Linear algebra, test 2 answers

1. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right)$
(a) (3 points). What is the rank of A ? Answer: 1 . (need to know: rank $=$ number of pivots in $\operatorname{RREF}(A)$. Note: this A is already in RREF)
(b) (5 points). Give a basis for the Column Space of A. Answer: $\left\{\binom{1}{0}\right\}$. (need to know: columns of A where $\operatorname{RREF}(A)$ has a pivot).
(c) (12 points). Give a basis of the NullSpace of A.

Answer: $\left\{\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right),\left\{\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)\right\}\right.$. (need to know: solve $A\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=$ 0 , and that the free variables correspond to columns without a pivot, so they are x_{2}, x_{3}, and then you have to write down the solution in parametric form, and take the x_{2} and x_{3} components).
2. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
1 & 2 & 3
\end{array}\right)
$$

(a) (15 points). Compute the inverse of A.

Answer: $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$
(need to know: Row reduce $(A \mid I)$ to $\left(I \mid A^{-1}\right)$)
(b) (5 points) Use the inverse to solve the equation $A X=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.

Answer: $\left\{\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right)\right.$ (need to know: Solution of $A X=b$ is $A^{-1} b$).
3. (12 points) Let V be a vector space and A is a matrix.
(a) Give the definition: The NullSpace of A is the set of all... vectors v for which $A v=0$.
(b) Give the definition: v_{1}, \ldots, v_{n} is a spanning set of V when:
$\operatorname{SPAN}\left(v_{1}, \ldots, v_{n}\right)=V$
(i.e.: the set of all linear combinations of v_{1}, \ldots, v_{n} is V).
(c) Give the definition: v_{1}, \ldots, v_{n} is a basis of V when:

It is a spanning set of V and it is linearly independent.
(d) The dimension of V is defined as: the number of elements of a basis of V.
4. (7 points) Suppose that $v_{1}, v_{2}, v_{3} \in V$ and that $B:=\left\{v_{1}, v_{2}\right\}$ is a basis of V. Answer each with Yes/No/Undecidable and a brief explanation.
(a) Is v_{1}, v_{2}, v_{3} a spanning set of V ?

Yes. Since $v_{1}, v_{2}, v_{3} \in V$ we have $\operatorname{SPAN}\left(v_{1}, v_{2}, v_{3}\right) \subseteq V$. But then $\operatorname{SPAN}\left(v_{1}, v_{2}, v_{3}\right)$ must equal V because it contains $\operatorname{SPAN}\left(v_{1}, v_{2}\right)=V$.
(b) Is v_{1}, v_{2}, v_{3} linearly independent?

No. If v_{1}, v_{2}, v_{3} were linearly independent, then with part (a) it would be a basis of V. But V can not have a basis with 2 elements and also have a basis with 3 elements.
5. (6 points) If A is an 5 by 7 matrix with rank 3 , then what is:
(a) The dimension of the column space of A ? Answer: 3 . (need to know: rank is always the dimension of the column space).
(b) The dimension of the NullSpace of A ? Answer: 4. (need to know: rank $+\operatorname{dim}($ NullSpace $)=$ number of columns)
6. Let

$$
u_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad u_{2}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and let $B=\left\{u_{1}, u_{2}, u_{3}\right\}$.
(a) (10 points) If $[v]_{B}=\left(\begin{array}{r}1 \\ -2 \\ 1\end{array}\right)$ then what is v ?

Answer: $1 \cdot u_{1}+(-2) \cdot u_{2}+1 \cdot u_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
(b) (10 points) Let $e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. What is $\left[e_{2}\right]_{B}$?

Row-reducing $\left(B \mid e_{2}\right)=\left(u_{1} u_{2} u_{3} \mid e_{2}\right)$ leads to the answer $\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)$.
(c) (10 points): Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map and suppose that:

$$
T u_{1}=u_{2}, \quad T u_{2}=u_{3}, \quad T u_{3}=u_{1}
$$

Give the matrix of T.
Answer: we have to figure out what $T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)$ are. Note that $e_{1}=u_{1}-2 u_{2}+u_{3}$ (see part a) and $e_{2}=u_{2}-2 u_{3}$ (see part b) and $e_{3}=u_{3}$. So $T\left(e_{1}\right)=T\left(u_{1}-2 u_{2}+u_{3}\right)=T\left(u_{1}\right)-2 T\left(u_{2}\right)+T\left(u_{3}\right)=$ $u_{2}-2 u_{3}+u_{1}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right), T\left(e_{2}\right)=T\left(u_{2}\right)-2 T\left(u_{3}\right)=u_{3}-2 u_{1}=$ $\left(\begin{array}{l}-2 \\ -4 \\ -5\end{array}\right)$, and $T\left(e_{3}\right)=T\left(u_{3}\right)=u_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Thus the matrix is $\left(T\left(e_{1}\right) T\left(e_{2}\right) T\left(e_{3}\right)\right)=\left(\begin{array}{lll}1 & -2 & 1 \\ 3 & -4 & 2 \\ 3 & -5 & 3\end{array}\right)$.
7. (5 points): Answer each with True/False.
(Additional 5 bonus points): Explain.
(a) True or false: If A, B are square and $A B=I$ then A can be rowreduced to B ?
Answer: True because if $A B=I$ then both are invertible, which means both can row-reduced to I, which means they can be rowreduced to each other.
(b) True or false: If A, B are square and A is invertible then $A B$ and B have the same NullSpace?
Answer: True because if $B X=0$ then $A B X=A 0=0$, and if $A B X=0$ then $A^{-1} A B X=0$ and thus $B X=0$.
Another way to see this is that if A is invertible, then it is a product of elementary matrices. So $A B$ differs from B by a product of elementary matrices, which means $A B$ can be row-reduced to B, and has thus the same solutions.
(c) True or false: If A is not square then A is automatically not invertible?
True. (Recall that if A has more rows than columns, then A can not be onto, and if it has more columns than rows, then it can not be one-to-one).
(d) True or false: If every column of B is in the NullSpace of A then $A B=0$?
True: $A B$ is a matrix whose j 'th column is $A \operatorname{Col}_{j}(B)$ but that is 0 if $\operatorname{Col}_{j}(B)$ is in the NullSpace of A.
(e) True or false: $\left\{\left.\binom{x}{y} \right\rvert\, x+y=1\right\}$ is a vector space?

False because this does not contain the zero vector.

