Linear algebra, test 2 (max score: $100+5$ bonus)

1. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right)$
(a) (3 points). What is the rank of A ?
(b) (5 points). Give a basis for the Column Space of A.
(c) (12 points). Give a basis of the NullSpace of A.
2. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
1 & 2 & 3
\end{array}\right)
$$

(a) (15 points). Compute the inverse of A.
(b) (5 points) Use the inverse to solve the equation $A X=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.
3. (12 points) Let V be a vector space and A is a matrix.
(a) Give the definition: The NullSpace of A is the set of all......
(b) Give the definition: v_{1}, \ldots, v_{n} is a spanning set of V when:
(c) Give the definition: v_{1}, \ldots, v_{n} is a basis of V when:
(d) The dimension of V is defined as:
4. (7 points) Suppose that $v_{1}, v_{2}, v_{3} \in V$ and that $B:=\left\{v_{1}, v_{2}\right\}$ is a basis of V. Answer each with Yes/No/Undecidable and a brief explanation.
(a) Is v_{1}, v_{2}, v_{3} a spanning set of V ?
(b) Is v_{1}, v_{2}, v_{3} linearly independent?
5. (6 points) If A is an 5 by 7 matrix with rank 3 , then what is:
(a) The dimension of the column space of A ?
(b) The dimension of the NullSpace of A ?
6. Let

$$
u_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad u_{2}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and let $B=\left\{u_{1}, u_{2}, u_{3}\right\}$.
(a) (10 points) If $[v]_{B}=\left(\begin{array}{r}1 \\ -2 \\ 1\end{array}\right)$ then what is v ?
(b) (10 points) Let $e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. What is $\left[e_{2}\right]_{B}$?
(c) (10 points): Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map and suppose that:

$$
T u_{1}=u_{2}, \quad T u_{2}=u_{3}, \quad T u_{3}=u_{1}
$$

Give the matrix of T.
7. (5 points): Answer each with True/False.
(Additional 5 bonus points): Explain.
(a) True or false: If A, B are square and $A B=I$ then A can be rowreduced to B ?
(b) True or false: If A, B are square and A is invertible then $A B$ and B have the same NullSpace?
(c) True or false: If A is not square then A is automatically not invertible?
(d) True or false: If every column of B is in the NullSpace of A then $A B=0$?
(e) True or false: $\left\{\left.\binom{x}{y} \right\rvert\, x+y=1\right\}$ is a vector space?

