m? —4m+1)+1(m* —3m? +3m — 1) +
= tm* + im? + 1m?,
so (13) is true for n = m. By induction follows that (13) is true for all n € N. ©

T(m?*=2m+1)+m? =

Notice that
mt+1m? + tm? = (3n(n + 1))?
which leads to the following estetic formula:
B4+ 4nd=1+2+--+n)
Example 3. What is the value of

+ TR

1-2 2-3 + 3-4
Discussion. Let us compute the partial sums. Perhaps we will find a pattern.

1 1 2 4 2
12723 676 3
1 1 1 2 1 8 1 9 3
12 te 3 sy s T T TR T
1 1 1 3 1 15 1 16 4

1
1ot s st s 1t 2020 20" 5

A pattern emerges. Namely, it seems that
1 1 1 1

14 R R S R .
(14) 12 237" +n(n+1) n+1
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The form of the formula suggests that we can prove it by induction. Besides
checking (14) for n = 1, we have to prove that

1 1 1 1
(15) ﬁ‘i‘ﬁﬁ‘"'"ﬁ‘m:l—m
implies
(16) L—FL—F"'—F ! :1_L_
2-3 (m+1)(m+2) m+ 2

1-2
Let us assume (15). We recognize that the left-hand side of (15) forms a sub-
stantial part of the left-hand side of (16). We can use this:

1 1 1
<ﬁ+fg+"'+ m(m—l—l)) T Dm+2)
-+ ———
m +1 (m+1)(m+2)
Now (16) follows because

1 1 1
(m+1)(m+2) m+1 m+2
After proving (14) we can take the limit n — oo to find the the series converges

to 1. We are ready to write down a formal proof now.
Proof. By induction on n we prove:

(17) S . S !
1.2 2-3 nin+1) = n+1
For n =1 we check
1 1
— =1
1-2 2
If (17) is true for n = m, then
L S ! =
1-2 2-3 mm+1)  (m+1(m+2)
1 1 1 1
=(1—- - =1-—7.
( m+1)+(m+1 m+2) m+ 2

Hence (17) is true for n = m+1. By induction, (17) is true for all integers n > 1.

We have
1+1+1+—1'(11)—1
1-2 2.3 3.4 = P P

©

Example 4 (UMUMC, 1988). Let S, be the set of all pairs (z,y) with integral
coordinates such that x > 0, y > 0 and z + y < n. Show that S, cannot be
covered by the union of n straight lines.
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Discussion. First we should try a few small cases, say n =0,1,2,3,4:

[ LI )
k‘o_ o o ° kok .
. o o o o 'o_ o 0.0 @
° o o [ S ) “o‘ * O 0 @ e o o o o
n=0 n=1 n=2 n=3 n=4

How can we use induction here? Notice that S, is a subset of S, ;. Suppose
that we already have proven that one needs at least n + 1 lines to cover S,,.
Obviously, one will need at least n 4+ 1 to cover 5,1 because S, is a subset of
Spt1- Suppose that n + 1 lines ¢1,0,...,¢,11 cover S,. Could these lines in
fact cover the whole of S, 1,7 We should concentrate on C' := S, ;1 \ Sy, the
complement of S, in S,,,;. We have

Croi1 ={(0,n+1),(L,n),...,(n+1,0)}.

This is a set of n + 2 points lying on the line x +y = n + 1. Is it possible that
ly, Uy, ... L,y cover C 7 For every ¢ we have that ¢; N C', .| consists of at most
1 point unless ¢; is equal to the line x +y = n+ 1. If none of the lines ¢; is equal
to the line x +y = n + 1 then ¢;,405,..., 0,11 cover at most n + 1 of the n + 2
points of Cy 1. So 4y, ...,0,+1 do not cover Sy,q. If ¢; is the linex +y=n+1
for some 7 then 1, /s, .. .E, ooy lpy1 (we omit ¢;) cover S,. This contradicts the
assumption that we need at least n 4 1 lines to cover S,,. We conclude that we
need at least n + 2 lines to cover S,,;1.

We now write down the proof. Notice that it is not really necessary to use a
proof by contradiction. A proof is usually more elegant if one avoids reasoning
by contradiction.

