Linear algebra, test 1, Sep 24 2018, 2:30–3:15

1. (15 points). Let

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} a \\ a \\ 1 \end{pmatrix}.$$

For which value(s) of a would w be an element of $SPAN(v_1, v_2)$?

2. Let
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 send $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $\begin{pmatrix} x_1 + x_2 \\ x_2 \\ 2x_1 + 3x_2 \end{pmatrix}$.

- (a) (15 points). Give the matrix of T.
- (b) (5 points). Give the definition of injective (one-to-one).
- (c) (5 points). Give the definition of surjective (onto).
- (d) (5 points). Is T injective?
- (e) (5 points). Is T surjective?

3. Let

$$A = \left(\begin{array}{rrrrr} 1 & 0 & 2 & 0 & 1 \\ -1 & 1 & -1 & 2 & 1 \\ 0 & -1 & -1 & -1 & -2 \end{array}\right)$$

- (a) (10 points). Compute the rref (*reduced* row echelon form) of matrix A. Indicate which row-operations you used (e.g. $R_2 \leftarrow R_2 + R_1$).
- (b) (10 points). The matrix A is the augmented matrix of the following system of equations:

$$\left(\begin{array}{rrrr}1 & 0 & 2 & 0\\-1 & 1 & -1 & 2\\0 & -1 & -1 & -1\end{array}\right)\left(\begin{array}{r}x_1\\x_2\\x_3\\x_4\end{array}\right) = \left(\begin{array}{r}1\\1\\-2\end{array}\right).$$

Give all solutions for this system. Write the solutions in *parametric* vector form.

Note: don't do any more row-reduction for this question, you already did that in part (a).

- (c) (10 points). Let v_1, \ldots, v_5 be the columns of A. Answer the following questions. Note: don't do any computation for this question, you already did that in part (a).
 - i. Is v_2 in SPAN (v_1) ? Yes/no. If yes, then write v_2 as a linear combination of v_1 .
 - ii. Is v_3 in SPAN (v_1, v_2) ? Yes/no. If yes, then write v_3 as a linear combination of v_1, v_2 .
 - iii. Is v_4 in SPAN (v_1, v_2, v_3) ? Yes/no. If yes, then write v_4 as a linear combination of v_1, v_2, v_3 .
 - iv. Is v_5 in SPAN (v_1, v_2, v_3, v_4) ? Yes/no. If yes, then write v_5 as a linear combination of v_1, v_2, v_3, v_4 .

- 4. (a) (5 points). Give the definition: Vectors v_1, v_2, v_3 are linearly dependent when:
 - (b) (8 points). If v_1, v_2 are linearly dependent, must v_1, v_2, v_3 then also be linearly dependent? Yes/no. Explain using the definition from part (a).
 - (c) (7 points). If A is a matrix and x is a vector, must Ax be a linear combination of the columns of A? Explain.