
MATH 289, PROBLEM SET 1

MATHEMATICAL INDUCTION

DUE 1/14/2004

HARM DERKSEN

1. In(tro)dution

We will denote the set of integers by

Z = f: : : ;�2;�1; 0; 1; 2; : : :g:

This problem set is about a fundamental property of the set of positive integers

N = f1; 2; 3; 4; 5; : : :g:

Beware, some authors may use N for the nonnegative integers.

Suppose that we want to prove that

\P (n) is true for every positive integer n",

where P (n) is a proposition (statement) whih depends on a positive integer n.

Proving P (1), P (2), P (3), et., would take an in�nite amount of time. Instead

we an use the so-alled indution priniple.

Axiom 1. Assume that k is an integer and for eah n � k, P (k) is a proposition.

(1) Suppose that P (k) is true, and

(2) for any integer m � k for whih P (m) is true, P (m+ 1) is true.

Then P (n) is true for all integers n � k.

The indution priniple is often ompared to an in�nite sequene of dominos

tiles, numbered 1,2,3, et.

1 2 3 4 5 6 7

If the m-th domino tile falls, it will hit the (m + 1)-th domino tile and the

(m + 1)-th domino tile will fall as well. If the �rst domino tile falls, then all

domino tiles will fall down. (Here P (n) is the statement:\the n-th domino tile

falls down")

1 2 3 4 5 6 7

Date: Winter 2004.
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2 INDUCTION

Sine the indution priniple is intuitively lear, we will simply aept it with-

out proof. This is why it is alled an axiom. (We annot formally prove the

indution priniple without making other, similar assumptions.)

A typial example of the indution priniple is the following:

Example 1. Prove that

(1) 1 + 2 + 3 + � � �+ n =

n(n + 1)

2

:

for every positive integer n.

Disussion. Sine (1) depends on a positive integer n, it is natural to try mathe-

matial indution. Equation (1) is true for n = 1. Let us assume that (1) is true

for n = m:

(2) 1 + 2 + � � �+m =

m(m + 1)

2

:

Then we have to prove that

(3) 1 + 2 + � � �+m + (m+ 1) =

(m+ 1)(m+ 2)

2

:

We reognize that the left-hand side of (2) forms a substantial part of the left-

hand side of (3). If we assume (2), then (3) is equivalent to

m(m + 1)

2

+ (m + 1) =

(m+ 1)(m+ 2)

2

:

This is easy to hek. We now write down a formal proof.

Proof. We prove (1) by indution on n. For n = 1 we hek that

1 =

1 � (1 + 1)

2

:

Suppose that (1) is true for n = m. Then

1 + 2 + � � �+m + (m+ 1) = (1 + 2 + � � �+m) + (m + 1) =

=

m(m+ 1)

2

+ (m + 1) =

(m+ 1)(m+ 2)

2

:

so (1) is true for n = m + 1. Now (1) is true for all positive integers n by the

indution priniple.

Remark 1. When the German mathematiian Carl Friedrih Gauss (1777{1855)

was 10 years old, his shool teaher gave the lass an assignment to add all the

numbers from 1 to 100. Gauss gave the answer almost immediately: 5050. This
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is how (we think) he did it: Write the numbers from 1 to 100 from left to right.

Write under that the numbers from 1 to 100 in reverse order.

1 2 3 � � � 100

100 99 98 � � � 1

101 101 101 � � � 101

| {z }

100

Eah of the 100 olumn sums is 101. This shows that

2 � (1 + 2 + � � �+ 100) = 100 � 101

and

1 + 2 + � � �+ 100 =

100 � 101

2

= 50 � 101 = 5050:

This easily generalizes to a proof of (1). Gauss' proof an be graphially pre-

sented. For example, to see that

2 � (1 + 2 + � � �+ 10) = 10 � 11;

look at the following piture:

1
2
3
4
5
6
7
8
9

10 1
2
3
4
5
6
7
8
9

10

10

11

Remark 2. One of the earliest uses of mathematial indution appears in the

work of Frenh mathematiian Blaise Pasal (1623{1662). Some soures attribute

the invention of the roulette wheel to Pasal (while he was attempting to reate a

perpetual motion mahine). (Another theory states that the roulette wheel was

brought to Europe from China.) The modern roulette wheel has the numbers 0

to 36. The sum of all the numbers on a roulette wheel is

1 + 2 + � � �+ 36 =

36 � 37

2

= 666:

This is the biblial \mark of the beast". Coinidene?