Proof. We prove the statement by induction on n, the case n = 0 being trivial.
Suppose that one needs at least n+ 1 lines to cover S,,. Define Cy, 1 = Sp11\ Sp-
The set C), 11 consists of n + 2 points on the line x + y = n + 1. Suppose that k
lines 01, 0y, ..., 0k cover Spq.

case 1: One of the lines is equal to the line z +y = n + 1. Without loss of
generality we may assume that ¢, is equal to the line x +y = n + 1. Then
Uy, by, ... by cover S, because ¢, NS, = (0. From the induction hypothesis
follows that K — 1 >n+1,s0 k > n + 2.

case 2: None of the lines are equal to the line x + y = n + 1. Then each of
the lines intersects the line z +y = n + 1 in at most one point, and therefore
it intersects the set ()41 in at most one point. Since C,;; has n + 2 elements,
there must be at least n + 2 lines.

So in both cases we conclude that one needs at least n+2 lines to cover S, 1. ©
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Problem 1. *
(a) Prove that
xn+1 -1
l4+z+a°+ - +a"=——
rz—1

for every real number x and every positive integer n.
(b) If z is a real number with |z| < 1 then

1
l+o+a?+--= .
1—2z
Problem 2. ** Show that
] 1+1 n 1 1 n 1 n +1
2 3 2n—1 2n n+1 n+2 on

for all n € N.

Problem 3. *** Cut out a 1 x1 corner of a 2" x 2" chess board (n > 1). Show that

the remainder of the chess board can be covered with L-shaped tiles (see picture).
2

1

The case n = 2 is shown below.

Problem 4. *** Suppose that we have n lines in the plane such that (i) no two
lines are parallel and, (ii) no three lines go through 1 point. In how many regions
do these lines divide the plane? Prove your formula.

2. STRONG INDUCTION

The following example illustrates that sometimes one has to make a statement
stronger in order to be able to prove it by induction.
Example 5. Prove that
1 3 5 999, 999 < 1
2 4 6 1,000,000 1000
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Discussion. Since 1000 = /1,000,000 one might suggest that

1 3 5 2n —1 1
(18) 222 "

2 4 6 o Van
for all n > 1. Let us try to prove (18). We can check (18) for small n (which
gives some validity to our conjecture that this inequality holds). Suppose that
(18) holds for n = m:

(19) 1.§.§...2m_1< 1
2146 " 2m " \Vom
We have to prove (18) for n = m + 1:
1 3 5 2m +1 1

20— e = e = < .
(20 2 46 2m+2 2m + 2

If we divide (20) by (19) we obtain

2m+1 < 2m
2m+2 ~ V 2m+2
If (19) and (21) are true, then (20) is true. By squaring (21) we see that (21) is

equivalent to
om—+1\? < 2m
2m—+2) T 2m+2

(21)

and to
(22) (2m +1)% < (2m + 2)(2m)

So if (22) is true then our induction proof is complete. Unfortunately (22) is not
true and we are stuck. ®

Apparently we cannot easily prove (18) by induction. Sometimes it is easier to
prove a stronger statement by induction. We want to prove an inequality of the
form

1 35 2n-1 1
23 — e e — ...
(23) 2 46 o f(n)

for some function f(n) by induction on n. We want f(500,000) > 1000 so that
(23) would imply the original problem. (Perhaps we want also that f(n) > v/2n
for all n so that (23) implies (18)). For the induction to work, we need that
f(1) <2 and

2m +1 f(m)
<
2m+2 — f(m+1)

for all m > 1. With some puzzling we see that f(m) = v/2m + 1 works. This
means that the inequality

(24)
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can easily be proven by induction.
Proof. We prove

(25) 1-§_“2n—1< 1
2 4 2n V2n+1
by induction on n. The case n =1 is clear because
1 1
SRV
Suppose that (25) is true for n = m:
1 3 2m-1 1
(26) 217 2m S amtd

Since
(2m+1)2m+3) = 2m+2)* —1 < (2m + 2)*

we have that

om + 1 2< om + 1
2m + 2 2m + 3
and

2m +1 [2m + 1
27 .
(27) 2m + 2 = 2m +3
Multiplying (26) by (27) yields

13 2m+1< 1
24 2m + 2 2m—+ 3

(28)

Y

so (25) is true for n = m+ 1. This shows that (25) is true for all positive integers
n. In particular, for n = 500,000 we get

1 3 999, 999 < 1 < 1
2 4 1,000,000 /1,000,001 ~ 1000

©
What we did in the previous example is the following. Instead of proving a
statement P(n) for all n € N, we formulated a stronger statement Q(n), such
that Q(n) implies P(n) for any given positive integer n. We chose Q(n) such that
Q(n) was easy to prove by induction on n.
Below is a trickier proof of Example 5.

