PROBLEM SET 2: RECURRENCE RELATIONS (DUE 1/21/2004)

HARM DERKSEN

A sequence of numbers a_0, a_1, a_2, \ldots is said to satisfy a recurrence relation if a_n can be expressed in terms of a_i with i < n. One important example are the Fibonacci numbers. The Fibonacci numbers are defined by:

$$F_0 = 1, F_1 = 1, F_{n+1} = F_n + F_{n-1}$$
 for all $n \ge 1$.

So we obtain $F_2 = 1 + 1 = 2, F_3 = 2 + 1, F_4 = 3 + 2 = 5, F_5 = 5 + 3 = 8$ and so forth. The beginning of the Fibonacci sequence is:

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, \ldots$ We can find a closed formula for Fibonacci numbers as follows. Consider the recurrence relation

$$F_{n+1} = F_n + F_{n-2}$$

without the initial condition. Suppose it has a solution of the form $F_n = \lambda^n$ with $\lambda \neq 0$. This implies that

$$\lambda^{n+1} = \lambda^n + \lambda^{n-1}$$

 $\lambda^2 = \lambda + 1.$

which is equivalent to

Solving

$$\lambda^2 - \lambda - 1 = 0$$

gives us two solutions

$$\frac{1\pm\sqrt{5}}{2}$$

which we will call $\lambda_1 = (1 - \sqrt{5})/2$ and $\lambda_2 = (1 + \sqrt{5})/2$. We have that $F_n = \lambda_1^n$ and $F_n = \lambda_2^n$ are solutions of the recurrence relation. Also, it is easy to check that $F_n = a\lambda_1^n + b\lambda_2^n$ is also a solution (this is called the superposition principle). A sum of two solutions is again a solution. If you multiply a solution with a constant, then this is again a solution. In other words the set of solutions is a vector space over \mathbb{R} . To find a solution with the initial conditions $F_0 = 1$ and $F_1 = 1$, we solve for a and b:

$$1 = F_0 = a\lambda_1^0 + b\lambda_2^0 = a + b$$

and

$$1 = F_1 = a\lambda_1 + b\lambda_2 = a\frac{1-\sqrt{5}}{2} + b\frac{1+\sqrt{5}}{2}.$$

HARM DERKSEN

If we substitute a = 1 - b in the second equation we find

$$b = \frac{\sqrt{5}+1}{2\sqrt{5}} = \frac{\lambda_2}{\sqrt{5}}, \ a = \frac{1-\sqrt{5}}{2\sqrt{5}} = \frac{-\lambda_1}{\sqrt{5}}$$

So we have

$$F_n = \frac{\lambda_2^{n+1} - \lambda_1^{n+1}}{\sqrt{5}}$$

Another way of looking at Fibonacci numbers is to look at the generating function. We define

$$F(x) = F_0 + F_1 x + F_2 x^2 + \cdots$$

which is called the generating function of the sequence F_0, F_1, F_2, \ldots . The conditions $F_0 = 1, F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ show that

$$(1 - x - x^2)F(x) = 1.$$

This means that $F(x) = \frac{1}{1-x-x^2}$. In other words, the Fibonacci numbers are the coefficients of the power series of the rational function $1/(1-x-x^2)$.

PROBLEMS

Problem 1. * Give a formula for the sequence A_n with $A_0 = 1, A_1 = 2, A_{n+1} = A_n + 6A_{n-1}$.

Problem 2. ** Give a formula for the sequence S_n with $S_0 = 0$, $S_1 = 1$, $S_2 = 4$, $S_{n+1} = 3S_n - 3S_{n-1} + S_{n-2}$. (*Hint:* For this problem, compute a few numbers in the sequence, then guess.)

Problem 3. ** Consider the sequence D_n defined by $D_0 = 1$, $D_1 = \frac{3}{5}$, $D_{n+1} = \frac{6}{5}D_n - D_{n-1}$. Prove that $|D_n| \le 1$ for all n.

Problem 4. *** Compute

$$\lim_{n \to \infty} (2 + \sqrt{2})^n - \lfloor (2 + \sqrt{2})^n \rfloor$$

where $\lfloor x \rfloor$ is the largest integer $\leq x$.

Problem 5. **** A famous sequence of numbers are the so-called Catalan numbers. They are defined by $C_0 = 1, C_1 = 1$ and

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

for $n \geq 1$. So we get the sequence

 $1, 1, 2, 5, 14, 42, \ldots$

Prove that the generating function C(x) satisfies

$$C(x)^2 = \frac{C(x) - 1}{x}.$$

Find an explicit formula for C(x) and prove that

$$C_n = \frac{\binom{2n}{n}}{n+1}.$$

Problem 6. **** Show that for every prime number p, there exists a Fibonnaci number F_n such that p divides F_n .

Extra Problems

Problem 7. *** The floor of a hallway has size 2×20 . How many ways are there to tile the floor with tiles of size 1×2 . (Hint: Let A_n be the number of ways to tile a $2 \times n$ floor. Deduce a recurrence relation for A_n .)

Problem 8. *** What is $F_0 + F_1/10 + F_2/10^2 + F_3/10^3 + \cdots$? In other words, add all the numbers:

Problem 9. *** Consider the sequence A_0, A_1, A_2, \ldots defined by $A_0 = 10.1$ and $A_{n+1} = A_n^2 - 2$ for all $n \ge 0$. Find and prove a closed formula for A_n . **Problem 10.** *** Consider the sequence of polynomials defined by $T_0(x) = 1$, $T_1 = x$ and $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. Prove that

$$T_n(\cos(x)) = \cos(nx).$$

Also prove that

$$T_n(x) = \frac{(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n}{2}$$