PROBLEM SET 8: MORE RANDOM PROBLEMS DUE: MARCH 10

HARM DERKSEN

Problem 1. ${ }^{* * * * *}$ Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, and periodic with period 1 (i.e., $f(x+1)=f(x)$ and $g(x+1)=g(x)$ for all x). Prove

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x==\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} g(x) d x\right)
$$

Problem 2. ${ }^{* * *}$ Find the integral part (i.e., greatest integer \leq number) of the number

$$
\sum_{n=1}^{10^{9}} n^{-2 / 3}
$$

Problem 3. *** Let a "continuous" roulette wheel be given which has all numbers from 0 to 1 . The weel is spun repeatedly, each spin selecting a random real number between 0 and 1 . Stop when the sum of the selected numbers is greater than or equal to 1 . What is the expected number of spins for this to happen.
Problem 4. ${ }^{* * *}$ Let S be a non-empty set with a binary operation \star. Given that $x \star(x \star y)=y$ and $(y \star x) \star x=y$ for all $x, y \in S$. Prove: \star is commutative (i.e., $x \star y=y \star x$ for all $x, y \in S$).

Problem 5. ${ }^{* * * *}$ A chord of constant length moves in a semi-circle. The midpoint of th chord and the projections of its endpoints onto the base form a triangle. Prove that this triangle is ososceles, and it never changes its shape.
Problem 6.
(1) FInd a real number $x \neq 0$ such that $x, 2 x, \ldots, 34 x$ have no 7 's in their decimal expansion.
(2) Prove that for any real $x \neq 0$ at least one of $x, 2 x, \ldots, 79 x$ has a 7 in its decimal expansion.
Problem 7. ${ }^{* * * *}$ Let a_{1}, a_{2}, \ldots be a nondecreasing sequence of positive itnegers such that $x_{n}=n / a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Prove that x_{n} is an integer infinitely often.
Problem 8. * A bath has 3 faucets. With faucet 1 open, the bath fills up in 1 minute. With faucet 2 open, the bath fills up in 2 minutes. With faucet 3 open, the bath fills up in 3 minutes. How long will it take to fill up the bath if all three faucets are open?

Problem 9. ${ }^{* * *}$ Find integers p, q, r such that

$$
2005=p^{3}+q^{3}+r^{3}-3 p q r
$$

(Hint: The polynomial $p^{3}+q^{3}+r^{3}-3 p q r$ factors into 3 linear forms). Can you find all integer solutions?
Problem 10. ${ }^{* *}$ Let a, b, c, d, u be integers such that $a c, b c+a d$ and $b d$ are divisible by u. Prove that $b c$ and $a d$ are divisible by u.