Proof. Let
e 1-3-5---999,999
~2-4-6---1,000,000
and
B_2-4-6---1,000,000
~3.5-7---1,000,001"
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Clearly A < B because

1 < g § < é 999, 999 < 1,000, 000
2 374 "~ 57771,000,000 " 1,000,001
It follows that ) )
A2 < AB =
< 1,000, 001 < 1,000, 000
and A < 10007L. )

Example 6. Prove that every integer n > 2 is a product of prime numbers.

Discussion. Recall that a positive integer p is a prime number if it has exactly two
positive divisors, namely 1 and p itself. For example, 2,3,5,7,11,13 are prime
numbers. Other numbers are products of primes, for example 4 =2-2,6 =23,
8§=2:2-2,9=3-3,10=2-5and 12 =2-2-3. The statement seems plausible.
Perhaps we can prove the statement by induction. Let P(n) be the statement:
“n is a product of prime numbers”. Clearly P(2) is true. We have to prove that
P(m) implies P(m +1). It seems that we are in a dead end. It is not clear at all
how the fact that m is a product of prime numbers can help us prove that m + 1
is a product of prime numbers. ©

How can we prove that m + 1 is a product of prime numbers? If m + 1 were
a prime number itself, then we are done. Otherwise m + 1 will have a nontrivial
decomposition m+1 = ab with a,b < m. If we would know that all integers < m
are products of primes, then we would know that m 4+ 1 is a product of primes.

It therefore seems natural to prove a slightly different statement by induction.
Let Q(n) be the statement: “every integer r with 2 < r < n is a product of prime
numbers”. The statement ()(n) can now be proven by induction without too
much effort. Instead of proving P(n) by induction, we prove the statement “P(r)
is true for all » < n” by induction. This idea is called strong induction. Here is
the proof.

Proof. Let Q(n) be the statement: “every integer  with 2 < r < n is a product of
prime numbers.” We use induction on n to prove that QQ(n) holds for all integers
n > 2.

For n = 2 the statement is true because 2 is a prime number. Suppose that
Q(m) is true. We will prove Q(m + 1). Suppose that 2 < r < m + 1. If
r < m then r is a product of prime numbers because @(m) is true. Suppose
that r = m 4+ 1. If m 4+ 1 is a prime number, then m + 1 is a product of prime
numbers and we are done. Otherwise, m + 1 can be written as a product ab with
1 < a,b < m. Because Q(m) is true, both a and b are products of prime numbers.
Hence m + 1 = ab is a product of prime numbers.

We have shown that (Q(n) holds for all n > 2. In particular, every integer r > 2
is a product of prime numbers because Q(r) is true. ©
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Example 7. Use the induction principle to show that every nonempty subset of
N has a smallest element.

Discussion. 1t is not immediately clear how to set up an induction here. There is
no “n” on which we can base the induction. Suppose that S is a nonempty set.
It contains at least one nonnegative integer n. Perhaps we could base the induc-
tion on this positive integer. So let P(n) be the statement: “if S is a subset of N
containing n then S must have a smallest element”. Proving P(n) by induction
is perhaps possible. However, it is easier to use strong induction in this example.
The proof then goes without any difficulties.

Proof. Let QQ(n) be the statement:“If S is a subset of N containing an integer
r with 7 < n, then S has a smallest element.” We are going to prove Q(n) by
induction on n. The case n = 1 is clear. Any set S containing 1 has a smallest
element, namely 1. Suppose that Q(m) is true. We will prove Q(m + 1). Let S
be a set containing an element r with » < m+1. If S contains an element s with
s < m then S has a smallest element because ()(m) is true. Otherwise, every
element of S is > m + 1. We must have r = m + 1 and r must be the smallest
element of S. So in any case, S has a smallest element. ©

Problem 5. *** Suppose that we have an m x n chocolate bar. We break the
chocolate bar into two pieces. Then we take one piece and break it into two. We
keep repeating this until we are only left with mn pieces of size 1 x 1. How many
times do we have to break the chocolate bar? Prove your formula. (In particular,
show that the number of breaks needed does not depend on how you proceed.)

Problem 6. *** Suppose that A, Ay, A3, ... is a sequence of positive integers
such that A, = 1 and A; < A;, < 2A4; for all positive integers i. Prove that
every positive integer n can be written as a sum of distinct A;’s.

3. INDUCTION IN DEFINITIONS

We can also use induction in a definition. For example, the Fibonacci numbers
is a sequence of numbers Fy, Fi, Fy, ... defined by Fy = F; =1 and

Fn-l—l:Fn_'_Fn—l; n > 1.