A formula similar to (1) exists for the sums of squares, namely

(4) 1

2

+ 2

2

+ � � �+ n

2

=

n(n+ 1)(2n+ 1)

6

:

Example 2. Give and prove a formula for

1

3

+ 2

3

+ � � �+ n

3



4 INDUCTION

Disussion. What would be the form of suh a formula? We have seen similar

examples, namely (1) and (4). We an also add the formula

1

0

+ 2

0

+ 3

0

+ � � �+ n

0

= n:

Let

p

k

(n) = 1

k

+ 2

k

+ 3

k

+ � � �+ n

k

where k 2 N . The examples so far suggest that p

k

(n) is a polynomial of degree

k + 1 (and that the leading oeÆient is

1

k+1

). Let us assume that

p

3

(n) = 1

3

+ 2

3

+ 3

3

+ � � �+ n

3

is a polynomial of degree 4. Sine p

3

(0) is an empty sum, we have that p

3

(0) = 0.

We an write

(5) 1

3

+ 2

3

+ � � �+ n

3

= an

4

+ bn

3

+ n

2

+ dn

for ertain real numbers a; b; ; d. Suppose that for some �xed values of a; b; ; d,

(5) is true for all n 2 N . How would we prove suh a formula? Of ourse we use

indution. Let Q(n) be the proposition \(5) is true". We know that Q(0) is true.

We want to show that Q(m) implies Q(m + 1), or equivalently that Q(m � 1)

implies Q(m). So

(6) 1

3

+ 2

3

+ � � �+ (m� 1)

3

= a(m� 1)

4

+ b(m� 1)

3

+ (m� 1)

2

+ d(m� 1)

should imply

(7) 1

3

+ 2

3

+ � � �+ (m� 1)

3

+m

3

= am

4

+ bm

3

+ m

2

+ dm:

The left-hand sides of (6) and (7) look very similar. If we subtrat (6) from (7)

we obtain

(8)

m

3

= a(m

4

�(m�1)

4

)+b(m

3

�(m�1)

3

)+(m

2

�(m�1)

2

)+d(m�(m�1)) =

= a(4m

3

� 6m

2

+ 4m� 1) + b(3m

2

� 3m + 1) + (2m� 1) + d =

= m

3

(4a) +m

2

(�6a + 3b) +m(4a� 3b+ 2) + (�a + b� + d)

If (8) is true for all m, then (6) indeed would imply (7). Perhaps we an hoose

a; b; ; d in suh way that (8) always holds. Comparing oeÆients in (8) gives us

the linear equations:

1 = 4a(9)

0 = �6a+ 3b(10)

0 = 4a� 3b+ 2(11)

0 = �a + b� + d(12)
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We solve the system of equations. We �nd a =

1

4

. Then we get 3b = 6a =

3

2

, so

b =

1

2

. Then we have 2 = �4a + 3b = �1 +

3

2

=

1

2

so  =

1

4

. Finally we get

d = a� b+  =

1

4

�

1

2

+

1

4

= 0. We now should onjeture the following formula:

1

3

+ 2

3

+ � � �+ n

3

=

1

4

n

4

+

1

2

n

3

+

1

4

n

2

:

Finding this formula was the hard part. It is now not so hard to prove this formula

by indution. If we write down the proof, we do not really have to explain how

we obtained the formula. We just \drop the formula out of the sky" and give a

(short) proof by indution. Here we go:

Proof. We will prove that

(13) 1

3

+ 2

3

+ � � �+ n

3

=

1

4

n

4

+

1

2

n

3

+

1

4

n

2

:

by indution on n. The ase n = 0 is lear, beause both sides of the equation

are equal to 0. If (13) is true for n = m� 1, then

1

3

+ 2

3

+ � � �+ (m� 1)

3

=

1

4

(m� 1)

4

+

1

2

(m� 1)

3

+

1

4

(m� 1)

2

:

From this follows that

1

3

+ 2

3

+ � � �+ (m� 1)

3

+m

3

=

1

4

(m� 1)

4

+

1

2

(m� 1)

3

+

1

4

(m� 1)

2

+m

3

=

=

1

4

(m

4

�4m

3

+6m

2

�4m+1)+

1

2

(m

3

�3m

2

+3m�1)+

1

4

(m

2

�2m+1)+m

3

=

=

1

4

m

4

+

1

2

m

3

+

1

4

m

2

;

so (13) is true for n = m. By indution follows that (13) is true for all n 2 N .

