# PROBLEM SET 2: RECURRENCE RELATIONS (DUE 1/21/2004) 

HARM DERKSEN

A sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots$ is said to satisfy a recurrence relation if $a_{n}$ can be expressed in terms of $a_{i}$ with $i<n$. One important example are the Fibonacci numbers. The Fibonacci numbers are defined by:

$$
F_{0}=1, F_{1}=1, F_{n+1}=F_{n}+F_{n-1} \text { for all } n \geq 1
$$

So we obtain $F_{2}=1+1=2, F_{3}=2+1, F_{4}=3+2=5, F_{5}=5+3=8$ and so forth. The beginning of the Fibonacci sequence is:
$1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946, \ldots$
We can find a closed formula for Fibonacci numbers as follows. Consider the recurrence relation

$$
F_{n+1}=F_{n}+F_{n-1}
$$

without the initial condition. Suppose it has a solution of the form $F_{n}=\lambda^{n}$ with $\lambda \neq 0$. This implies that

$$
\lambda^{n+1}=\lambda^{n}+\lambda^{n-1}
$$

which is equivalent to

$$
\lambda^{2}=\lambda+1
$$

Solving

$$
\lambda^{2}-\lambda-1=0
$$

gives us two solutions

$$
\frac{1 \pm \sqrt{5}}{2}
$$

which we will call $\lambda_{1}=(1-\sqrt{5}) / 2$ and $\lambda_{2}=(1+\sqrt{5}) / 2$. We have that $F_{n}=\lambda_{1}^{n}$ and $F_{n}=\lambda_{2}^{n}$ are solutions of the recurrence relation. Also, it is easy to check that $F_{n}=a \lambda_{1}^{n}+b \lambda_{2}^{n}$ is also a solution (this is called the superposition principle). A sum of two solutions is again a solution. If you multiply a solution with a constant, then this is again a solution. In other words the set of solutions is a vector space over $\mathbb{R}$. To find a solution with the initial conditions $F_{0}=1$ and $F_{1}=1$, we solve for $a$ and $b$ :

$$
1=F_{0}=a \lambda_{1}^{0}+b \lambda_{2}^{0}=a+b
$$

and

$$
1=F_{1}=a \lambda_{1}+b \lambda_{2}=a \frac{1-\sqrt{5}}{2}+b \frac{1+\sqrt{5}}{2} .
$$

If we substitute $a=1-b$ in the second equation we find

$$
b=\frac{\sqrt{5}+1}{2 \sqrt{5}}=\frac{\lambda_{2}}{\sqrt{5}}, a=\frac{1-\sqrt{5}}{2 \sqrt{5}}=\frac{-\lambda_{1}}{\sqrt{5}} .
$$

So we have

$$
F_{n}=\frac{\lambda_{2}^{n+1}-\lambda_{1}^{n+1}}{\sqrt{5}}
$$

Another way of looking at Fibonacci numbers is to look at the generating function. We define

$$
F(x)=F_{0}+F_{1} x+F_{2} x^{2}+\cdots
$$

which is called the generating function of the sequence $F_{0}, F_{1}, F_{2}, \ldots$ The conditions $F_{0}=1, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ show that

$$
\left(1-x-x^{2}\right) F(x)=1
$$

This means that $F(x)=\frac{1}{1-x-x^{2}}$. In other words, the Fibonacci numbers are the coefficients of the power series of the rational function $1 /\left(1-x-x^{2}\right)$.

## PROBLEMS

Problem 1. * Give a formula for the sequence $A_{n}$ with $A_{0}=1, A_{1}=2, A_{n+1}=$ $A_{n}+6 A_{n-1}$.
Problem 2. ${ }^{* *}$ Give a formula for the sequence $S_{n}$ with $S_{0}=0, S_{1}=1, S_{2}=4$, $S_{n+1}=3 S_{n}-3 S_{n-1}+S_{n-2}$. (Hint: For this problem, compute a few numbers in the sequence, then guess.)
Problem 3. ${ }^{* *}$ Consider the sequence $D_{n}$ defined by $D_{0}=1, D_{1}=\frac{3}{5}, D_{n+1}=$ $\frac{6}{5} D_{n}-D_{n-1}$. Prove that $\left|D_{n}\right| \leq 1$ for all $n$.
Problem 4. ${ }^{* * *}$ Compute

$$
\lim _{n \rightarrow \infty}(2+\sqrt{2})^{n}-\left\lfloor(2+\sqrt{2})^{n}\right\rfloor
$$

where $\lfloor x\rfloor$ is the largest integer $\leq x$.
Problem 5. ${ }^{* * * *}$ A famous sequence of numbers are the so-called Catalan numbers. They are defined by $C_{0}=1, C_{1}=1$ and

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

for $n \geq 1$. So we get the sequence

$$
1,1,2,5,14,42, \ldots
$$

Prove that the generating function $C(x)$ satisfies

$$
C(x)^{2}=\frac{C(x)-1}{x} .
$$

Find an explicit formula for $C(x)$ and prove that

$$
C_{n}=\frac{\binom{2 n}{n}}{n+1} .
$$

Problem 6. ${ }^{* * * *}$ Show that for every prime number $p$, there exists a Fibonnaci number $F_{n}$ such that $p$ divides $F_{n}$.

## Extra Problems

Problem 7. ${ }^{* * *}$ The floor of a hallway has size $2 \times 20$. How many ways are there to tile the floor with tiles of size $1 \times 2$. (Hint: Let $A_{n}$ be the number of ways to tile a $2 \times n$ floor. Deduce a recurrence relation for $A_{n}$.)
Problem 8. ${ }^{* * *}$ What is $F_{0}+F_{1} / 10+F_{2} / 10^{2}+F_{3} / 10^{3}+\cdots$ ? In other words, add all the mumbers:

$$
\left.\begin{array}{llllllll}
1 & & & & & & & \\
0 & . & 1 & & & & & \\
0 & . & 0 & 2 & & & & \\
\\
0 & . & 0 & 0 & 3 & & & \\
0 & . & 0 & 0 & 0 & 5 & & \\
0 & . & 0 & 0 & 0 & 0 & 8 & \\
0 & . & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & . & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Problem 9. ${ }^{* * *}$ Consider the sequence $A_{0}, A_{1}, A_{2}, \ldots$ defined by $A_{0}=10.1$ and $A_{n+1}=A_{n}^{2}-2$ for all $n \geq 0$. Find and prove a closed formula for $A_{n}$.
Problem 10. ${ }^{* * *}$ Consider the sequence of polynomials defined by $T_{0}(x)=1$, $T_{1}=x$ and $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$. Prove that

$$
T_{n}(\cos (x))=\cos (n x) .
$$

Also prove that

$$
T_{n}(x)=\frac{\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}}{2}
$$

