PROBLEM SET 5: RANDOM PROBLEMS DUE: FEBRUARY 11

HARM DERKSEN

Problem 1. ${ }^{* * *}$ Let there be given nine lattice points in three-dimensional Euclidean space. Show that there is a lattice point on the interior of one of the line segments joining two of these points.
Problem 2. ${ }^{* * *}$ Let $f(x)$ be a polynomial of degree n with real coefficients and such that $f(x) \geq 0$ for every real number x. Show that

$$
f(x)+f^{\prime}(x)+f^{\prime \prime}(x)+\cdots+f^{(n)}(x) \geq 0
$$

for all real $x .\left(f^{(k)}(x)\right.$ is the k-th derivative.)
Problem 3. ${ }^{* *}$ The Euclidean plane is divided into regions by drawing a finite number of straight lines. Show that it is possible to color each of these regions either red or blue in such a way that no two adjacent regions have the same color. Problem 4. ${ }^{* *}$ Show that there are no positive integers x, y such that $y^{2}=$ $x^{2}+x+1$.
Problem 5. ${ }^{* *}$ Let a, b be nonzero numbers with

$$
a+b=\frac{1}{a}+\frac{1}{b} .
$$

Prove that

$$
a^{3}+b^{3}=\frac{1}{a^{3}}+\frac{1}{b^{3}} .
$$

Problem 6. ${ }^{* * *}$ Prove that, if a pentagon inscribed in a circle has equal angles, then its sides are equal.
Problem 7. ${ }^{*}$ Let $a_{1}, a_{2}, \ldots, a_{n}$ represent an arbitrary arrangement of the numbers $1,2, \ldots, n$. Prove that, if n is odd, the product

$$
\left(a_{1}-1\right)\left(a_{2}-2\right) \cdots\left(a_{n}-n\right)
$$

is an even number.
Problem 8. ${ }^{* *}$ Let α be real, and not an odd multiple of π. Prove that $\tan (\alpha / 2)$ is rational if and only if both $\cos (\alpha)$ and $\sin (\alpha)$ are rational.
Problem 9. ${ }^{* * * * *}$ Suppose that n is a positive integer. Write down all the rational numbers $\frac{a}{b}$ with $\operatorname{gcd}(a, b)=1$ and $0 \leq a \leq b \leq n$, arranged from small to large.

Prove that

$$
\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}
$$

are three consecutive numbers in this sequence, then

$$
\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{3}}{b_{1}+b_{3}} .
$$

For example, for $n=5$ we have

$$
\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}
$$

and

$$
\frac{1}{3}=\frac{1+2}{4+5}
$$

Problem 10. ${ }^{* * * * * * * *}$ Suppose that f is a continuous real-valued function on the real numbers. Suppose that f^{2} and f^{3} are both \mathcal{C}^{∞} (which means that the k-th derivative exists and is continuous for all $k=0,1,2, \ldots)$. Prove that f is \mathcal{C}^{∞}.