Notie that

1

4

m

4

+

1

2

m

3

+

1

4

m

2

= (

1

2

n(n + 1))

2

whih leads to the following esteti formula:

1

3

+ 2

3

+ � � �+ n

3

= (1 + 2 + � � �+ n)

2

:

Example 3. What is the value of

1

1 � 2

+

1

2 � 3

+

1

3 � 4

+ � � �?

Disussion. Let us ompute the partial sums. Perhaps we will �nd a pattern.

1

1 � 2

+

1

2 � 3

=

2

6

+

4

6

=

2

3

;

1

1 � 2

+

1

2 � 3

+

1

3 � 4

=

2

3

+

1

12

=

8

12

+

1

12

=

9

12

=

3

4

;

1

1 � 2

+

1

2 � 3

+

1

3 � 4

+

1

4 � 5

=

3

4

+

1

20

=

15

20

+

1

20

=

16

20

=

4

5

:

A pattern emerges. Namely, it seems that

(14)

1

1 � 2

+

1

2 � 3

+ � � �+

1

n(n + 1)

= 1�

1

n+ 1

:



6 INDUCTION

The form of the formula suggests that we an prove it by indution. Besides

heking (14) for n = 1, we have to prove that

(15)

1

1 � 2

+

1

2 � 3

+ � � �+

1

m(m + 1)

= 1�

1

m + 1

implies

(16)

1

1 � 2

+

1

2 � 3

+ � � �+

1

(m + 1)(m+ 2)

= 1�

1

m + 2

:

Let us assume (15). We reognize that the left-hand side of (15) forms a sub-

stantial part of the left-hand side of (16). We an use this:

�

1

1 � 2

+

1

2 � 3

+ � � �+

1

m(m + 1)

�

+

1

(m+ 1)(m+ 2)

=

�

1�

1

m + 1

�

+

1

(m + 1)(m+ 2)

:

Now (16) follows beause

1

(m+ 1)(m+ 2)

=

1

m + 1

�

1

m+ 2

:

After proving (14) we an take the limit n!1 to �nd the the series onverges

to 1. We are ready to write down a formal proof now.

Proof. By indution on n we prove:

(17)

1

1 � 2

+

1

2 � 3

+ � � �+

1

n(n + 1)

= 1�

1

n+ 1

:

For n = 1 we hek

1

1 � 2

= 1�

1

2

:

If (17) is true for n = m, then

1

1 � 2

+

1

2 � 3

+ � � �+

1

m(m + 1)

+

1

(m+ 1)(m+ 2)

=

=

�

1�

1

m + 1

�

+ (

1

m + 1

�

1

m + 2

) = 1�

1

m + 2

:

Hene (17) is true for n = m+1. By indution, (17) is true for all integers n � 1.

We have

1

1 � 2

+

1

2 � 3

+

1

3 � 4

+ � � � = lim

n!1

�

1�

1

n+ 1

�

= 1:

Example 4 (UMUMC, 1988). Let S

n

be the set of all pairs (x; y) with integral

oordinates suh that x � 0, y � 0 and x + y � n. Show that S

n

annot be

overed by the union of n straight lines.



PROBLEM SET 1 7

Disussion. First we should try a few small ases, say n = 0; 1; 2; 3; 4:

n=0 n=1 n=2 n=3 n=4

How an we use indution here? Notie that S

n

is a subset of S

n+1

. Suppose

that we already have proven that one needs at least n + 1 lines to over S

n

.