By (strong) induction on n we can prove that F,, is well-defined for all integers
n > 0. The first few Fibonacci numbers are:

1,1,2,3,5,8,13, 21,34, 55,89, . ..

The sum notation is an example of a recursive definition. Suppose that f(n)
is some function. If a, b are integers and a < b+ 1 then we define

> fn)

n=a
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as follows.
a—1
> fln)=0
and )
b b—1
(29) S fm)=f0)+> fn)
if b > a.

One can then formally prove by induction that
b

Y fm)=> ")+ Y fn).

n=a n=b+1
if a,b,c € Z and a —1 < b < ¢. (Induction on ¢. Start with ¢ = b.)
Similarly we have the product notation.

a—1

[[fm)=1

n=a

and

if b > a.
Example 8. A triangulation of a convex n-gon is a partition of the area of the

n-gon into triangles such that the vertices of each triangle is a vertex of the n-gon.
How many distinct triangulations does a convex 10-gon have?

Discussion. Let A, be the number of triangulations of an n-gon. Let us find the

value of A,, for small n.
We have A3 =1 and A4 = 2:

A5:5I
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It becomes more and more clear that it may not be feasible to write down all
triangulations of an 10-gon. As n gets larger, we need a more systematic way of
counting the possibilities to make sure that we are not forgetting any case.

Let P and () be two fixed adjacent vertices of the n-gon. For each triangulation,
there is a unique vertex R of the n-gon (R # P, Q) such that PQR is a triangle

in the triangulation. For example, for n = 8 there are the following cases:
R

DL Y
PO

P O
For fixed R, the complement of the trlangle PQR Wlthln the n-gon is a union
of an m-gon and a (n 4+ 1 — m)-gon. The m-gon has A,, triangulations, and the
(n+1—m)-gon has A, 1_,, triangulations. This gives A,, A, +1_,, triangulations
for this particular choice of R. From this we see the equation:

Ay =AA, 1+ A3A, o+ + Ay Ag.

where we define A, = 1. In particular,

A7 = 1-14+1-54+2-2+5-1+14-1=42

Ag = 1-42+1-144+2-5+5-24+14-1+42-1=132

Ag = 1-13241-4242-14+5-5+14-2+42-14+132-1 =429

Axp 1-4294+1-13242-42+5-14+14-5442-24+132-1+4429 -1 = 1430.
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By the way, if one defines C,, = A, for all n > 2, then C), are the so-called
Catalan numbers. The Catalan numbers have many interesting interpretations
(which we will not discuss now). It is known that

2n
n
n+1"

So for example A;g = Cg = (186) /9 = 1430.

Problem 7. ** Show that the sum of the squares of two consecutive Fibonacci
numbers is again a Fibonacci number.

Problem 8. **** [Putnam 1985] Define polynomials f,(z) for n > 0 by fy(z) =
1, f,(0) =0 for n > 1, and

n

S (faa@) = (0 + Dfale 1)

for n > 0. Find, with proof, the explicit factorization of fipo(1) into powers of
distinct primes.

Problem 9. *** [Putnam 1990] Let
To=2,Ty = 3,T, =6,
and for n > 3,
T, =n+4)T, 1 —4nT, o+ (4n — 8)T,, 3.
The first few terms are,
2,3,6,14,40,152,784, 5168, 40576.

Find, with proof, a formula for T;, of the form 7, = A, + B,,, where {A,} and
{B,} are well-known sequences.

Problem 10. *** [Putnam 1993] Let {,},>0 be a sequence of nonzero real
numbers such that 2 —x,_y1,,1 =1 for n =1,2,3,.... Prove that there exists
a real number a such that =, = ax, —x,_; for all n > 1.

4. EXTRA PROBLEMS

Problem 11. * Prove that

1)(2 1
12+22+.”+n2:n(n+ )6(”"‘ )

for all positive integers n.

Problem 12. ** Find and prove a formula for

1* 424+t
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Problem 13. ***** Suppose that d and m are nonnegative integers. Prove

L s e

Problem 14. **** [Putnam 1985] Let d be a real number. For each integer
m > 0, define a sequence {a,,(j)}, j =0,1,2,... by the condition

am(0) = d/27, and am(j+1) = ( (J)) +2am(j), J=0.
Evaluate lim,,_,, a,(n).
Problem 15. * Show that the Fibonacci numbers satisfy

Foi By — F2 = (—=1)"*!

for all positive integers n.



