Linear algebra, test 1, Sep 24 2018, 2:30-3:15

1. (15 points). Let

$$
v_{1}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right), \quad w=\left(\begin{array}{c}
a \\
a \\
1
\end{array}\right)
$$

For which value(s) of a would w be an element of $\operatorname{SPAN}\left(v_{1}, v_{2}\right)$?
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ send $\binom{x_{1}}{x_{2}}$ to $\left(\begin{array}{c}x_{1}+x_{2} \\ x_{2} \\ 2 x_{1}+3 x_{2}\end{array}\right)$.
(a) (15 points). Give the matrix of T.
(b) (5 points). Give the definition of injective (one-to-one).
(c) (5 points). Give the definition of surjective (onto).
(d) (5 points). Is T injective?
(e) (5 points). Is T surjective?
3. Let

$$
A=\left(\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
-1 & 1 & -1 & 2 & 1 \\
0 & -1 & -1 & -1 & -2
\end{array}\right)
$$

(a) (10 points). Compute the rref (reduced row echelon form) of matrix A. Indicate which row-operations you used (e.g. $R_{2} \leftarrow R_{2}+R_{1}$).
(b) (10 points). The matrix A is the augmented matrix of the following system of equations:

$$
\left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
-1 & 1 & -1 & 2 \\
0 & -1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right)
$$

Give all solutions for this system. Write the solutions in parametric vector form.

Note: don't do any more row-reduction for this question, you already did that in part (a).
(c) (10 points). Let v_{1}, \ldots, v_{5} be the columns of A. Answer the following questions. Note: don't do any computation for this question, you already did that in part (a).
i. Is v_{2} in $\operatorname{SPAN}\left(v_{1}\right)$? Yes/no. If yes, then write v_{2} as a linear combination of v_{1}.
ii. Is v_{3} in $\operatorname{SPAN}\left(v_{1}, v_{2}\right)$? Yes/no. If yes, then write v_{3} as a linear combination of v_{1}, v_{2}.
iii. Is v_{4} in $\operatorname{SPAN}\left(v_{1}, v_{2}, v_{3}\right)$? Yes/no. If yes, then write v_{4} as a linear combination of v_{1}, v_{2}, v_{3}.
iv. Is v_{5} in $\operatorname{SPAN}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$? Yes/no. If yes, then write v_{5} as a linear combination of $v_{1}, v_{2}, v_{3}, v_{4}$.
4. (a) (5 points). Give the definition: Vectors v_{1}, v_{2}, v_{3} are linearly dependent when:
(b) (8 points). If v_{1}, v_{2} are linearly dependent, must v_{1}, v_{2}, v_{3} then also be linearly dependent? Yes/no. Explain using the definition from part (a).
(c) (7 points). If A is a matrix and x is a vector, must $A x$ be a linear combination of the columns of A ? Explain.