Obviously, one will need at least n + 1 to over S

n+1

beause S

n

is a subset of

S

n+1

. Suppose that n + 1 lines `

1

; `

2

; : : : ; `

n+1

over S

n

. Could these lines in

fat over the whole of S

n+1

? We should onentrate on C := S

n+1

n S

n

, the

omplement of S

n

in S

n+1

. We have

C

n+1

= f(0; n+ 1); (1; n); : : : ; (n+ 1; 0)g:

This is a set of n + 2 points lying on the line x + y = n + 1. Is it possible that

`

1

; `

2

; : : : ; `

n+1

over C

n+1

? For every i we have that `

i

\C

n+1

onsists of at most

1 point unless `

i

is equal to the line x+ y = n+1. If none of the lines `

i

is equal

to the line x + y = n + 1 then `

1

; `

2

; : : : ; `

n+1

over at most n + 1 of the n + 2

points of C

n+1

. So `

1

; : : : ; `

n+1

do not over S

n+1

. If `

i

is the line x + y = n + 1

for some i then `

1

; `

2

; : : :

b

`

i

; : : : ; `

n+1

(we omit `

i

) over S

n

. This ontradits the

assumption that we need at least n + 1 lines to over S

n

. We onlude that we

need at least n+ 2 lines to over S

n+1

.

We now write down the proof. Notie that it is not really neessary to use a

proof by ontradition. A proof is usually more elegant if one avoids reasoning

by ontradition.

Proof. We prove the statement by indution on n, the ase n = 0 being trivial.

Suppose that one needs at least n+1 lines to over S

n

. De�ne C

n+1

= S

n+1

nS

n

.

The set C

n+1

onsists of n+ 2 points on the line x + y = n+ 1. Suppose that k

lines `

1

; `

2

; : : : ; `

k

over S

n+1

.

ase 1: One of the lines is equal to the line x + y = n + 1. Without loss of

generality we may assume that `

k

is equal to the line x + y = n + 1. Then

`

1

; `

2

; : : : ; `

k�1

over S

n

beause `

k

\ S

n

= ;. From the indution hypothesis

follows that k � 1 � n+ 1, so k � n+ 2.

ase 2: None of the lines are equal to the line x + y = n + 1. Then eah of

the lines intersets the line x + y = n + 1 in at most one point, and therefore

it intersets the set C

n+1

in at most one point. Sine C

n+1

has n + 2 elements,

there must be at least n + 2 lines.

So in both ases we onlude that one needs at least n+2 lines to over S

n+1

.
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Problem 1. *

(a) Prove that

1 + x + x

2

+ � � �+ x

n

=

x

n+1

� 1

x� 1

:

for every real number x and every positive integer n.

(b) If x is a real number with jxj < 1 then

1 + x + x

2

+ � � � =

1

1� x

:

Problem 2. ** Show that

1�

1

2

+

1

3

� � � �+

1

2n� 1

�

1

2n

=

1

n+ 1

+

1

n+ 2

+ � � �+

1

2n

for all n 2 N.

Problem 3. *** Cut out a 1�1 orner of a 2

n

�2

n

hess board (n � 1). Show that

the remainder of the hess board an be overed with L-shaped tiles (see piture).

2

2

1

1

1

1

The ase n = 2 is shown below.

Problem 4. *** Suppose that we have n lines in the plane suh that (i) no two

lines are parallel and, (ii) no three lines go through 1 point. In how many regions

do these lines divide the plane? Prove your formula.

2. Strong Indution

The following example illustrates that sometimes one has to make a statement

stronger in order to be able to prove it by indution.

Example 5. Prove that

1

2

�

3

4

�

5

6

� � �

999; 999

1; 000; 000

<

1

1000

:
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Disussion. Sine 1000 =

p

1; 000; 000 one might suggest that

(18)

1

2

�

3

4

�

5

6

� � �

2n� 1

2n

<

1

p

2n

for all n � 1. Let us try to prove (18). We an hek (18) for small n (whih

gives some validity to our onjeture that this inequality holds). Suppose that

(18) holds for n = m:

(19)

1

2

�

3

4

�

5

6

� � �

2m� 1

2m

<

1

p

2m

We have to prove (18) for n = m + 1:

(20)

1

2

�

3

4

�

5

6

� � �

2m+ 1

2m+ 2

<

1

p

2m+ 2

:

If we divide (20) by (19) we obtain

(21)

2m+ 1

2m+ 2

�

r

2m

2m+ 2

:

If (19) and (21) are true, then (20) is true. By squaring (21) we see that (21) is

equivalent to

�

2m+ 1

2m+ 2

�

2

�

2m

2m + 2

and to

(22) (2m+ 1)

2

� (2m+ 2)(2m)

So if (22) is true then our indution proof is omplete. Unfortunately (22) is not

true and we are stuk.

Apparently we annot easily prove (18) by indution. Sometimes it is easier to

prove a stronger statement by indution. We want to prove an inequality of the

form

(23)

1

2

�

3

4

�

5

6

� � �

2n� 1

2n

<

1

f(n)

for some funtion f(n) by indution on n. We want f(500; 000) > 1000 so that

(23) would imply the original problem. (Perhaps we want also that f(n) >

p

2n

for all n so that (23) implies (18)). For the indution to work, we need that

f(1) < 2 and

2m+ 1

2m+ 2

�

f(m)

f(m + 1)

for all m � 1. With some puzzling we see that f(m) =

p

2m+ 1 works. This

means that the inequality

(24)

1

2

�

3

4

�

5

6

� � �

2n� 1

2n

<

1

p

2n+ 1
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an easily be proven by indution.

Proof. We prove

(25)

1

2

�

3

4

� � �

2n� 1

2n

<

1

p

2n+ 1

by indution on n. The ase n = 1 is lear beause

1

2

<

1

p

3

:

Suppose that (25) is true for n = m:

(26)

1

2

�

3

4

� � �

2m� 1

2m

<

1

p

2m + 1

Sine

(2m+ 1)(2m+ 3) = (2m+ 2)

2

� 1 < (2m + 2)

2

we have that

�

2m+ 1

2m+ 2

�

2

<

2m+ 1

2m+ 3

and

(27)

2m+ 1

2m+ 2

<

r

2m+ 1

2m+ 3

:

Multiplying (26) by (27) yields

(28)

1

2

3

4

� � �

2m+ 1

2m+ 2

<

1

p

2m+ 3

;

so (25) is true for n = m+1. This shows that (25) is true for all positive integers

n. In partiular, for n = 500; 000 we get

1

2

�

3

4

� � �

999; 999

1; 000; 000

<

1

p

1; 000; 001

<

1

1000

:

What we did in the previous example is the following. Instead of proving a

statement P (n) for all n 2 N , we formulated a stronger statement Q(n), suh

that Q(n) implies P (n) for any given positive integer n. We hose Q(n) suh that

Q(n) was easy to prove by indution on n.

Below is a trikier proof of Example 5.

Proof. Let

A =

1 � 3 � 5 � � �999; 999

2 � 4 � 6 � � � 1; 000; 000

and

B =

2 � 4 � 6 � � �1; 000; 000

3 � 5 � 7 � � �1; 000; 001

:
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Clearly A < B beause

1

2

<

2

3

;

3

4

<

4

5

; : : : ;

999; 999

1; 000; 000

<

1; 000; 000

1; 000; 001

:

It follows that

A

2

< AB =

1

1; 000; 001

<

1

1; 000; 000

and A < 1000

�1

.

Example 6. Prove that every integer n � 2 is a produt of prime numbers.

Disussion. Reall that a positive integer p is a prime number if it has exatly two

positive divisors, namely 1 and p itself. For example, 2; 3; 5; 7; 11; 13 are prime

numbers. Other numbers are produts of primes, for example 4 = 2 � 2, 6 = 2 � 3,

8 = 2 � 2 � 2, 9 = 3 � 3, 10 = 2 � 5 and 12 = 2 � 2 � 3. The statement seems plausible.

Perhaps we an prove the statement by indution. Let P (n) be the statement:

\n is a produt of prime numbers". Clearly P (2) is true. We have to prove that

P (m) implies P (m+1). It seems that we are in a dead end. It is not lear at all

how the fat that m is a produt of prime numbers an help us prove that m+1

is a produt of prime numbers.

How an we prove that m + 1 is a produt of prime numbers? If m + 1 were

a prime number itself, then we are done. Otherwise m+ 1 will have a nontrivial

deomposition m+1 = ab with a; b � m. If we would know that all integers � m

are produts of primes, then we would know that m + 1 is a produt of primes.

It therefore seems natural to prove a slightly di�erent statement by indution.

Let Q(n) be the statement:\every integer r with 2 � r � n is a produt of prime

numbers". The statement Q(n) an now be proven by indution without too

muh e�ort. Instead of proving P (n) by indution, we prove the statement \P (r)

is true for all r � n" by indution. This idea is alled strong indution. Here is

the proof.

Proof. Let Q(n) be the statement:\every integer r with 2 � r � n is a produt of

prime numbers." We use indution on n to prove that Q(n) holds for all integers

n � 2.

For n = 2 the statement is true beause 2 is a prime number. Suppose that

Q(m) is true. We will prove Q(m + 1). Suppose that 2 � r � m + 1. If

r � m then r is a produt of prime numbers beause Q(m) is true. Suppose

that r = m + 1. If m + 1 is a prime number, then m + 1 is a produt of prime

numbers and we are done. Otherwise, m+1 an be written as a produt ab with

1 � a; b � m. Beause Q(m) is true, both a and b are produts of prime numbers.

Hene m+ 1 = ab is a produt of prime numbers.

We have shown that Q(n) holds for all n � 2. In partiular, every integer r � 2

is a produt of prime numbers beause Q(r) is true.
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Example 7. Use the indution priniple to show that every nonempty subset of

N has a smallest element.

Disussion. It is not immediately lear how to set up an indution here. There is

no \n" on whih we an base the indution. Suppose that S is a nonempty set.

It ontains at least one nonnegative integer n. Perhaps we ould base the indu-

tion on this positive integer. So let P (n) be the statement:\if S is a subset of N

ontaining n then S must have a smallest element". Proving P (n) by indution

is perhaps possible. However, it is easier to use strong indution in this example.

The proof then goes without any diÆulties.

Proof. Let Q(n) be the statement:\If S is a subset of N ontaining an integer

r with r � n, then S has a smallest element." We are going to prove Q(n) by

indution on n. The ase n = 1 is lear. Any set S ontaining 1 has a smallest

element, namely 1. Suppose that Q(m) is true. We will prove Q(m + 1). Let S

be a set ontaining an element r with r � m+1. If S ontains an element s with

s � m then S has a smallest element beause Q(m) is true. Otherwise, every

element of S is � m + 1. We must have r = m + 1 and r must be the smallest

element of S. So in any ase, S has a smallest element.

Problem 5. *** Suppose that we have an m � n hoolate bar. We break the

hoolate bar into two piees. Then we take one piee and break it into two. We

keep repeating this until we are only left with mn piees of size 1� 1. How many

times do we have to break the hoolate bar? Prove your formula. (In partiular,

show that the number of breaks needed does not depend on how you proeed.)

Problem 6. *** Suppose that A

1

; A

2

; A

3

; : : : is a sequene of positive integers

suh that A

1

= 1 and A

i

< A

i+1

� 2A

i

for all positive integers i. Prove that

every positive integer n an be written as a sum of distint A

i

's.

3. Indution in Definitions

We an also use indution in a de�nition. For example, the Fibonai numbers

is a sequene of numbers F

0

; F

1

; F

2

; : : : de�ned by F

0

= F

1

= 1 and

F

n+1

= F

n

+ F

n�1

; n � 1:

By (strong) indution on n we an prove that F

n

is well-de�ned for all integers

n � 0. The �rst few Fibonai numbers are:

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; : : :

The sum notation is an example of a reursive de�nition. Suppose that f(n)

is some funtion. If a; b are integers and a � b + 1 then we de�ne

b

X

n=a

f(n)
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as follows.

a�1

X

n=a

f(n) = 0

and

(29)

b

X

n=a

f(n) = f(b) +

b�1

X

n=a

f(n)

if b � a.

One an then formally prove by indution that



X

n=a

f(n) =

b

X

n=a

f(n) +



X

n=b+1

f(n):

if a; b;  2 Z and a� 1 � b � . (Indution on . Start with  = b.)

Similarly we have the produt notation.

a�1

Y

n=a

f(n) = 1

and

b

Y

n=a

f(n) = f(b)

b�1

Y

n=a

f(n):

if b � a.

Example 8. A triangulation of a onvex n-gon is a partition of the area of the

n-gon into triangles suh that the verties of eah triangle is a vertex of the n-gon.

How many distint triangulations does a onvex 10-gon have?

Disussion. Let A

n

be the number of triangulations of an n-gon. Let us �nd the

value of A

n

for small n.

We have A

3

= 1 and A

4

= 2:

A

5

= 5:

I

A

6

= 14:
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It beomes more and more lear that it may not be feasible to write down all

triangulations of an 10-gon. As n gets larger, we need a more systemati way of

ounting the possibilities to make sure that we are not forgetting any ase.

Let P andQ be two �xed adjaent verties of the n-gon. For eah triangulation,

there is a unique vertex R of the n-gon (R 6= P;Q) suh that PQR is a triangle

in the triangulation. For example, for n = 8 there are the following ases:

Q

R

PP Q Q

QQQ

P

PPP

R

R

R

R

R

For �xed R, the omplement of the triangle PQR within the n-gon is a union

of an m-gon and a (n + 1�m)-gon. The m-gon has A

m

triangulations, and the

(n+1�m)-gon has A

n+1�m

triangulations. This gives A

m

A

n+1�m

triangulations

for this partiular hoie of R. From this we see the equation:

A

n

= A

2

A

n�1

+ A

3

A

n�2

+ � � �+ A

n�1

A

2

:

where we de�ne A

2

= 1. In partiular,

A

7

= 1 � 14 + 1 � 5 + 2 � 2 + 5 � 1 + 14 � 1 = 42

A

8

= 1 � 42 + 1 � 14 + 2 � 5 + 5 � 2 + 14 � 1 + 42 � 1 = 132

A

9

= 1 � 132 + 1 � 42 + 2 � 14 + 5 � 5 + 14 � 2 + 42 � 1 + 132 � 1 = 429

A

10

= 1 � 429 + 1 � 132 + 2 � 42 + 5 � 14 + 14 � 5 + 42 � 2 + 132 � 1 + 429 � 1 = 1430:
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By the way, if one de�nes C

n

= A

n+2

for all n � 2, then C

n

are the so-alled

Catalan numbers. The Catalan numbers have many interesting interpretations

(whih we will not disuss now). It is known that

C

n

=

�

2n

n

�

n+ 1

:

So for example A

10

= C

8

=

�

16

8

�

=9 = 1430.

Problem 7. ** Show that the sum of the squares of two onseutive Fibonai

numbers is again a Fibonai number.

Problem 8. **** [Putnam 1985℄ De�ne polynomials f

n

(x) for n � 0 by f

0

(x) =

1, f

n

(0) = 0 for n � 1, and

d

dx

(f

n+1

(x)) = (n+ 1)f

n

(x+ 1)

for n � 0. Find, with proof, the expliit fatorization of f

100

(1) into powers of

distint primes.

Problem 9. *** [Putnam 1990℄ Let

T

0

= 2; T

1

= 3; T

2

= 6;

and for n � 3,

T

n

= (n+ 4)T

n�1

� 4nT

n�2

+ (4n� 8)T

n�3

:

The �rst few terms are,

2; 3; 6; 14; 40; 152; 784; 5168; 40576:

Find, with proof, a formula for T

n

of the form T

n

= A

n

+ B

n

, where fA

n

g and

fB

n

g are well-known sequenes.

Problem 10. *** [Putnam 1993℄ Let fx

n

g

n�0

be a sequene of nonzero real

numbers suh that x

2

n

� x

n�1

x

n+1

= 1 for n = 1; 2; 3; : : : . Prove that there exists

a real number a suh that x

n+1

= ax

n

� x

n�1

for all n � 1.

4. Extra Problems

Problem 11. * Prove that

1

2

+ 2

2

+ � � �+ n

2

=

n(n + 1)(2n+ 1)

6

for all positive integers n.

Problem 12. ** Find and prove a formula for

1

4

+ 2

4

+ � � �+ n

4

:
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Problem 13. ******* Suppose that d and m are nonnegative integers. Prove

that

m

X

n=0

n

d

=

d

X

j=0

(

j

X

i=0

(�1)

i+j

�

j

i

�

i

d

)

�

m + 1

j + 1

�

:

Problem 14. **** [Putnam 1985℄ Let d be a real number. For eah integer

m � 0, de�ne a sequene fa

m

(j)g, j = 0; 1; 2; : : : by the ondition

a

m

(0) = d=2

m

; and a

m

(j + 1) = (a

m

(j))

2

+ 2a

m

(j); j � 0:

Evaluate lim

n!1

a

n

(n).

Problem 15. * Show that the Fibonai numbers satisfy

F

n+1

F

n�1

� F

2

n

= (�1)

n+1

for all positive integers n.


